OLI Engine usage of Scalechem OIL data:

let $i = [1 \rightarrow n]$ be the number of Oil(s)

let $j = [1 \rightarrow m]$ be the number of Comp(s) in the sample $Oil_{(i)}$

 $Flow_{(i)} = Total \ flow \ of \ Oil_{(i)} \ [\frac{bbl}{day}]$

 $SPG_{(i)} = Specific \ gravity \ of \ Oil_{(i)} \ [unitless]$

 $AMWOil_{(i)} = Average \ molecular \ weight \ of \ Oil_{(i)} \left[\frac{g}{mol} \right]$

$$SumOil_{(i)} = \sum_{j=1}^{m} Comp_{(j)}$$
 [mol %]

Then $Fac_{(i)}$ is the factor of scaling the flow of $Oil_{(i)}$ given by

$$Fac_{(i)} = Flow_{(i)} * 6.244 * SPG_{(i)} * \left(\frac{1000}{AMWoil_{(i)}}\right) \left[\frac{mol}{hr}\right]$$
 where $\frac{bbl}{day} \rightarrow \frac{6.624L}{hr}$

and each molar component, $Comp_molar_flow_{(j)}$ of $Oil_{(i)}$ is then calculated as

$$Comp_molar_flow_{(j)} = \left(\frac{Comp_{(j)}}{SumOil_{(i)}}\right) * Fac_{(i)} \left[\frac{mol}{hr}\right]$$

where $Comp_{(j)}$ is expressed as mol %

OLI Engine usage of Scalechem GAS data:

let $i = [1 \rightarrow n]$ be the number of Gas(s)

let $j = [1 \rightarrow m]$ be the number of Comp(s) in the sample $Gas_{(i)}$

$$Flow_{(i)} = Total \ flow \ of \ Gas_{(i)} \ \left[\frac{kscf}{day}\right]$$

 $MFGR_{(i)}$ is the total Gas Flow rate given by

$$MFGR_{(i)} = Flow_{(i)} * 1000 * \frac{28.32}{24 * 22.4} \quad \left[\frac{mol}{hr}\right] where \quad \frac{kscf}{day} = \left(\frac{1}{24} * \frac{1}{hr}\right) * (0.0283 * m^3) * \left(\frac{1000}{22.4} * \frac{mol}{m^3}\right)$$

$$SumGas_{(i)} = \sum_{j=1}^{m} Comp_{(j)} \quad [\frac{mol}{Volume} \%]$$

and each molar component, $Comp_molar_flow_{(j)}$ of $Gas_{(i)}$ is then calculated as

$$Comp_molar_flow_{(j)} = \left(\frac{Comp_{(j)}}{SumGas_{(i)}}\right) * MFGR_{(i)} \quad \left[\frac{mol}{hr}\right]$$

where $Comp_{(j)}$ is expressed as $\frac{mol}{Volume}$ %