

Denville, NJ 07834 973-998-0240

Date:	19 October 2012
То:	ScaleChem Clients
From:	Anthony J (A.J.) Gerbino, PhD Pat McKenzie
Re:	Case Studies in ScaleChem Standard and Studio ScaleChem PWG-12-Rel-002

Summary

The purpose of this document is to directly compare ScaleChem Standard to Studio ScaleChem via a series of case studies. Comparisons are specific to the output of the calculations: do the calculations match each other identically? If not, where are the differences? In some cases the document explains why there are differences.

This document is part of our effort to make the transition from ScaleChem Standard to Studio ScaleChem as easy as possible, anticipating where there may be changes in results between the two programs. In this way, our clients can continue to work with either ScaleChem until they eventually transition to Studio ScaleChem. This document serves as evidence to whether the transition regarding a type of case is seamless (no differences between the two software), and if not, then what calculation differences are observed.

Method

Thirty client/AQSim files were opened and tested. Of these, the first twenty-two cases are reported, ranging from very simple (brine only) to many calculation objects. Some of the cases are presented in this report and the accompanying Excel file. Others were excluded because they provided no new knowledge relative to the previously compared cases (i.e., cases with duplicate comparisons were ignored). The cases tested are archived at the following AQSim FTP location: www.aqsim.com/Downloads/ScaleChemComparisons.zip

Finally, the data presented is complete for some files but not others, again based on the decision that duplication of observations would not provide new information.

This report does not provide conclusions or recommendations. Rather it is a blind study of previously saved files that were opened in both software and tested. This work began in February 2012 using the alpha-release of Studio ScaleChem. It was redone in September 2012 using the V9.0.1 release. During this time, differences observed were submitted to OLI for evaluation. In some cases changes were made to the new software. In other cases, the developers confirmed that the new software provide a more accurate representation of the fluid properties. Thus, this comparison work was also a beta testing tool for the new product.

We plan to produce a second comparison document, given the differences between the two software products that are presented in this document. In this planned document, the remaining files will be presented along with the files in this document that contained discrepancies.

Cases not shown

The files selected were random and assigned case numbers. Several cases, when evaluated resulted in similar/same results as previous cases. Therefore they are not reported here. These files are available in the download link provided above. The cases are: 5, 10, 11, and 21.

Differences observed

The following differences were observed during the study. Please be aware of them as you plan to transfer your existing ScaleChem Standard files (SC) to Studio ScaleChem (SSC)

1) Saturation

There are some cases where the precipitates selected in SC do not appear in SSC.

- 2) Facilities (Case #20 and #22) Solids are separated in the First Node in SSC, even though they were not selected as such in SC
- Facilities (Case #20 and #22) There are some cases where the precipitates selected in SCStd does not appear in SSC
- 4) Brine Analysis (Case #22)

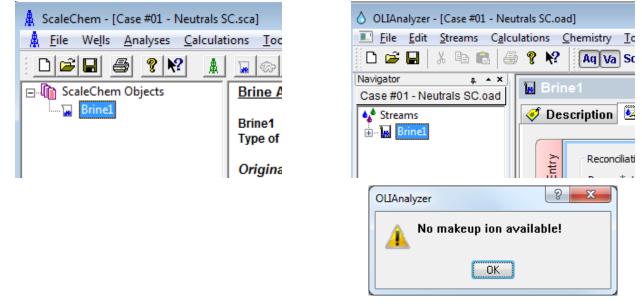
The Na/Cl charge balance is not in StudioSC. Analyses that used this option were converted to Makeup ion in StudioSC. Be careful! This creates some calculation problems.

 Brine Analysis (Case#9, #13, and #20). The computed alkalinity differ between 0 and 10%

6) Brine Analysis (Case #6).

The computed amount of CO2 added to the brine in a CO2 fraction calculation differs. This is because of the way that the new software handles the headspace. This difference is an improvement.

- Oil Analysis (Case #20) The H2O saturation was set to none in SSC.
- Plot None of the plot variables selected in SC are transferred to SSC.
- 9) Saturation/Scaling Results (Case #22) There is a significant difference in the water:oil ratio computed in SSC vs. SC
- 10) **CaCO3 Predictions** (*Case #9, Object "B_ST2"*) There are differences up to 20% in the computed scale tendencies between SSC and SC
- 11) **Object Convergence** (*Case #9, object "B_ST1"*) There are some calculation objects that do not converge in SSC


Contents

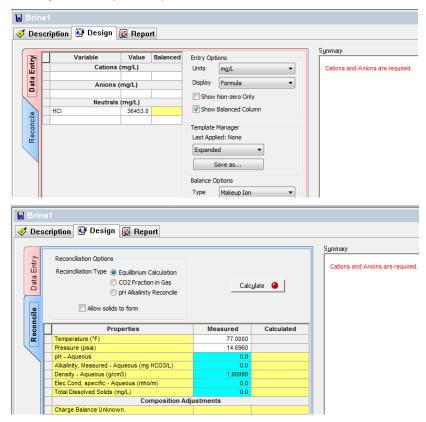
The following are the cases presented. They progress non-simple to complex.
Case #1 –Neutrals SC
Case #2 – CJ-R6
Case #3 – AH-E
Case #4 – LC-B
Case #6 – Analysis
Case #7 – AS-B16
Case #8 – S-C
Case #9 – BS-J02
Case #12 – RG-A
Case #13 – HA-N
Case #14 – Course Scenario-Dec31.200941
Case #15 – FeS
Case #16 – C-OP1
Case #17 – GB-M
Case #18 – S-55
Case #19 – JF-Res
Case #20 – SG-A
Case #22 – SW

Case #1 - Neutrals SC

Summary

This file contains a single Brine Analysis object. The object contains 1N HCl as a Neutrals inflow. There are no cations or anions in the analysis. The purpose of this case is to see whether the new software will accept molecular flows in the brine analysis. This is no longer a requirement of the ScaleChem software, since molecular flows can now be added into streams, and streams can be used in the ScaleChem objects. In summary, this calculation does not work in Studio ScaleChem.

There is a warning in Studio ScaleChem that No makeup ion is available. This is because the water analysis contains neutral inflows only.

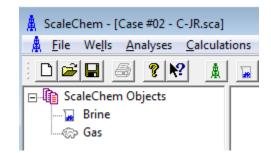

Settings – Non-Zero, Na/Cl balance, Equilibrium

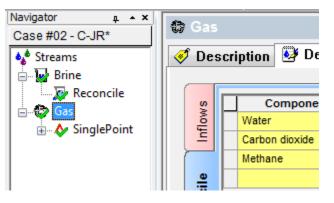
Cations	mg/L A	nions	mg/L	Neutral	s	mg/L
				HCI, aq		36453.00
Variable Ambient Temperature	Units	Measured	Calculated	Reconciliation Ty		•
Ambient Temperature	°F	77.000	77.000	Equilibrium Calcu	ulation	•
Ambient Temperature Ambient Pressure	°F psia				ulation	•
Ambient Temperature Ambient Pressure pH	°F psia pH units	77.000 14.696	77.000 14.696	Equilibrium Calcu	ulation	•
Ambient Temperature Ambient Pressure pH Alkalinity	°F psia	77.000 14.696 0.000	77.000 14.696	Equilibrium Calcu	ulation	•
Ambient Temperature Ambient Pressure pH Alkalinity Density	°F psia pH units as HCO3-, mg/L	77.000 14.696 0.000 0.000	77.000 14.696 0.076	Equilibrium Calcu	ulation	Balance
Variable Ambient Temperature Ambient Pressure pH Alkalinity Density Total Dissolved Solids Electrical Conductivity	°F psia pH units as HCO3-, mg/L g/cc	77.000 14.696 0.000 0.000 1.000	77.000 14.696 0.076 	Equilibrium Calcu	ulation	

variable	ScaleChem Std	Studio ScaleChem	% Difference
рН	0.076	0.0756	
Alk	0		
Balance ion	0		
Balance Value	0		
Density	1.01481	1.01481	
Saturated			

Studio ScaleChem Screen – Brine Analysis

Settings - Makeup Ion, Equilibrium




Notes – No makeup ion warning, Brine Analysis does not handle Molecular flows. Streams now do this. Calculations not possible.

Case #2 – CJ-R

Summary

This case contains a water and gas analysis. Both are standard-type entries (nothing unique about the chemistry or conditions). The calculation results were the same except for Alkalinity, which varied by 5%. There was a difference in how the gas was handled. The Expanded gas template was on, and the water saturation calculation was active for the StudioScaleChem Gas.

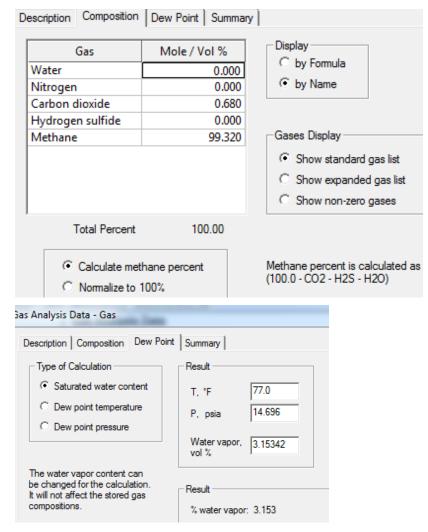
ScaleChem Std Screen – Brine Analysis Settings - Non-zero List, Na/Cl balance, Equilibrium

Description Species	Summary								
- Analysis View			Spe	ecies [)isplay —		ecies List		
Original C Balance	ced C i	Reconcil			ula O I	Name C	Standard C	Expanded	Non Zero
Cations	mg	/L	A	nions		mg/L	Neu	trals	mg/L
Na+1	6528	30.000	CI-1			114503.000			
K+1	33	30.900	SO4-2			24.000			
Ca+2	543	35.000	HC03-1			263.000			
Mg+2		L4.600	Br-1			571.000			
Sr+2		99.200							
Ba+2		33.800							
Fe+2	-	26.400							
Zn+2	3	37.700							
Variable		U	nits	Me	asured	Calculated	Reconciliation	п Туре	
Ambient Temperature		°F			77.000	77.000	Equilibrium C	alculation	•
Ambient Pressure		psia			14.696	14.696	Update B	rine with result	te .
pH		pH units	;		7.160	6.944		nine wantread	
Alkalinity		as HCO3	3-, mg/L		263.000	225.294			
Density		g/cc			1.000	1.123	Units		· · · · · · · · · · · · · · · · · · ·
Total Dissolved Solids		mg/L		187	818.600	187818.600			Balance
Electrical Conductivity		1/ohm-	cm		0.000	0.199			Calculate
Variable	Scale	eChe	m Std		Stud	lio Scale	Chem	% Diff	erence
рН	6.94	4			6.94	4			
Alk	225.	3			214.	9		~4.8%	
Balance ion	Na/0	CI			Na/0	CI			
Balance Value	835.	6			835.	6			
Density	1.12	3			1.12	4			
Saturated	CaCo	ОЗ, В	aSO4,		CaC	O3, BaSC)4,		
	FeCO	23			FeC	D 3			

Studio ScaleChem Screen – Brine Analysis

Settings - Expanded List, Makeup ion (Na+), Equilibrium

Des	scri	ption 🥸 Design	题 Rep	oort		
>	Œ	Variable	Value	Balance	Entry Options	Summary
Data Entry	P	Cations		Julanoo	Units mg/L	Unit Set
ш ш		Na+1	65280.0	66115.6		Based on: Concentration
at .		K+1	330.900	330.900	Display Formula 👻	
•		Ca+2	5435.00	5435.00	Show Non-zero Only	Automatic Chemistry Model
		Mg+2	914.600	914.600	Show Non-Zero Only	Aqueous (H+ ion) Databanks
~		Sr+2	299.200	299.200	Show Balanced Column	Public No Solid phase(s)
-iiii		Ba+2	133.800	133.800		No Solid phase(s)
5		Fe+2	26.4000	26.4000	Template Manager	
Reconcile		Zn+2	37.7000	37.7000	Last Applied: None	Stream amount:
<u>"</u>					Expanded -	1.00000 L
		Anions	(mg/L)	· · · · · · · · · · · · · · · · · · ·	Expanded	User Choice Charge Balance
		CI-1	1.14503	1.14503	Save as	Cation: Na+1
		S04-2	24.0000	24.0000		Cation Charge: 3.20532 eg
		HC03-1	263.000	263.000	Balance Options	Anion Charge: -3.24167 eq
		B(OH)4-1	0.0	0.0	Type Makeup Ion	Imbalance: -0.0363482 eg/L
		🗆 HS-1	0.0	0.0	The Marcup Ion	
		C2H3O2-1	0.0	0.0		835.643 mg/L of Na+1
		Br-1	571.000	571.000		is needed to balance.
	\vdash	Neutrals	(mall)			Isothermal Calculation
		CO2	0.0			Calculation not done
		H2S	0.0			
		Si02	0.0			
		B(OH)3	0.0			25.0000°C
		D(UN)3	0.0			1.00000atm


🖫 Brine1

🦪 Description 🛃 Design 📓 Report

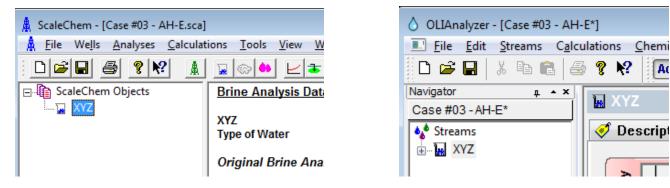
Reconcile Data Entry	Reconditation Options Reconditation Type (a) Equilibrium Calculation CO2 Fraction in Gas PH Alkalinity Recondle Allow solids to form	Calcyla	ite 🥥	Summary Stream amount: 1.0000 L User Choice Charge Balance Cation: Na+1 Cation Charge: 3.20532 eq/L Anion Charge: -3.24167 eq/L Imbalance: -0.0363482 eq/L
3	Properties	Measured	Calculated	835.643 mg/L of Na+1
l e l	Temperature (°F)	77.0000		is needed to balance.
	Pressure (psia)	14.6960		
	pH - Aqueous	7.16000	6.94474	Isothermal Calculation
	Alkalinity, Measured - Aqueous (mg HCO3/L)	263.000	214.896	Phase Amounts
	Density - Aqueous (g/cm3)	1.00000	1.12382	Aqueous 1123.82 g Vapor 0.0 g
	Elec Cond, specific - Aqueous (mho/m)	0.0	19.9398	Solid 0.0 g
	Total Dissolved Solids (mg/L)	0.0	1.88654e5	2nd Liquid 0.0 g
	Composition Adju	stments		
	Add Charge Balance (mg/L Na+1)		835.643	Aqueous Phase Properties
				pH 6.94474 lonic Strength 0.0586584 mol/mol Density 1.12382 g/cm3

ScaleChem Std Screen – Gas Analysis

Settings - Standard Gas, Methane balance, H2O Saturation inactive

Studio ScaleChem Screen – Gas Analysis

Settings - Expanded Gas, Methane balance, H2O saturation active


	1 -			Entry Options	
Inflows	Component	Value	Normalized		
Ĕ	H20	0.0	0.0		
= -	□ N2 □ CO2	0.0	0.0	Display Formula	
	□ H2S	0.00000	0.00000		
<u>₽</u>]	I CH4	99.3200	99.3200		
ŝ				Show Normalized Column	n
Reconcile				Template Manager	
				Last Applied: None	
				Expanded 🔹	
				Save as	
				Normalize Options	
				Type Makeup	
_	_Gas_	n 👫 Dofinit	ion 🖾 Dor		
_	_Gas_ cription 🔮 Desig	n 💽 Definit	iion 🔯 Rep		
Des		n 💽 Definit	tion 🔯 Rep		1
Des	cription 🦉 Desig			Calculate 🥥	
_	cription 🥸 Desig	Normalize	Reconciled	Condition]
Des	cription Desig	Normalize	Reconciled 3.23935	Calculate 🥥]
Des	Cription Desig	Normalize 0.0 0.680000 0.0	Reconciled 3.23935 0.0 0.657972 0.0	Condition Saturate With H20	J
Des	Cription Desig	Normalize 0.0 0.0 0.680000	Reconciled 3.23935 0.0 0.657972	Condition Saturate With H20	
Des	Cription Desig	Normalize 0.0 0.680000 0.0	Reconciled 3.23935 0.0 0.657972 0.0	Condition Saturate With H20 Conditions	Ualue 77. 14.
Des	Cription Desig	Normalize 0.0 0.680000 0.0	Reconciled 3.23935 0.0 0.657972 0.0	Condition Saturate With H20 Conditions Temperature (°F)	77.
Des	Cription Desig	Normalize 0.0 0.680000 0.0	Reconciled 3.23935 0.0 0.657972 0.0	Condition Saturate With H20 Conditions Temperature (°F)	77.
Des	Cription Desig	Normalize 0.0 0.680000 0.0	Reconciled 3.23935 0.0 0.657972 0.0	Condition Saturate With H20 Conditions Temperature (°F)	77.
Des	Cription Desig	Normalize 0.0 0.680000 0.0	Reconciled 3.23935 0.0 0.657972 0.0	Condition Condition Saturate With H20 Conditions Temperature ('F) Pressure (psia)	77
Des	Cription Desig	Normalize 0.0 0.680000 0.0	Reconciled 3.23935 0.0 0.657972 0.0	Condition Condition Saturate With H20 Conditions Temperature ('F) Pressure (psia)	77.
Des	Cription Desig	Normalize 0.0 0.680000 0.0	Reconciled 3.23935 0.0 0.657972 0.0	Condition Saturate With H20 Conditions Temperature ('F) Pressure (psia)	77.
Des	Cription Desig	Normalize 0.0 0.680000 0.0	Reconciled 3.23935 0.0 0.657972 0.0	Condition Condition Saturate With H20 Conditions Temperature ('F) Pressure (psia)	77.

Case #3 – AH-E

Summary

This file contains a single Brine analysis with a complex composition, and using the pH/Alkalinity reconciliation. StudioScaleChem computes the results with no problems. However, the ScaeChem Std software no longer computes this - an Unable to Reconcile result is obtained. The ScaleChem std problem will be submitted to OLI.

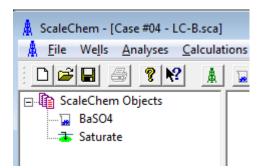
A

Settings - Expanded List, Na/Cl Balance, pH&Alkalinity

ne Analysis Data - XYZ										
escription Species	Summary									
Analysis View • Original C Balar	nced C	Reci	oncil		pecies Display Formula	O Name		cies List Standard © Expanded	C Non Zer	ro
Cations	mg/L		*		Anions	mg/L	*	Neutrals	mg/L	-
Na+1	43860.0	000		CI-1		151299.000		CO2, aq	0.000	
K+1	3196.0	000	-	SO4-2		18.000	Ξ	H2S, aq	0.000	Ξ
Ca+2	40380.0	000	-	HCO3-1	L	13.000		SiO2, aq	31.000	
Mg+2	3338.0	000		B(OH)4	-1	0.000	-	B(OH)3, aq	0.000	
Sr+2	536.0	000		HS-1		0.000		HCOOH, aq	0.000	
Ba+2	53.0	000		OH-1		0.000		CH3COOH, aq	0.000	
Fe+2	223.0	000		CH02-1	L	0.000		C4H8O2, aq	0.000	
H+1	0.0	000		C2H3O	2-1	20.000		C3H6O2, aq	0.000	
Cc+1	0.0	000	Ŧ	LC3H5O	7-1	0 000	Ŧ	CH3OH an	0 000	-
Variable			Un	its	Measured	Calculated	*	Reconciliation Type		
Ambient Temperatur	e °	°F			77.000	77.000		pH and Alkalinity	-	
Ambient Pressure		psia			14.696	14.696		Update Brine with res	ulte	
pН	F	pH u	nits		4.500	4.500			i dico	
Alkalinity	č	as H(CO3	-, mg/L	13.000	13.009	Ε			
Density	(g/cc		_	1.160	1.170		Units		
Total Dissolved Solids	; r	- mg/l	L		242936.000	242936.000			Balance	е
Electrical Conductivit	y 1	1/oh	m-c	m	0.000	0.210			01.11	
Alkalinity endpoint		pH u	nits		4.300				Calculat	e
HCI added	r	mg/l	L			-17.001	-		View File	es

The brine no longer reconciles in the ScaleChem software. The screenshot above is from the original file, computed in an earlier version of ScaleChem std.

Studio ScaleChem Screen – Brine Analysis


Settings - Expanded List, Na/Cl Balance, pH&Alkalinity


escri						C. marine		
	Variable	Value Balance	Entry Opt	tions		Summary Stream	amount:	
H	Catior	is (mg/L)	Units	mg/L	•		000 L	
	Na+1	43860.0 43860.0		<u> </u>			hoice Charge Bal	lance
	□ K+1	3196.00 3196.00	Display	Formula	-	Anio	in: CI-1	
	Ca+2	40380.0 40380.0	Show	Non-zero Only		Catio	on Charge: 4.3	0027 eq/
	□ Mg+2 □ Sr+2	3338.00 3338.00	Show	Balanced Column		Anio	n Charge: -4.26	6852 eq/
	□ 5r+2 □ Ba+2	536.000 536.000 53.0000 53.0000	U SHOW	balancea colamn		Imba	lance: 0.03175	502 eq/L
	E Fe+2	223.000 223.000	Template	Manager		1125	5.638 mg/L of CI-1	1
1		220.000	Last App	lied: None			eeded to balance	
ľ		is (mg/L)	Expande					
ļ	CI-1	1.51299e 1.52425e	Expande	eu +			ity Calculation ation not done	
	🗆 SO4-2	18.0000 18.0000		Save as		Calcula	ation not done	
	□ HCO3-1	13.0000 13.0000		2.17				
+	C2H3O2-1	20.0000 20.0000	Balance C		_		sured Alkalinity: 1	13.0000
+	Neutra	ls (ma/L)	Туре	Makeup Ion	•	HCO3/L		
	SiO2	31.0000					tration End Pt: 4.3 Ikalinity Titrant: C(
							Ikalinity pH Titrant	
							Reconciliation:	
							easured pH: 4.50 H Titrant: HCI	000
Desi	cription 🥸 D	esign <u> </u> Repoi	t				_	
Uata Entry	Reconciliation O Reconciliation T		lculation in Gas	Calcyle	ate 💽		-	
	Reconciliation O Reconciliation T	ptions ype Equilibrium Ca CO2 Fraction PH Alkalinity F	lculation in Gas	Calcul	te G	ted		
	Reconciliation O Reconciliation T	ptions ype © Equilibrium Ca © CO2 Fraction @ pH Alkalinity F w solids to form Properties	lculation in Gas			ted		
	Reconciliation O Reconciliation T Mallo	ptions ype © Equilibrium Ca © CO2 Fraction @ pH Alkalinity F w solids to form Properties	lculation in Gas	Measured		ted	-	
	Reconciliation O Reconciliation T Allo Temperature (°F Pressure (psia)	ptions ype © Equilibrium Ca © CO2 Fraction @ pH Alkalinity F w solids to form Properties	lculation in Gas	Measured 77.0000 14.6960	Calculat		-	
	Reconciliation O Reconciliation T Allo Temperature (*F Pressure (psia) pH - Aqueous	ptions ype © Equilibrium Ca © CO2 Fraction @ pH Alkalinity F w solids to form Properties	lculation in Gas Reconcile	Measured 77.0000 14.6960 4.50000	Calculat 4.	50000	-	
	Reconciliation O Reconciliation T Allo Temperature (*F Pressure (psia) pH - Aqueous Alkalinity, Measu	ptions YPE © Equilibrium Ca © CO2 Fraction @ pH Alkalinity F w solids to form Properties) red - Aqueous (mg H	Iculation in Gas Reconcile	Measured 77.0000 14.6960 4.50000 13.0000	Calculat 4.		-	
	Reconciliation O Reconciliation T Allo Temperature (*F Pressure (psia) pH - Aqueous Alkalinity, Measu Alkalinity end po	ptions YPE © Equilibrium Ca © CO2 Fraction © pH Alkalinity F w solids to form Properties) ured - Aqueous (mg H int Alkalinity End Point	Iculation in Gas Reconcile	Measured 77.0000 14.6960 4.50000 13.0000 4.30000	Calculat 4.	50000 2.9838	-	
	Reconciliation O Reconciliation T Allo Temperature (*F Pressure (psia) pH - Aqueous Alkalinity, Measu Alkalinity end po Density - Aqueou	ptions ype © Equilibrium Ca © CO2 Fraction @ pH Alkalinity F w solids to form Properties ;) ured - Aqueous (mg H int Alkalinity End Point us (g/cm3)	Iculation in Gas Reconcile CO3/L) pH	Measured 77.0000 14.6960 4.50000 13.0000 4.30000 1.16000	Calculat 4. 12	50000 2.9838 17082		
	Reconciliation O Reconciliation T Allo Temperature (*F Pressure (psia) pH - Aqueous Alkalinity, Measu Alkalinity end po Density - Aqueou	ptions YPE © Equilibrium Ca © CO2 Fraction © pH Alkalinity F w solids to form Properties) ured - Aqueous (mg H int Alkalinity End Point	Iculation in Gas Reconcile CO3/L) pH	Measured 77.0000 14.6960 4.50000 13.0000 4.30000	Calculat 4. 12	50000 2.9838	-	
	Reconciliation O Reconciliation T Allo Temperature (*F Pressure (psia) pH - Aqueous Alkalinity, Measu Alkalinity end po Density - Aqueou	ptions ype © Equilibrium Ca © CO2 Fraction © pH Alkalinity F w solids to form Properties y ured - Aqueous (mg H int Alkalinity End Point us (g/cm3) iffic - Aqueous (mho/m	Iculation in Gas Reconcile CO3/L) pH	Measured 77.0000 14.6960 4.50000 13.0000 4.30000 1.16000	Calculat 4. 12	50000 2.9838 17082	-	
	Reconciliation O Reconciliation T Reconciliation T Reconciliation T Reconciliation T Reconciliation T Reconciliation T Reconciliation O Reconciliation O Reconc	ptions ype © Equilibrium Ca © CO2 Fraction © pH Alkalinity F w solids to form Properties ') ured - Aqueous (mg H int Alkalinity End Point us (g/cm3) cific - Aqueous (mho/n Solids (mg/L)	Iculation in Gas Reconcile CO3/L) pH	Measured 77.0000 14.6960 4.50000 13.0000 4.30000 1.16000 0.0 0.0	Calculat 4. 12	50000 2.9838 17082 1.0098		
	Reconciliation O Reconciliation T Reconciliation T Reconciliation T Reconciliation T Resource (PSIA) Pressure (PSIA) PH - Aqueous Alkalinity end po Density - Aqueous Elec Cond, spec Total Dissolved	ptions ype © Equilibrium Ca © CO2 Fraction © pH Alkalinity F w solids to form Properties y ured - Aqueous (mg H int Alkalinity End Point us (g/cm3) iffic - Aqueous (mho/n Solids (mg/L) Composition	Iculation in Gas Reconcile CO3/L) pH	Measured 77.0000 14.6960 4.50000 13.0000 4.30000 1.16000 0.0	Calculat 4. 11 1. 2'	50000 2.9838 17082 1.0098 0.0		
	Reconciliation O Reconciliation T Reconciliation T Reconciliation T Reconciliation T Reconciliation T Pressure (psia) pH - Aqueous Alkalinity, Measu Alkalinity end po Density - Aqueous Elec Cond, spec Total Dissolved Added acidity (fr	ptions ype © Equilibrium Ca © CO2 Fraction © pH Alkalinity F w solids to form Properties y ured - Aqueous (mg H int Alkalinity End Point us (g/cm3) iffic - Aqueous (mho/n Solids (mg/L) Comport	Iculation in Gas Reconcile CO3/L) pH	Measured 77.0000 14.6960 4.50000 13.0000 4.30000 1.16000 0.0 0.0	Calculat 4. 11 1. 2' -16	50000 2.9838 17082 1.0098 0.0 5.9341	-	
ata Entry	Reconciliation O Reconciliation T Reconciliation T Reconciliation T Reconciliation T Reconciliation T Reconciliation T Pressure (psia) PH - Aqueou Alkalinity end po Density - Aqueou Elec Cond, spec Total Dissolved Added acidity (r Add carbonate	ptions ype © Equilibrium Ca © CO2 Fraction © pH Alkalinity F w solids to form Properties y ured - Aqueous (mg H int Alkalinity End Point us (g/cm3) iffic - Aqueous (mho/n Solids (mg/L) Comport	Iculation in Gas Reconcile CO3/L) pH	Measured 77.0000 14.6960 4.50000 13.0000 4.30000 1.16000 0.0 0.0	Calculat 4. 11 1. 2° -18	50000 2.9838 17082 1.0098 0.0	-	

Case #4 – LC-B

Summary

This file contains a single Brine Analysis and Saturation object. The brine analysis is basic, and the saturation calculation is being tested. Both software produced identical results. The amount of BaSO4 added is not reported in the Studio ScaleChem Report. This has been submitted to the developers. Also, the Alkalinity calculation at every point did not occur Studio ScaleChem. The developers have not implemented this calculation. It has been submitted as a feature request. Lastly, the new way that Studio SC handles saturation is different, in that two selections need to be made, one for the allowing solids to form and the other to select which of these allowed solids will be saturated, and with what. This created additional flexibility, but is not initially obvious to the user.

Settings - Non-zero List, Na/Cl Balance, Equilibrium

escription Species Sur	nmary					
Analysis View • Original C Balanced	d C Reconcil		ecies Display — Formula C		cies List Standard C Expanded ©	Non
Cations	mg/L		nions	mg/L	Neutrals	mg/
Na+1	10000.000	CI-1		15000.000		
Ba+2	28.000	SO4-2		28.000		
Vector			Managed	Coludated	Reconciliation Type	
Variable		Inits	Measured	Calculated	Reconciliation Type	_
Ambient Temperature	°F	Inits	77.000	77.000	Equilibrium Calculation	•
Ambient Temperature Ambient Pressure	°F psia		77.000 14.696	77.000 14.696		•
Ambient Temperature Ambient Pressure pH	°F psia pH unit	s	77.000 14.696 0.000	77.000 14.696 6.993	Equilibrium Calculation	•
Ambient Temperature Ambient Pressure pH Alkalinity	°F psia pH unit as HCO		77.000 14.696 0.000 0.000	77.000 14.696 6.993 2.505	Equilibrium Calculation	•
Ambient Temperature Ambient Pressure pH Alkalinity Density	°F psia pH unit as HCO g/cc	s	77.000 14.696 0.000 0.000 1.000	77.000 14.696 6.993 2.505 1.015	Equilibrium Calculation	
Ambient Temperature Ambient Pressure pH	°F psia pH unit as HCO	s 3-, mg/L	77.000 14.696 0.000 0.000	77.000 14.696 6.993 2.505	Equilibrium Calculation	▼ Balar

Variable	ScaleChem Std	Studio ScaleChem	% Difference
рН	6.993	6.993	
Alk	2.505	2.506	
Balance ion	Cl	Cl	
Balance Value	414.9	414.9	
Density	1.015	1.015	
Saturated	BaSO4	BaSO4	
Notes			

Studio ScaleChem Screen – Brine Analysis

Settings - Expanded List, Makeup ion (Cl-), Equilibrium

	cription 📑 Desi					
F	∃ Variable	Value	Balance	Entry Options		Summary 1.00000 L
		• • • • •	balance	· · .		1.00000 L User Choice Charge Balance
	□ Na+1	ons (mg/L) 10000.0	10000.0	Units mg/L	•	Anion: CI-1
	□ Ba+2	28.0000	28.0000	Display Formula	•	
5	Dat2	20.0000	20.0000			Cation Charge: 0.435380 eq/L
i	Anic	ons (mg/L)		Show Non-zero Only		Anion Charge: -0.423678 eq/L Imbalance: 0.0117018 eq/L
	CI-1	15000.0	15414.9	Show Balanced Column		inbalance. 0.0117018 eq/L
	S04-2	28.0000	28.0000			414.863 mg/L of CI-1
				Template Manager		is needed to balance.
	Neut	rals (mg/L)		Last Applied: None		Isothermal Calculation
				Expanded 🔹		Phase Amounts
JE				Experiece		Aqueous 1014.60 g
				Save as		Vapor 0.0 g
						Solid 0.0 g
				Balance Options		2nd Liquid 0.0 g
				Type Makeup Ion	-	Aqueous Phase Properties
	cription 🤮 Des	sign 👼 Re	port			Summary
)es		ions e	m Calculatio	1		
)es	cription 🛃 Des	ions	m Calculatio	Calcu	late 🖌	Summary T.00000 L User Choice Charge Bala Anion: CI-1 Cation Charge: 0.433 Anion Charge: -0.425
	Reconciliation Opt	ions e @ Equilibriu	m Calculatio	Calcu	late 🥥	Summary 1.00000 L User Choice Charge Bala Anion: CI-1 Cation Charge: 0.433 Anion Charge: 0.423 Imbalance: 0.011701 414.863 mg/L of CI-1
	Reconciliation Opt	ions CO2 Frai pH Alkalin	m Calculatio	Calcu	late 🖉	Summay 1.00000 L User Choice Charge Bala Anion: Cl-1 Cation Charge: 0.433 Anion Charge: -0.423 Imbalance: 0.011701
	Reconciliation Opt	ions Pe Equilibriu CO2 Frac PH Alkalin solids to form	m Calculatio	e <u>Calcu</u>		Summary T.00000 L User Choice Charge Bala Anion: Cl-1 Cation Charge: 0.433 Anion Charge: -0.423 Imbalance: 0.011701 414.863 mg/L of Cl-1 is needed to balance.
	Reconciliation Op Reconciliation Op Reconciliation Typ	ions Pe Equilibriu CO2 Frac PH Alkalin solids to form	m Calculatio	e Calcy Measured		Summary 1.00000 L User Choice Charge Bala Anion: CI-1 Cation Charge: 0.433 Anion Charge: 0.423 Imbalance: 0.011701 414.863 mg/L of CI-1
	Reconciliation Op Reconciliation Typ Reconciliation Typ Allow	ions Pe Equilibriu CO2 Frac PH Alkalin solids to form	m Calculatio	e <u>Calc</u>		Summary 1.00000 L User Choice Charge Bala Anion: Cl-1 Cation Charge: -0.432 Imbalance: -0.4120 Imbalance: -0.011701 414.863 mg/L of Cl-1 is needed to balance. Isothermal Calculation
	Reconciliation Op Reconciliation Op Reconciliation Typ Allow Temperature ("F) Pressure (psia)	ions Pe @ Equilibriu CO2 Frac PH Alkalin solids to form Properties	m Calculatio tion in Gas iity Reconcil	e Calc <u>u</u> Measured 77.0000 14.6960	Calculated	Summary T.00000 L User Choice Charge Bala Anion: Cl-1 Cation Charge: -0.423 Imbalance: 0.011701 414.863 mg/L of Cl-1 is needed to balance. Isothermal Calculation Phase Amounts Aqueous 1014.60 g Vapor 0.0 g
	Reconciliation Opi Reconciliation Opi Reconciliation Typ Reconciliation Typ Allow Temperature (*F) Pressure (psia) pH - Aqueous	ions Pe @ Equilibriu CO2 Fra C pH Alkalir solids to form Properties ed - Aqueous (r	m Calculatio tion in Gas iity Reconcil	e Calc <u>u</u> Measured 77.0000 14.6960 0.0	Calculated	Summary 1.00000 L User Choice Charge Bala Anion: Cl-1 Cation Charge: -0.433 Anion Charge: -0.423 Imbalance: 0.01701 414.863 mg/L of Cl-1 is needed to balance. Isothermal Calculation Phase Amounts Aqueous 1014.60 g Vapor 0.0 g Solid 0.0 g
	Reconciliation Op Reconciliation Op Reconciliation Typ Reconciliation Typ Allow Temperature (*F) Pressure (psia) Opt - Aqueois Alkalinity, Measure	ions © Equilibriu © CO2 Frac © pH Alkalii solids to form Properties ed - Aqueous (r s (g/cm3)	m Calculatio tion in Gas nity Reconcil	e Calc <u>u</u> Measured 77.000 14.6960 0.0	Calculated 6.99283 2.50598	Summary T.00000 L User Choice Charge Bala Anion: Cl-1 Cation Charge: -0.432 Imbalance: 0.011701 414.863 mg/L of Cl-1 is needed to balance: Isothermal Calculation Phase Amounts Aqueous 1014.60 g Vapor 0.0 g
	Reconcilation Op Reconcilation Op Reconcilation Typ Allow Temperature ("Ff) Pressure (psia) pH - Aqueous Akalinty, Measur Density - Aqueou	ions © Equilibriu © CO2 Fra © pH Alkali solids to form Properties ed - Aqueous (n s (g/cm3) c - Aqueous (n	m Calculatio tion in Gas nity Reconcil	e Calc <u>u</u> Measured 77,000 14,690 0.0 0.0 1,0000	Calculated 6.99283 2.50598 1.01460	Summary 1.00000 L User Choice Charge Bala Anion: Cl-1 Cation Charge: 0.433 Anion Charge: 0.432 Imbalance: 0.011701 414.863 mg/L of Cl-1 is needed to balance. Isothermal Calculation Phase Amounts Aqueous 1014.60 g Vapor 0.0 g Sold 0.0 g
	Reconciliation Opi Reconciliation Opi Reconciliation Typ Allow Temperature (*F) Pressure (psia) pH - Aqueous Alkalinity, Measur Density - Aqueous Elec Cond, specifi	ions e Equilibriu CO2 Fran pH Alkali solids to form Properties ed - Aqueous (i s (g/cm3) c - Aqueous (n plds (mg/L)	m Calculatio ction in Gas nity Reconcil ng HCO3/L) iho/m)	e Calc <u>u</u> 77.0000 14.6980 0.0 1.00000 0.0	Calculated 6.99283 2.50598 1.01460 4.14387	Summary 1.00000 L User Choice Charge Bala Anion: CI-1 Cation Charge: 0.433 Anion Charge: 0.433 imbalance: 0.011701 414.863 mg/L of CI-1 is needed to balance. Isothermal Calculation Phase Amounts Aqueous 1014.60 g Vapor 0.0 g Solid 0.0 g

Notes –

ScaleChem Std Screen – Saturation

Settings – One Brine, One Condition, no Scales

aturation Study - Saturate			
Description Components Condition	ns Saturation Calculate Results		
Description compensitie [Conditio			
Input			
Туре	Name	Amount	Units
Brine	BaSO4 💌	1.000	bbl/day
Description Components Co	nditions Saturation Calculate Re	esults	
Contraction of Competition			
<u>T</u> emperature °F <u>P</u> ress	sure psia Descriptio <u>n</u>		
200.000	2000.000 Example		 Units
,, ,,	1		
Selected Conditions			
1 200.000	2000.000 Example		Add
200.000	2000.000 Example		Aga
Saturation Study - Saturate	the second secon	the states of	
	and the second s	the state in the second	
Description Components	Conditions Saturation Calculate	Results	
Company Company and			
Available solids:		Chosen solids: S	olid [Inflow to Vary]
NaCl (Halite)			
BaSO4 (Barite)			
	Add >>	1	

- No solids were selected in the ScaleChem Saturate
- Alkalinity is turned off in the ScaleChem.

Variable	ScaleChem Std	Studio ScaleChem	% Difference
рН	6.15	6.15	
Alk	2.65		
Solid	BaSO4	BaSO4	
pScaleTend	4.80	4.80	
Added/Removed	29.1		
Brine Flow	1.03	1.03	

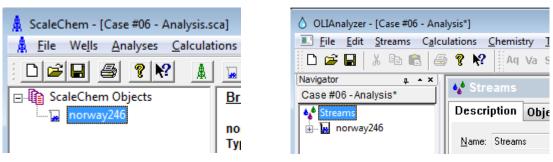
Studio ScaleChem Screen – Saturation

Settings - One Brine, One Condition, no Scales

🚁 Saturate							
🦪 Description 🧕 Des	ign <u> </u> I	Report 🔜 File V	liewer				
S Type		Name		Flow			Calculate 🥝
Brine (bbl/day)		BaSO4			00000		
<select></select>						Summary	
😎 Saturate							
	🥸 De	cian 🖅 D.		Ella Min			
🦪 Description	a De	siyii 😥 Ru	eport 📄	File vie	wer		
Sol	id Selecti	on (check solids	allowed to fo	orm)			
Inlets	_						
<u> </u>		Standard					
		BaSC					
		NaCl					
Solid		🗄 🗹 Expande	d				
ŭ		🗄 🗹 🛛 All					
	-						
Select	Inflows	To Vary					
		Solid			Inf	low	
E	aSO4				BaS	04	
	Select S	olid>					
	_						
Scale Mineral	N	lax Scale	Pre-se	caling	F	Pre-index	
Barium sulfate		0.0	4.80	425	(0.681625	
Sodium chloride		0.0	2.236	02e-3		2.65053	

 Brine Totals
 Cations
 Value (mg/L)
 Anions
 Value (mg/L)
 Neut

 Na(+1)
 9716.08
 Cl(-1)
 14977.2


 Ba(+2)
 27.2050
 SO4-2
 27.2431

- No Alkalinity calculation is available in StudioSC Saturate
- BaSO4 does not automatically precipitate in StudioSC Saturate unless it is checked

Case #6 – Analysis

Summary

This file contains a single Brine Analysis that uses the CO2 Fraction in gas calculation. Studio SC and Sc Std produced similar results

Settings - Expanded List, Na/Cl Balance, CO2 in Gas

escription Species SL	ummary						
Analysis View O Original O Balance	ed 🔍 Reconcil		Species Display O Formula (• Name		cies List Standard C Expanded C Non 2	Zero
Cations	mg/L		Anions	mg/L		Neutrals mg/	Ľ
Sodium (+1)	32090.800	Chlorid	le (-1)	58823.1	00		_
Potassium (+1)	238.969	Bicarbo	nate (-1)	14521.8	800		
Calcium (+2)	3795.928						
Magnesium (+2)	183.822						
Strontium (+2)	1268.373						
Barium (+2)	1948.515						
Hydrogen (+1)	235.185						
Variable	Un	its	Measured	Calculated	•	Reconciliation Type	
Ambient Temperature	°C		145.000	145.000		CO2 Fraction in Gas	
Ambient Pressure	psia		4200.000	4200.000		✓ Update Brine with results	
pН	pH units		0.000	5.169			
Alkalinity	as HCO3	-, mg/L	300.000	294.087	Ξ		
Density	g/cc		1.000	1.008		Units	
Total Dissolved Solids	mg/L		113106.492	113106.492		Balar	nce
Electrical Conductivity	1/ohm-c	m	0.000	0.493		Calcu	-+
fraction CO2 in Gas	mole frac	tion	0.042	0.042		Calcu	
Alkalinity endpoint	pH units		4.000		-	View	

Variable	ScaleChem Std	Studio ScaleChem	% Difference
рН	5.17	5.14	
Alk	294.1	298.1	
Balance ion	Na+	Na+	
Balance Value	150	15.0	
Density	1.031	1.008	
Saturated	CaCO3, SrCO3	CaCO3, SrCO3	
Notes			

Studio ScaleChem Screen – Brine Analysis

Settings - Expanded List, Na/Cl Balance (Na+), CO2 in Gas

Г	Varia	- Malua	Delesso			Summary	
1	Varia	able Value Cations (mg/L)	Balance	Â	Entry Options		
	Na+1	Cations (mg/L) 34900.0	34915.0		Units mg/L	 Unit Se Base 	et ed on: Concentration
	K+1	260.000			Display Formula	• Dust	cu on, concentration
	Ca+2	4130.00			Show Non-zero Only		atic Chemistry Model
	□ Mg+2	200.000	200.000				eous (H+ ion) Databanks
	□ Sr+2	1380.00	1380.00		Show Balanced Column		ublic Solid phase(s)
	E Ba+2	2120.00					
	Fe+2	0.0	0.0		Template Manager		
					Last Applied: None		amount:
	-	Anions (mg/L)		Ξ	Expanded 👻		000 L hoice Charge Balance
╢	CI-1	64000.0					on: Na+1
	E HC03-1	0.0			Save as		
	E B(OH)4-1	0.0			Balance Options		on Charge: 1.80963 eq
H	T HS-1	0.0					in Charge: -1.81029 eq ilance: -6.54370e-4 eq/
	C2H3O2-1				Type Makeup Ion	- Imba	nance0.54570e-4 eq/
ŀ	- OLINOUL		0.0			15.0	44 mg/L of Na+1
l		Neutrals (mg/L)				is n	eeded to balance.
	CO2	0.0				002.5	action in Gas Calculation
	H2S	0.0					action in Gas calculation ation not done
	SiO2	0.0				Guidan	
	B(OH)3	0.0		÷			
-							
D	escripti	on 🥸 De	sign	<u></u>	Report		
_				1	Report		
_		conciliation Op	tions				
_		conciliation Op	tions		ilibrium Calculation		
_		conciliation Op	tions	Equ	ilibrium Calculation		
_		conciliation Op	rtions pe ⊚ r @ (Equ	ilibrium Calculation 2 Fraction in Gas	Calcu	latej 🥥
_		conciliation Op	rtions pe ⊚ r @ (Equ	ilibrium Calculation	Calcu	late 🎱
_		conciliation Op	rtions pe ⊚ r @ (Equ	ilibrium Calculation 2 Fraction in Gas	Calcu	late 🥥
Data Entry	Re	conciliation Op	pe () p	Equ CO:	ilibrium Calculation 2 Fraction in Gas Alkalinity Reconcile	Calcu	late 🥥
Data Entry	Re	conciliation Op	rtions pe ⊚ r @ (Equ CO:	ilibrium Calculation 2 Fraction in Gas Alkalinity Reconcile	Calcu	late
Data Entry	Re	conciliation Op	pe () p	Equ CO:	ilibrium Calculation 2 Fraction in Gas Alkalinity Reconcile	_ [Calcu	late 🥥
Data Entry	Re	conciliation Op	tions pe o () v solids t	Equ CO: pH /	ilibrium Calculation 2 Fraction in Gas Alkalinity Reconcile orm	Calcu	late •
Data Entry	Re	conciliation Op conciliation Ty	tions pe () (() (v solids t	Equ CO: pH /	ilibrium Calculation 2 Fraction in Gas Alkalinity Reconcile orm	Measured	
Data Entry	Re	conciliation Op	tions pe () (() (v solids t	Equ CO: pH /	ilibrium Calculation 2 Fraction in Gas Alkalinity Reconcile orm		
Data Entry	Re	conciliation Op conciliation Ty	tions pe () (() (v solids t	Equ CO: pH /	ilibrium Calculation 2 Fraction in Gas Alkalinity Reconcile orm	Measured	
Data Entry	Re Re Ter Pre	conciliation Op conciliation Ty Allow	tions pe () (() (v solids t	Equ CO: pH /	ilibrium Calculation 2 Fraction in Gas Alkalinity Reconcile orm	Measured 145.000	Calculated
Data Entry	Re Re Ter Pre	conciliation Op conciliation Ty Allow nperature (°C) ssure (psia) - Aqueous	tions pe pe pe pe pe pe pe pe pe pe	Equ CO: pH /	ilibrium Calculation 2 Fraction in Gas Alkalinity Reconcile orm	Measured 145.000 4200.00	
Data Entry	Re Re Ter Pre PH Alk	conciliation Op conciliation Ty Allow nperature (°C) ssure (psia) - Aqueous	red - Aq	Equ CO: pH / to f	ilibrium Calculation 2 Fraction in Gas Alkalinity Reconcile form es ous (mg HCO3/L)	Measured 145.000 4200.00 0.0	Calculated
_	Re Re Ter Pre PH Alk Me	conciliation Op conciliation Ty Allow nperature (°C) ssure (psia) - Aqueous alinity, Measu	red - Aq	Equ CO: pH / to f	ilibrium Calculation 2 Fraction in Gas Alkalinity Reconcile form es ous (mg HCO3/L)	Measured 145.000 4200.00 0.0 300.000	Calculated

0.0

0.0

Composition Adjustments

45.6391

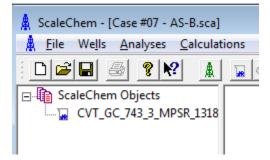
6983.11

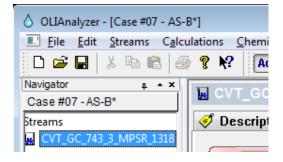
15.0439

0.0

Elec Cond, specific - Aqueous (mho/m)

Total Dissolved Solids (mg/L)


Add carbonate (mg/L CO2)


Add Charge Balance (mg/L Na+1)

Case #7 – AS-B

Summary

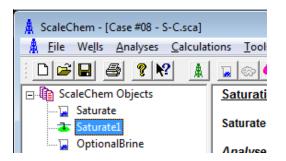
This file contains a single Brine Analysis using the pH/Alkalinity calculation. This is a duplication of a previous case, but is still presented because when tested in a previous beta-version, the pH/Alkalinity option was not selected. Also, since the above pH/Alk calculation did not work on ScaleChem Std, a second comparison is provided. Both software produce similar results.

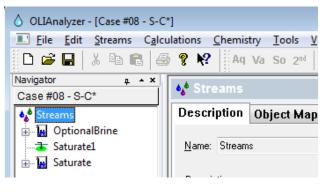
Settings - Non-zero List, Na/Cl Balance, pH&Alk Reconciliation

	Summary							
Analysis View • Original C Balan	ced C Recond		opecies Display O Formula			cies List Standard C Expar	nded 🤅	Non
Cations	mg/L		Anions	mg/L		Neutrals		m
Sodium (+1)	13281.500	Chlorid	e (-1)	21587.00	00			
Potassium (+1)	75.400	Sulfate	(-2)	26.7	00			
Calcium (+2)	301.500	Bicarbo	nate (-1)	747.7	00			
Magnesium (+2)	87.300	Boron t	etrahydroxide.	278.0	00			
Strontium (+2)	43.400	Acetate	(-1)	86.2	00			
Barium (+2)	28.200	Propan	ate (-1)	45.1	00			
Iron (+2)	2.700	Bromid	e (-1)	43.7	00			
Variable		Bromid	Measured	Calculated	00	Reconciliation Type	•	
	U psia	nits			00	Reconciliation Type pH and Alkalinity	•	-
Variable		nits	Measured	Calculated 14.696 7.500	00			
Variable Ambient Pressure	psia pH unit	nits	Measured	Calculated	00	pH and Alkalinity		
Variable Ambient Pressure pH	psia pH unit	nits	Measured 14.696 7.500	Calculated 14.696 7.500 745.710 1.023		pH and Alkalinity ✓ Update Brine wit		
Variable Ambient Pressure pH Alkalinity	U psia pH unit as HCO g/cc	nits	Measured 14.696 7.500 747.000	Calculated 14.696 7.500 745.710 1.023	00	pH and Alkalinity		
Variable Ambient Pressure pH Alkalinity Density	U psia pH unit as HCO g/cc mg/L	nits s 3-, mg/L	Measured 14.696 7.500 747.000 1.030 36634.400 0.000	Calculated 14.696 7.500 745.710 1.023		pH and Alkalinity ✓ Update Brine wit		Bal
Variable Ambient Pressure pH Alkalinity Density Total Dissolved Solids Electrical Conductivity Alkalinity endpoint	U psia pH unit as HCO g/cc mg/L	nits s 3-, mg/L cm	Measured 14.696 7.500 747.000 1.030 36634.400	Calculated 14.696 7.500 745.710 1.023 36634.400 0.057		pH and Alkalinity ✓ Update Brine wit		Bal
Variable Ambient Pressure pH Alkalinity Density Total Dissolved Solids Electrical Conductivity	psia pH unit as HCO g/cc mg/L y 1/ohm-	nits s 3-, mg/L cm	Measured 14.696 7.500 747.000 1.030 36634.400 0.000	Calculated 14.696 7.500 745.710 1.023 36634.400		pH and Alkalinity ✓ Update Brine wit		

Variable	ScaleChem Std	Studio ScaleChem	% Difference
рН	7.5	7.5	
Alk	745.7	747	
Balance ion	Na+	Na+	
Balance Value	562.9	562.9	
Density	1.023	1.023	
Saturated	CaCO3, BaSO4,	CaCO3, BaSO4,	
	FellCO3	FeCO3, SrCO3	
Notes			
HCI	153.3	152.8	0.3%
CO2	-31.1	-30.4	2.3%

Studio ScaleChem Screen – Brine Analysis


Settings - Expanded List, Makeup (Na+) BalancepH/Alkalinity


escr	ription 🤮 Desig	n 🔯 Report				
	Variable				Summary	
		Value Balanc	- Line y op dono		User Choice Charg	e Balance
		ns (mg/L)	Units mg/L	-	Cation: Na+1	
	Na+1	13281.5 13844			0.11	
	□ K+1	75.4000 75.400			Cation Charge: Anion Charge:	
-	Ca+2	301.500 301.50 87.3000 87.300	Snow Non-zero Un	ly	Imbalance: -0.0	
	□ Mg+2 □ Fe+2	2.70000 2.7000		umn		
	□ Ba+2	28.2000 28.200	•		562.939 mg/L of	
	□ Sr+2	43,4000 43,400			is needed to bal	ance.
			Last Applied: None		Alkalinity Calculatio	0
	Anio	ns (mg/L)			Phase Amounts	
	CI-1	21587.0 21587	0 Expanded	• I	Aqueous 1022	
	504-2	26.7000 26.700	0 Save as		Vapor 0.0 g	
	E HC03-1	747.700 747.70			Solid 0.0 g 2nd Liquid 0.0	
	E Br-1	43.7000 43.700	0 Balance Options		2110 Elquid 0.0	y
	B(OH)4-1	278.000 278.00	0 Type Makeup Ior		Aqueous Phase Pr	operties
	C2H3O2-1	86.2000 86.200	0		pH 7.5000	
	C3H5O2-1	45.1000 45.100	0		Ionic Strength Density 1.0226	
le Data Entry		Type 🔘 Equilibriu 🔘 CO2 Frac			Calcylate 🤇	
Data	Reconciliation	Type C Equilibriur CO2 Frac PH Alkalir	tion in Gas ity Reconcile	Measured		lated
ata	Reconciliation	Type C Equilibriun CO2 Frac PH Alkalir Now solids to form	tion in Gas ity Reconcile	Measured 77.0	Calcu	
Data	Reconciliation	Type C Equilibriu C CO2 Frac Ø pH Alkalir llow solids to form Propertie	tion in Gas ity Reconcile		Calcu	
Data	Reconciliation	Type C Equilibriu C CO2 Frac pH Alkalir llow solids to form Propertie (*F) a)	tion in Gas ity Reconcile	77.0	Calcu 000 960	
Data	Reconciliation	Type C Equilibriu C CO2 Frac pH Alkalir llow solids to form Propertie (*F) a)	tion in Gas ity Reconcile \$	77.0	Calcu 000 960 000	ilated
Data	Reconciliation	Type C Equilibriu C CO2 Frac pH Alkalir llow solids to form Propertie [*] F) a)	tion in Gas ity Reconcile s ng HCO3/L)	77.0 14.6 7.50	Calcu 000 960 000 000	ilated
Data	Reconciliation	Type C Equilibriu C CO2 Frac PH Alkalir llow solids to form Propertie F) a) sured - Aqueous (r point Alkalinity End I	tion in Gas ity Reconcile s ng HCO3/L)	77.0 14.6 7.50 747.	Calcu 000 960 000 000	ilated
Data	Reconciliation Reconciliation Al Temperature (Pressure (psi pH - Aqueous Alkalinity, Mea Alkalinity - Aque	Type © Equilibriu © CO2 Frac @ pH Alkalir llow solids to form Propertie (*F) a) sured - Aqueous (r point Alkalinity End I eous (g/cm3)	tion in Gas ity Reconcile s s ng HCO3/L) 20int pH	77.0 14.6 7.50 747. 4.50	Calcu 000 960 000 000	1ated 7.50000 747.000
Data	Reconciliation Reconciliation Al Temperature (Pressure (psi pH - Aqueous Alkalinity, Mea Alkalinity - Aque Elec Cond, spo	Type © Equilibriu © CO2 Frac @ pH Alkalir llow solids to form Propertie (*F) a) sured - Aqueous (r point Alkalinity End I eous (g/cm3) ecific - Aqueous (m	tion in Gas ity Reconcile s s ng HCO3/L) 20int pH	77.0 14.6 7.50 747. 4.50	Calcu 000 960 000 000 000 000	7.50000 747.000 1.02270 5.65961
Data	Reconciliation Reconciliation Al Temperature (Pressure (psi pH - Aqueous Alkalinity, Mea Alkalinity - Aque Elec Cond, spo	Type © Equilibriu © CO2 Frac @ pH Alkalir llow solids to form Propertie (*F) a) sured - Aqueous (r point Alkalinity End I eous (g/cm3)	tion in Gas ity Reconcile s s ng HCO3/L) 20int pH	77.0 14.6 7.50 747. 4.50 1.03	Calcu 000 960 000 000 000 000 000 000	Ilated 7.50000 747.000 1.02270
Data	Reconciliation Reconciliation Al Temperature (Pressure (psi pH - Aqueous Alkalinity, Mea Alkalinity - Aque Elec Cond, spo	Type © Equilibriu © CO2 Frac @ pH Alkalir llow solids to form Propertie "F) a) sured - Aqueous (r point Alkalinity End I eous (g/cm3) ecific - Aqueous (m d Solids (mg/L)	tion in Gas ity Reconcile s s ng HCO3/L) Point pH ho/m)	77.0 14.6 7.50 747. 4.50 1.03	Calcu 000 960 000 000 000 000 000 000	7.50000 747.000 1.02270 5.65961
Data	Reconciliation	Type © Equilibriu © CO2 Frac @ pH Alkalir llow solids to form Propertie (*F) a) sured - Aqueous (r point Alkalinity End I eous (g/cm3) ecific - Aqueous (r d Solids (mg/L) (mg/L HCL)	tion in Gas ity Reconcile s s ng HCO3/L) Point pH ho/m)	77.0 14.6 7.50 747. 4.50 1.03	Calcu 000 960 000 000 000 000 000 000	7.50000 747.000 1.02270 5.65961 0.0

Case #8 – S-C

Summary

This case introduced the Optional Brine entry which is used in the ScaleScenario. The optional brine is no longer needed in StudioScaleChem This file contains One Brine Analysis, one Saturation, one Optional Brine (computed from Saturate), and one scale scenario. Also, the Advanced button is used in the Saturate, to adjust Na2SO4 and saturate BaSo4. The ScaleChem std software had problems converging the optional brine in the scale scenario, so there is some automated problems with the original software. Lastly, the Saturate calculation in ScaleChem std would automatically precipitate any solid phase even if it did not get selected. The Studio SC object only allows solids to form that are selected. Therefore, the fluid properties are different. We believe that the Studio SC approach is the best, even though it requires an additional step of selecting solids that precipitate AND solids that are to be saturated.

Settings - Expanded List, Na/Cl Balance, Equilibrium Reconciliation

e Analysis Data - Saturat		alaria las				
escription Species Su Analysis View • Original C Balance	mmary d C Reconcil		ecies Display — Formula C		cies List Standard C Expanded	Non Zero
Cations Na+1 K+1 Ca+2 Mg+2 Sr+2 Ba+2 Fe+2	mg/L 96500.000 1540.000 870.000 256.000 36.000 39.000 6.000	A Cl-1 SO4-2 HCO3-1 C2H3O2-	nions	mq/L 148200.000 23.000 44.000 54.000	Neutrals SiO2, aq B(OH)3, aq	mg/L 65.00 120.00
Variable	L	Jnits	Measured	Calculated	Reconciliation Type	
Ambient Temperature	°F		77.000	77.000	Equilibrium Calculation	<u> </u>
Ambient Pressure	psia		14.696	14.696	Update Brine with res	ults
рН	pH unit		0.000	6.120		
Alkalinity		3-, mg/L	0.000	46.422	Units	
Density	g/cc		1.000	1.161	Units	
Total Dissolved Solids	mg/L		247568.000	247568.000		Balance
Electrical Conductivity	1/ohm-	cm	0.000	0.236		Calaviata

Studio ScaleChem Screen – Brine Analysis

Settings - Expanded List, Na/Cl Balance, Equilibrium Reconciliation

]	Satu	urate		
	Des	scription 🤒 Design <u> </u> Report		
	Data Entry	Reconciliation Options Reconciliation Type Equilibrium Calculation CO2 Fraction in Gas PH Alkalinity Reconcile	_ <u>c</u>	alculate 🖌
	Reconcile	Allow solids to form Properties	Measured	Calculated
	Rec	Temperature (°F)	77.0000	Calculatou
ļ	<u> </u>	Pressure (psia)	14.6960	
		pH - Aqueous	0.0	6.12041
		Alkalinity, Measured - Aqueous (mg HCO3/L)	0.0	45.0346
		Density - Aqueous (g/cm3)	1.00000	1.16130
		Elec Cond, specific - Aqueous (mho/m)	0.0	23.5765
		Total Dissolved Solids (mg/L)	0.0	0.0
		Composition Adju	stments	
		Add Charge Balance (mg/L CI-1)		4277.74

ScaleChem Std Screen – Saturate

Settings – One Brine, One Condition, One Solid

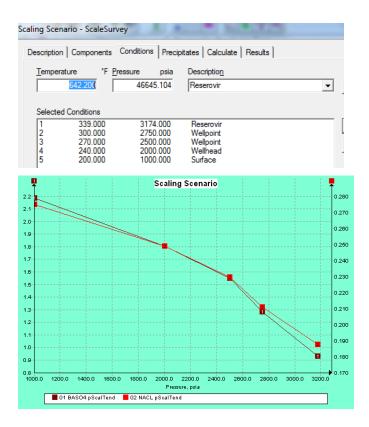
Description Components Conditions	Saturation Calculate Results
Available solids:	Chosen solids:
NaCl (Halite)	BaSO4 (Barite)
	Add >>
pecify inflow to vary	

Saturate Solid	by Varying
BaSO4 (Barite)	NA2SO4

Scaling Tendencies and Solids - Point 1

Scale Mineral	Maximum S mg/L	cale lb/bbl	Scaling Ten pre-scaling	
NACL	0.0	0.0000	0.2413	
CACO3	12.9	0.0045	2.5265	
CASO4	0.0	0.0000	0.0309	
SRSO4	0.0	0.0000	0.0027	
BASO4	0.1	0.0000	1.0000	
FEIICO3	0.0	0.0000	0.2431	
SIO2	0.0	0.0000	0.1309	
KCL	0.0	0.0000	0.0030	
MGOH2	0.0	0.0000	1.3348	
SRC03	0.0	0.0000	0.0452	
BACO3	0.0	0.0000	0.0011	
FEIIOH2	0.0	0.0000	0.0517	

Variable	ScaleChem Std	Studio ScaleChem	% Difference
рН	6.13	6.32	
Alk	38.15		No Alk in SSC
Density	1.068	1.068	
Flow	108.8	108.8	
Sat Solid	BaSO4	BaSO4	
Value			
New Ba, SO4 Conc1	35.8,63.9	35.9,66.2	

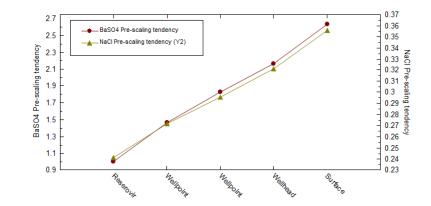

Studio ScaleChem Screen – Saturate

Settings - One Brine, One Condition, One Solid

F	Saturate1							
Í	De	scription	🥸 Design	😼 Report 🚊	File Viewer			
,								
	s	Sc	olid Selection (che	ck solids allowed to fo	rm)			
	Inlets			Standard				
ļ	-			BaSO4				
				CaCO3				
	Solid			CaSO4				
	š			CaSO4.2H2O				
				FeCO3				
				NaCl				
				SrSO4				
	Expanded							
				All				
		Select Inflows To Vary						
			S	olid	In	nflow		
			BaSO4		Na2	2SO4		

Scale Mineral	Max Scale	Pre-scaling
CaSO4.2H2O	0.0	1.13667e-3
FeCO3	0.0	0.261318
Fe(OH)2	0.0	0.0561120
SrSO4	0.0	2.70723e-3
SrCO3	0.0	0.0484794
BaSO4	3.23874e-4	1.00000
BaCO3	0.0	1.22582e-3
CaSO4	0.0	0.0308099
CaCO3	0.0	2.52624
Mg(OH)2	0.0	1.45111
SiO2	0.0	0.130858
NaCl	0.0	0.241320
KCI	0.0	3.03650e-3

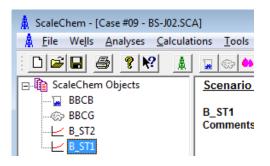
ScaleChem Std Screen – Scale Scenario

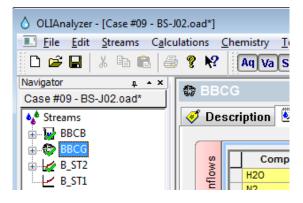


Studio ScaleChem Screen – Scale Scenario

🛃 Scal	🖌 Scale Survey						
🛷 Des	🛷 Description ี Design 📶 Plot 📓 Report 🚉 File Viewer						
2		Туре	Name	Flow			
Inlets		Brine (bbl/day)	OptionalBrine	150.000			
=		<select></select>					

Switch to


2		Туре	Name	Flow
Inlets		Brine (bbl/day)	Saturate1	150.000
=	Γ	<select></select>	•	



Case #9 – BS-J02

This file contains One Brine Analysis, one Gas Analysis, and two Scale Scenarios. This was an older file that contained Hydrocarbon gas as an input. To make this work in both ScaleChem Std and Studio SC, hydrocarbon gas was switched manually to Methane. You will also notice that the water saturation values differ because of the way that the saturation is calculated in the new software. Lastly, the Sorting of scale calculation option in ScaleChem is not part of StudioScaleChem. Therefore, the plots are mirror images. The results in the calculations are also different, presumably because of the different water saturation. Lastly, the second liquid was not turned on in ScaleChem std, which resulted in the high pressure calculations failing.

The second scale scenario, B_ST1 did not converge in Studio SC

Settings – Standard List, Na/Cl Balance, Equilibrium

e Analysis Data - BBCB	Citize de	and in			
escription Species Su	mmary				
- Analysis View			ecies Display —	Spe	cies List
O Original O Balance	d 🖲 Reconci	led .	Formula C	Name	Standard C Expanded C
Cations	mg/L	A	nions	mg/L	Neutrals
Na+1	10440.110	CI-1		19903.010	CO2, aq
K+1	5140.003	SO4-2		500.000	H2S, aq
Ca+2	280.000	HC03-1		1800.001	SiO2, aq
Mg+2	14.000	B(OH)4-1		0.000	B(OH)3, aq
Sr+2	2.100	HS-1		0.000	· · · ·
Ba+2	0.810	C2H3O2-	1	0.000	
Fe+2	15.000				
Variable	L	Jnits	Measured	Calculated	Reconciliation Type
Ambient Temperature	°F		77.000	77.000	Equilibrium Calculation
Ambient Pressure	psia		14.696	14.696	Update Brine with results
pН	pH unit	s	0.000	7.604	
Alkalinity	as HCO	3-, mg/L	0.000	1743.120	
Density	g/cc		1.026	1.023	Units
Total Dissolved Solids	mg/L		38095.034	38095.034	
Electrical Conductivity	1/ohm-	cm	0.000	0.057	-

Variable	ScaleChem Std	Studio ScaleChem
рН	7.60	7.60
Alk	1743	1718
Density	1.023	1.0217
Saturated	CaCO3, BaSO4, FeCO3	CaCO3, BaSO4, FeCO3
Balance ion	Cl-	CI-
Balance Value	902.8	902.8
Notes		

Studio ScaleChem Screen – Brine Analysis

Settings - Expanded List, Na/Cl Balance, Equilibrium

BBC	BBCB				
🎻 De:	scription 📴 Design 📓 Report				
le Data Entry	Reconciliation Options Reconciliation Type Equilibrium Calculation CO2 Fraction in Gas PH Alkalinity Reconcile Allow solids to form	Cal	cylate 🧉		
Reconcile	Properties	Measured	Calculated		
Re l	Temperature (°F)	77.0000			
	Pressure (psia)	14.6960			
	pH - Aqueous	0.0	7.60367		
	Alkalinity, Measured - Aqueous (mg HCO3/L)	0.0	1718.03		
	Density - Aqueous (g/cm3)	1.02600	1.02288		
	Elec Cond, specific - Aqueous (mho/m)	0.0	5.65399		
	Total Dissolved Solids (mg/L)	0.0	0.0		
	Composition Adju	ustments			
	Add Charge Balance (mg/L CI-1)		902.842		

Notes – Na+ was removed instead of CI- being added.

ScaleChem Std Screen – Gas Analysis

Settings – Standard gas, H2O Sat (no conditions)

Description Composition	Dew Point Summary
Gas	Mole / Vol %
Water	0.300 C by Formula
Nitrogen	0.000 • by Name
Carbon dioxide	2.981
Hydrogen sulfide	0.000
Methane	0.000 Gases Display
hydrocarbon gas	96.720 Show standard gas list
	C Show expanded gas list
	O Show non-zero gases
	Show horizero gases
Total Percent	100.00
Calculate met	thane percent Methane percent is calculated as
Gas Analysis Data - BBCG	And the second sec
Description Composition De	ew Point Summary
Type of Calculation	Result
 Saturated water conter 	nt T. °F 175.0
C Dew point temperature	View Files
C Dew point pressure	P, psia 5000.0
Dew point pressure	Water vapor, 0 285352
	vol %
The water vapor content can be changed for the calculatio It will not affect the stored gas compositions.	s Result
	% water vapor: 0.285

- ScaleChem Std did not converge gas (undefined Chemistry • model)
- Hydrocarbon Gas no longer exists. Methane is now used. The software does not automatically switch this over

Studio ScaleChem Screen – Gas Analysis

Settings - Expanded List, H2O Sat (3e-13F, 0 psia).

() B ≪ I		ption	🛃 Design	🤮 Defini	ition <u> </u> Rej	port			
	Ś	C	omponent	Normalize	Reconciled G		Cal	culate	@
	Inflows	H2O		0.299579	8.56799e-3	-			
	르	CO2		2.98089	2.98959		ondition		
		CH4		96.7195	97.0018	Sa	turate With		H2O 🔻
:	Reconcile						Conditio	ns	Value
	ĕ						Temperature	(°F)	175.000
	ē						Pressure (psi	a)	5000.00
	Ŧ						Show Non-zero turated H2O A	mount:	6799e-3 mole %

<u>C</u>hemistry <u>T</u>ools <u>V</u>iev

.

- Aq Va So 2nd Re this was turned on automatically. Calculation fails when turned off.
- OLI Analyzer does not recognize the Hydrocarbon Gas input. It needs to be changed manually

ScaleChem Std Screen – Scale Scenario

Settings – one brine, one gas, six conditions, one scale

escription	Compone	ents Conditions	Precipit	tates Calculate	Results		
<u>T</u> emperat	ture 40.000	°F <u>P</u> ressure	psia 9.693	Descriptio <u>n</u> selected point		•	Units
1	Conditions 40.000		9.693	selected point			Add
2 3 4	40.000 40.000 40.000	299	9.724 9.816 939	selected point selected point selected point			<u>R</u> emove

pH aq phase

7609.700

Error: The gas stream(s) contain pseudocomponents but no oil streams are selected.

Scaling Scenario - B_ST2 Description Components Conditions Precipitates Calculate Results DATA Case Number CACO3 BASO4 FEIICO3 pScalTend pScalTend pScalTend 1.000 2.000 0.000 0.000 0.000 0.000 0.000 0.000

4999.690 4499.720

2999.820

999.939 349.979 149.991 0.000 0.000

1.09e-004

1.70e-004

3.87e-004

8.44e-004

0.000 0.045 0.075 0.162	0.000 11.040 9.962	0.000 0.052	7609.715 5.374
0.075			
	9.962		
0.162		0.089	5.536
	9.747	0.204	5.870
0.367	10.066	0.481	6.211
	BASO4	FEIICO3	pH
pScalTend	pScalTend	pScalTend	aq phase
0.034	11.751	0.037	5.293
0.036	11.619	0.040	5.314
0.045	11.040	0.052	5.374
0.075	9.962	0.089	5.536
0.162	9.747	0.204	5.870
0.367	10.066	0.481	6.211
H2O (v)	Dissolved H2O (oi	il)	
	0.036 0.045 0.075 0.162 0.367	pScalTend pScalTend 0.034 11.751 0.036 11.619 0.045 11.040 0.075 9.962 0.162 9.747 0.367 10.066 H2O (v) Dissolved H2O (oi)	pScalTend pScalTend pScalTend 0.034 11.751 0.037 0.036 11.619 0.040 0.045 11.040 0.052 0.075 9.962 0.089 0.162 9.747 0.204 0.367 10.066 0.481 H2O (v) Dissolved H2O (oil)

9.59e-005 9.87e-005

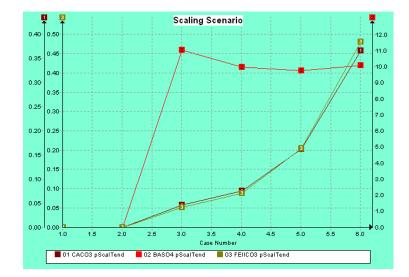
0.000

0.000

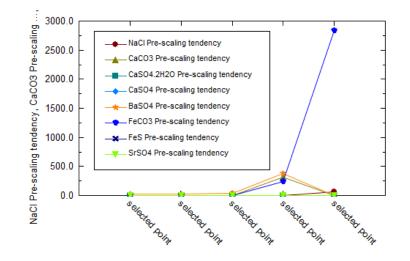
0.000

0.000

Studio ScaleChem Screen – Scale Scenario


6.00000

6


Settings - one brine, one gas, six conditions, one scale

┢	Location	Temperature (°F	Pressure (psia)	Drop Solids	Calculate
	selected point	40.0000	4999.69		
	selected point	40.0000	4499.72		Summary
-	selected point	40.0000	2999.82		5 <u>u</u> ninary
	selected point	40.0000	999.939		Unit Set
	selected point	40.0000	349.979		Based on: Scale
	selected point	40.0000	149.991		
	<enter location="" name=""></enter>				

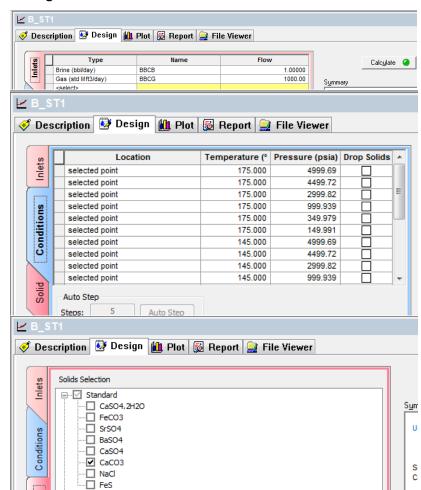
Ľ ₿_9	ST2					
🛷 De	scription	🥸 Design 🚺	🛄 Plot [💈 Report	📄 File Vie	wer
			2 9 9	. 🛛 🖻	View Plot	Curves
	Locations	pH - Aqueous	Pressure	FeCO3 Pre-	CaCO3 Pre-	BaSO4 Pre-
			psia			
1	1.00000	5.48280	4999.69	0.201487	0.158251	22.1753
2	2.00000	5.53517	4499.72	0.292763	0.222678	24.1525
3	3.00000	5.72079	2999.82	1.34714	0.906613	33.3832
4	4.00000	5.92132	999.939	235.359	311.973	379.394
5	5.00000	6.50555	349.979	2831.33	5.33748e-3	0.0392377

DATA				
Case #	CACO3	BASO4	FEIICO3	рН
	pScalTend	pScalTend	pScalTend	aq phase
1	0	0	0	7609.854
2	0	0	0	7609.869
3	0.045	11.04	0.052	5.374
4	0.075	9.963	0.089	5.536
5	0.162	9.747	0.204	5.87
6	0.367	10.067	0.481	6.211

Locations	рН -	FeCO3 Pre-	CaCO3 Pre-	BaSO4 Pre-
	Aqueous	scaling	scaling	scaling
		tendency	tendency	tendency
1	5.4828	0.201487	0.158251	22.1753
2	5.53517	0.292763	0.222678	24.1525
3	5.72079	1.34714	0.906613	33.3832
4	5.92132	235.359	311.973	379.394
5	6.50555	2831.33	5.34E-03	0.0392377
6				

Cases are flipped, two conditions contained no water. One condition was not converged in Analyzer. Scale tendencies differ significantly. pH values are generally the same.

ScaleChem Std Screen – Scale Scenario Settings -

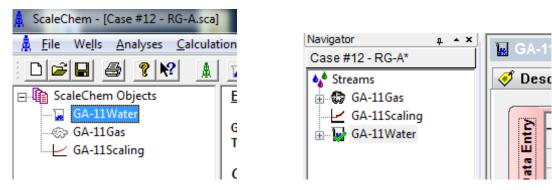

Scaling So	cenario - B_ST1				
Descript	tion Components Cond	ditior	ns Precipitates Calculate Results		
Inpu	ut				
	Туре		Name	Amount	Units
	Brine	-	BBCB 🗸	1.000	bbl/day
	Gas	-	BBCG	1000.000	kscf/day
Descriptio	on Components C	ond	itions Precipitates Calculate Resu	ults	
Temps	erature °E Pres	eu 10	e psia Description		

Iemper	175.00(4999.693	selected point		Llaža
I	175.000	4333.633	selected point	-	<u>U</u> nits
Colorto	d Conditions				
Selecte					
1	175.000	4999.693	selected point	-	Add
2	175.000	4499.724	selected point		
3	175.000	2999.816	selected point		Remove
4	175.000	999.939	selected point		<u></u> omoro
5	175.000	349.979	selected point		
6	175.000	149.991	selected point		Auto Step
7	145.000	4999.693	selected point		- Haro Brob
8	145.000	4499.724	selected point	=	
9	145.000	2999.816	selected point		Auto Step add
10	145.000	999.939	selected point		between cond
11	145.000	349.979	selected point		and click Auto
12	145.000	149.991	selected point		
13	100.000	4999.693	selected point		Note: this will
14	100.000	4499.724	selected point		exactly 2 cond
15	100.000	2999.816	selected point		
16	100.000	999.939	selected point		
17	100.000	349.979	selected point	-	
	Componente Condi				

Description Components Conditions Precipitates Calculate Results

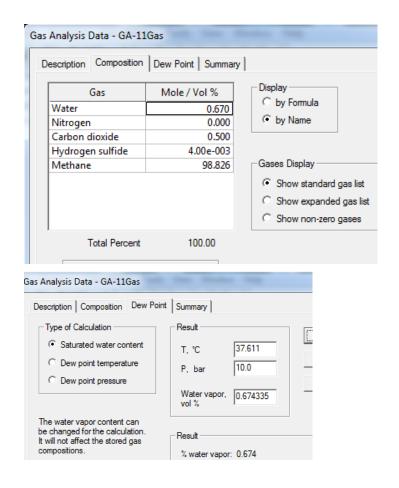
Available precipitates:	Chosen precipitates:	
NaCl (Halite) CaSO4.2H2O (Gypsum) CaSO4 (Anhydrite)	CaCO3 (Calcite)	Solids Selection

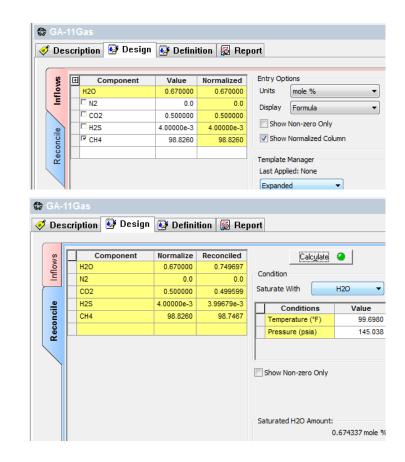
Studio ScaleChem Screen – Scale Scenario Settings -


B_ST1 did not converge in StudioSC

Notes –

Case #12 - RG-A


This case contains a water analysis set for pH and Alkalinity and a sour gas analysis. The gas to water ratio is low, 0.004MMscf/bbl. This file contains sulfur and all the solids are selected in the scale tendency. Therefore, we are focusing on the scale scenario results. There is a table at the bottom of this case, which contains the results of the two scale scenarios and the difference between their values. The differences range from 0% to 80%. s



escription Species Su	immary						
Analysis View			pecies Display		Spec	cies List	
Original Balance	d C Reconc	led	• Formula) Name	•	Standard C Expanded	C Non Zero
Cations	mg/L		Anions	mg/L		Neutrals	mg/L
Na+1 91898.		CI-1		154000.0	00	CO2, aq	0.00
K+1	1291.000	SO4-2		53.0	00	H2S, aq	0.00
Ca+2	3847.000	HC03-1	L	24.4	00	SiO2, aq	0.00
Mg+2	2054.000	B(OH)4	-1	0.0	00	B(OH)3, ag	0.00
Sr+2	127.000	HS-1		0.0	00		1
Ba+2	38.000	C2H30	2-1	40.0	00		
Fe+2	48.000						
		J			_	Reconciliation Type	
Variable	U	nits	Measured	Calculated	^		
Ambient Pressure	psia		14.696	14.696		pH and Alkalinity	-
			C 500	6.580		Update Brine with resu	lts
pH	pH units	5	6.580				
рН		; 3-, mg/L	65.070	65.081			
pH Alkalinity	as HCO		65.070	65.081	Ш	Units	
pH Alkalinity Density	as HCO g/cc	8-, mg/L	65.070 1.000	65.081 1.165	ш	Units	Balance
pH Alkalinity Density Total Dissolved Solids	as HCO g/cc mg/L	3-, mg/L cm	65.070 1.000 253420.400	65.081 1.165 253420.400	Ш	Units	
pH Alkalinity Density Total Dissolved Solids Electrical Conductivity	as HCO g/cc mg/L 1/ohm-	3-, mg/L cm	65.070 1.000 253420.400 0.000	65.081 1.165 253420.400	Ш	Units	Balance Calculate

	Variable	Value	Balanced	*	Entry Options
Data Entry	Cation	s (mg/L)			Units mg/L
	□ Na+1	91898.0	91898.0		
Dal	□ <mark>К+</mark> 1	1291.00	1291.00		Display Formula
	Ca+2	3847.00	3847.00		Show Non-zero Only
	□ Mg+2	2054.00	2054.00		Show Balanced Colum
Reconcile	□ Sr+2	127.000	127.000		
CO	Ba+2	38.0000	38.0000	=	Template Manager
Re l	Fe+2	48.0000	48.0000	-	Last Applied: None
					Expanded
	Anion	s (mg/L)			Save as
	CI-1	1.54000e	1.55792e		3476 43
	□ S04-2	53.0000	53.0000		Balance Options
	□ HCO3-1	24.4000	24.4000		Type Makeup Ion
	C2H3O2-1	40.0000	40.0000		
GA-11		Report			

Reconcile		Allow solids to form		
3		Properties	Measured	Calculated
Re	Г	Pressure (psia)	14.6960	
		pH - Aqueous	6.58000	6.58000
		Alkalinity, Measured - Aqueous (mg HCO3/L)	65.0700	65.0694
		Alkalinity end point	4.50000	
		Density - Aqueous (g/cm3)	1.00000	1.16522
		Elec Cond, specific - Aqueous (mho/m)	0.0	23.2506
		Total Dissolved Solids (mg/L)	0.0	2.55212e5
		Composition Adju	ustments	
		Added acidity (mg/L HCL)		-38.5472
		Add carbonate (mg/L CO2)		47.3631
		Add Charge Balance (mg/L CI-1)		1791.57

escription	Components	Conditio	ns Precipit	ates Calculate	Results		
Input							
	Туре			Name		Amount	
Bri		-	GA-11Wa		•		1.000
Ga	į	•	GA-11Gas		•		4.000
ling Scena	rio - GA-11	Scaling	_	_	_	_	_
, y occurs		- canng					
escription	Components	s Condit	ions Preci	pitates Calculate	Results		
Temperat	ure °C	Pressure	bar	Description			
<u> </u>	37.600	Ē	10.000	Wellhead?		•	Units
,		,		,		_	
Selected	Conditions						
1	37.600		10.000	Wellhead?			<u>A</u> dd
2	100.000 100.000		100.000 200.000	Test Cond Test Cond			Remove
4	100.000		300.000	Test Cond			<u>H</u> emove
5 6	125.000 150.000		100.000 100.000	Test Cond Test Cond			Auto Ster
ling Scer	nario - GA-	-11Scali	ng				
-				- 1			
Description	Compon	ents C	onditions	Precipitates	Calculate F	Results	
Availat	ole precipita					Chosen preci	pitates:
KCI (S	vlvite)					NaCl (Halite))
Mg(U	H)2 (Pyroch	roite)				CaCO3 (Cald	cite)
CaCl2	1H2O					CaSO4.2H2	
	2H20				Add >>	CaSO4 (Anh SrSO4 (Cele	
	4H2O					BaSO4 (Bari	te)
CaCl2	01100			A	dd All >>	FeCO3 (Side	erite)
CaCl2							
CaCl2 SrCO3	:.6H2O 3 (Strontiani 3 (Witherite				Remove	FeS (Pymhot FeS (Mackin	

		Scalin							
🧭 De:	scr	iption	🔯 De	esign	🛍 Plot	😼 F	leport		File
_								n ſ	ך
\$				Name		Flow			
Inlets				GA-11	Water	1	.00000		
=		Gas (st	d Mft3/d	GA-11	Gas	4	4.00000		Su
$\left \right\rangle$		<select< td=""><td>></td><td></td><td></td><td></td><th></th><td></td><td>ĪĒ</td></select<>	>						ĪĒ
(mail)									t
tions									

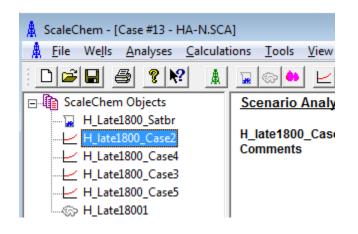
🛃 GA-11 Scaling

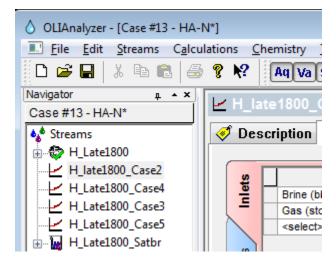
< Description 🔮 Design 🛍 Plot 👼 Report 🚘 File Viewer

w		Location	Temperature (°F)	Pressure (psia)	Drop Sol
Inlets	Г	Wellhead?	99.6800	145.038	
		Test Cond	212.000	1450.38	
[Test Cond	212.000	2900.76	
Suc		Test Cond	212.000	4351.15	
Conditions		Test Cond	257.000	1450.38	
P u		Test Cond	302.000	1450.38	
ŏ		<enter location="" name=""></enter>			

🛃 GA-11 Scaling

< Description 📴 Design 🛍 Plot 📓 Report 🚘 File

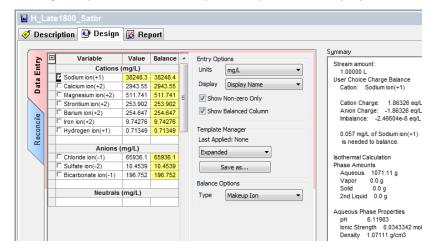

Inlets	Solids Selection
Ĕ	
	CaSO4.2H2O
	FeCO3
<u>s</u>	SrSO4
.e	BaSO4
l di	CaSO4
Conditions	CaCO3
Ľ	NaCl
(m)	FeS
2	i Expanded
Solid	i≟… <mark>∕</mark> All


Scal	eChem Std							
Pres	sure, bar	NACL p	CACO3 p	CASO4.2H2O p	CASO4 p	BASO4 p	FEIICO3 p	FEIIS p
bar		ScalTend	ScalTend	ScalTend	ScalTend	ScalTend	ScalTend	ScalTend
10	1	0.444	0.046	0.02	0.027	4.099	0.021	13.329
100	2	0.359	0.084	0.011	0.042	1.492	0.022	3.809
200	3	0.353	0.05	9.63E-03	0.038	1.578	0.014	2.27
300	4	0.348	0.038	8.78E-03	0.034	1.637	0.011	1.696
100	5	0.327	0.19	9.04E-03	0.064	1.258	0.016	1.653
100	6	0.301	0.423	0 (outside range)	0.1	1.043	5.65E-03	0.395
Stuc	lio SC	1	1	·		1	1	•
	Location s	NaCl	CaCO3	CaSO4.2H2O	CaSO4	BaSO4	FeCO3	FeS
	-	Pre-scaling tendency	Pre-scaling tendency	Pre-scaling tendency	Pre-scaling tendency	Pre-scaling tendency	Pre-scaling tendency	Pre-scaling tendency
1	1	0.438	0.044	0.020	0.026	4.062	0.019	14.583
2	2	0.378	0.068	0.011	0.044	1.537	0.013	3.625
3	3	0.351	0.042	0.010	0.037	1.573	0.009	2.428
4	4	0.340	0.033	0.009	0.033	1.614	0.008	1.885
5	5	0.416	0.134	0.010	0.074	1.433	0.004	0.869
6	6	0.558	0.251	0.008	0.137	1.231	0.000	0.049
Diff	erence [(St	udioSC-SCStd)/S	CStd]					
	1	-1%	-5%	-2%	-3%	-1%	-9%	9%
	2	5%	-19%	-1%	4%	3%	-41%	-5%
	3	-1%	-16%	0%	-1%	0%	-34%	7%
	4	-2%	-13%	-1%	-2%	-1%	-31%	11%
	5	27%	-29%	10%	15%	14%	-76%	-47%
	6	85%	-41%		37%	18%	-96%	-88%

Case #13 – HA-N

This file contains one Brine, one gas and several scale scenario objects. This file was created in 2003, using a pre-V3 version of ScaleChem. The purpose of this study is to see how the Studio SC and ScaleChem Std (V4 and higher) software will handle old files. We observed that several of the scale scenarios were missing their flow rates. Also, a phase called Hydrocarbon gas is no longer used in the new software. Consequently, Hydrocarbon Gas had to be changed manually in the gas analysis to methane.

With regard to the Scale Scenario results, the computed values of Studio SC are different from ScaleChem Std.


Settings - Standard List, Na/Cl Balance, Equilibrium

e Analysis Data - H_Late	1800_Satbr				
escription Species Su	ummary				
Analysis View C Original C Balance	ed 🔍 Reconcil		ecies Display — Formula O		cies List Standard C Expande
Cations	mg/L	A	nions	mg/L	Neutrals
Na+1	38249.130	CI-1		65937.410	
Ca+2	2943.610	SO4-2		10.454	
Mg+2	511.742	HC03-1		196.751	
Sr+2	253.901				
Ba+2	254.651				
Fe+2	9.743				
H+1	0.713				
Variable		Jnits	Measured	Calculated	Reconciliation Type
	°F	mits			Equilibrium Calculation
Ambient Temperature			77.000	77.000	Ledningung Calculation
Ambient Pressure	psia		14.696	14.696	🔲 🔲 Update Brine with r
pH	pH unit		0.000	6.120	
Alkalinity		3-, mg/L	0.000	140.099	Units
Density	g/cc		0.000	1.071	
Total Dissolved Solids	mg/L		108368.105	108368.105	
Electrical Conductivity	1/ohm-	cm	0.000	0.138	

Variable	ScaleChem Std	Studio ScaleChem	% Difference
рН	6.12	6.12	
Alk	141	136	
Density	1.071	1.071	
Balance ion	Na	Na+	
Balance Value	0.057	0.057	
Saturated	BaSO4	BaSO4	
Notes			

Studio ScaleChem Screen – Brine Analysis

Settings - Expanded List, Makeup (Cl-), Equilibrium, Display Name

Notes -

ScaleChem Std Screen – Scale Scenario

Settings – One Brine, One Gas, gas, Five conditions, One Scale

Description	Components Co	nditions Precipita	tes Calculate	Results		
Input						
	Туре		Name		Amount	Units
B	rine	 H_Late1800)_Satbr	•	1.000	bbl/day
G	as	 H_Late1800)1	-	90.000	kscf/da
Description	Components	Conditions Pre	cipitates Calci	ulate Results		
-			Design			
<u>T</u> empera		essure psia		1		
	92.000	1799.890	surface		•	<u>U</u> nits
Selected	Conditions					
1	92.000	1799.890	surface			Add
1	92.000 106.000	2144.868	surface			Add
1	92.000 106.000 128.000	2144.868 3029.814	surface surface			<u>A</u> dd
1	92.000 106.000 128.000 135.000	2144.868 3029.814 3824.765	surface surface surface			_
1 2 3 4 5	92.000 106.000 128.000 135.000 207.000	2144.868 3029.814 3824.765 7499.540	surface surface surface surface			_
1	92.000 106.000 128.000 135.000 207.000	2144.868 3029.814 3824.765 7499.540	surface surface surface	Calculate	Results	_
1 2 3 4 5	92.000 106.000 128.000 135.000 207.000	2144.868 3029.814 3824.765 7499.540	surface surface surface surface	Calculate	Results	
1 2 3 4 5 escription	92.000 106.000 128.000 135.000 207.000 Components	2144.868 3029.814 3824.765 7499.540	surface surface surface surface	Calculate		<u>R</u> emove
1 2 3 4 5 escription	92.000 106.000 128.000 135.000 207.000 Components	2144.868 3029.814 3824.765 7499.540	surface surface surface surface	Calculate	Chosen precipi	<u>R</u> emove
1 2 3 4 5 escription Availab	92.000 106.000 128.000 135.000 207.000 Components	2144.868 3029.814 3824.765 7499.540 Conditions	surface surface surface surface	Calculate		<u>R</u> emove

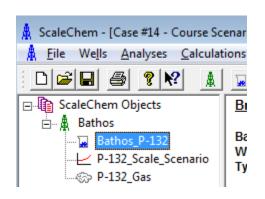
Studio ScaleChem Screen – Scale Scenario

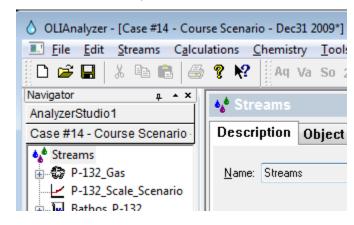
Settings - Expanded List, H2O Sat (3e-13F, 0 psia).

Des	cription 🥺 Design 👔	ļ Plot	🗟 Report 📄 F	ile Viewer	
Inlets	Type		Name	Flow	/ 1.00000
Ξ	Brine (bbl/day) Gas (std Mft3/day) <select></select>	H_Late1	1800_Satbr 1800		90.0000
, [Location		Temperature (°F	Pressure (psia)	Drop Solids
Inlets	surface		92.0000	1799.89 2144.87	
	surface		128.000	3029.81	
	surface surface		135.000 207.000	3824.77 7499.54	
	Solids Selection				
	Calcium sulfate dihyd Iron(II) carbonate Strontium sulfate Barium sulfate Calcium sulfate Calcium carbonate (c Sodium chloride Iron(II) sulfide (hexa	alcite)			

Notes – Scale Results are different

ScaleChem	Std							
Pressure		NACL	CACO3	CASO4.2H2O	CASO4	BASO4	FEIICO3	SRSO4
psia		pScalTend	pScalTend	pScalTend	pScalTend	pScalTend	pScalTend	pScalTend
1799.89		0.045	0.19	3.32E-03	3.14E-03	11.835	0.038	0.015
2144.87		0.045	0.235	3.36E-03	3.58E-03	10.345	0.055	0.015
3029.81		0.045	0.316	3.08E-03	3.97E-03	7.972	0.089	0.014
3824.76		0.044	0.317	2.89E-03	3.93E-03	7.421	0.092	0.014
7499.54		0.041	1.25	2.40E-03	6.56E-03	4.16	0.306	0.016
Studio SC				•				
	Locations	NaCl	CaCO3	CaSO4.2H2O	CaSO4	BaSO4	FeCO3	SrSO4
		pST	pST	pST	pST	pST	pST	pST
1	1	0.02076	0.085613	1.93E-03	1.74E-03	7.72586	0.016923	8.45E-03
2	2	0.020652	0.103436	2.01E-03	2.05E-03	6.80905	0.023974	9.02E-03
3	3	0.020323	0.134237	1.97E-03	2.42E-03	5.43662	0.037206	9.05E-03
4	4	0.020096	0.13288	1.88E-03	2.43E-03	5.09704	0.03834	8.80E-03
5	5	0.018454	0.474522	1.64E-03	4.25E-03	2.76761	0.121986	0.010475
Difference [(StudioSC-So	CStd)/SCStd]						
Difference	1	-54%	-55%	-42%	-44%	-35%	-55%	-44%
	2	-54%	-56%	-40%	-43%	-34%	-56%	-40%
	3	-55%	-58%	-36%	-39%	-32%	-58%	-35%
	4	-54%	-58%	-35%	-38%	-31%	-58%	-37%
	5	-55%	-62%	-32%	-35%	-33%	-60%	-35%


ScaleChem	n Std							
Pressure	CACO3 solid	CACO3	CASO4.2H2O	CASO4	FEIICO3	BASO4	NACL	SrSO4
psia	mg/L	pST	pST	pST	pST	pST	pST	pST
1799.89	0	0.074	2.32E-03	1.53E-03	7.72E-03	14.906	0.038	8.31E-03
2135.87	0	0.088	2.45E-03	1.84E-03	0.012	13.125	0.038	9.55E-03
2299.86	0	0.127	2.80E-03	2.51E-03	0.025	11.424	0.038	0.012
4526.72	0	0.131	2.57E-03	2.74E-03	0.033	9.617	0.037	0.012
7499.54	1.478	1.023	2.22E-03	5.99E-03	0.254	3.82	0.035	0.014
Studio SC								
	Locations	CaCO3 pST	CaSO4.2H2O pST	CaSO4 pST	FeCO3 pST	BaSO4 pST	NaCl pST	SrSO4 pST
1	1	0.040734	1.64E-03	1.05E-03	4.33E-03	12.0564	0.020594	5.91E-03
2	2	0.048138	1.66E-03	1.20E-03	6.71E-03	10.0064	0.020651	6.49E-03
3	3	0.067613	1.83E-03	1.59E-03	0.012828	8.19949	0.020666	7.81E-03
4	4	0.067662	1.73E-03	1.78E-03	0.01647	6.93876	0.020202	8.27E-03
5	5	0.474522	1.64E-03	4.25E-03	0.121986	2.76761	0.018454	0.010475
Difference	[(StudioSC-SO	CStd)/SCStd]				•		•
1		-45%	-29%	-32%	-44%	-19%	-46%	-29%
2		-45%	-32%	-35%	-44%	-24%	-46%	-32%
3		-47%	-35%	-37%	-49%	-28%	-46%	-35%
4		-48%	-33%	-35%	-50%	-28%	-45%	-31%
5		-54%	-26%	-29%	-52%	-28%	-47%	-25%


ScaleChem	n Std							
Pressure	CACO3 solid	BASO4	CACO3	CASO4.2H2O	CASO4	FEIICO3	SRSO4	NACL
psia	mg/L	pST	pST	pST	pST	pST	pST	pST
1799.89	0	11.01	0.15	0.00	0.00	0.03	0.01	0.04
2118.87	0	9.71	0.19	0.00	0.00	0.04	0.01	0.04
2609.84	0	7.58	0.27	0.00	0.00	0.08	0.01	0.04
4135.75	0	6.67	0.27	0.00	0.00	0.08	0.01	0.04
7499.54	1.478	3.82	1.02	0.00	0.01	0.25	0.01	0.04
Studio SC				•				
	CACO3 solid	BaSO4	CaCO3	CaSO4.2H2O	CaSO4	FeCO3	SrSO4	NaCl
	mg/L	pST	pST	pST	pST	pST	pST	pST
1	0	7.87	0.08	0.00	0.00	0.02	0.01	0.02
2	0	6.95	0.10	0.00	0.00	0.02	0.01	0.02
3	0	5.56	0.14	0.00	0.00	0.04	0.01	0.02
4	0	4.95	0.13	0.00	0.00	0.04	0.01	0.02
5	0	2.77	0.47	0.00	0.00	0.12	0.01	0.02
Difference	[(StudioSC-SCStd)/SCStd]						
1		-28%	-47%	-35%	-37%	-47%	-36%	-45%
2		-28%	-48%	-34%	-36%	-48%	-36%	-46%
3		-27%	-49%	-30%	-33%	-50%	-29%	-46%
4		-26%	-50%	-29%	-31%	-50%	-27%	-46%
5		-28%	-54%	-26%	-29%	-52%	-25%	-47%

ScaleCher	n Std							
Pressure	CACO3	BASO4	CACO3	CASO4.2H2O	CASO4	FEIICO3	NACL	SRSO4
psia	mg/L	pST	pST	pST	pST	pST	pST	pST
1799.89	0	22.02	0.06	0.00	0.00	0.00	0.05	0.01
2305.86	0	17.16	0.07	0.00	0.00	0.01	0.05	0.01
2499.85	0	14.71	0.09	0.00	0.00	0.01	0.05	0.01
4469.73	0	13.69	0.09	0.00	0.00	0.02	0.04	0.01
7499.54	14.665	4.16	1.25	0.00	0.01	0.31	0.04	0.02
Studio SC								
	CACO3	BaSO4	CaCO3	CaSO4.2H2O	CaSO4	FeCO3	SrSO4	NaCl
	mg/L	pST	pST	pST	pST	pST	pST	pST
1	0	18.03	0.03	0.00	0.00	0.00	0.01	0.02
2	0	13.34	0.03	0.00	0.00	0.00	0.01	0.02
3	0	10.57	0.04	0.00	0.00	0.01	0.01	0.02
4	0	9.08	0.04	0.00	0.00	0.01	0.01	0.02
5	0	2.76761	0.474522	1.64E-03	4.25E- 03	0.121986	0.010475	0.018454
Difference	e [(StudioS	SC-SCStd)/S	SCStd]					
1		-18%	-52%	-33%	-37%	-49%	-88%	150%
2		-22%	-53%	-35%	-38%	-52%	-88%	142%
3		-28%	-54%	-38%	-41%	-53%	-86%	106%
4		-34%	-55%	-41%	-44%	-56%	-84%	69%
5		-33%	-62%	-32%	-35%	-60%	-74%	15%

Case #14 - Course Scenario-Dec31.2009

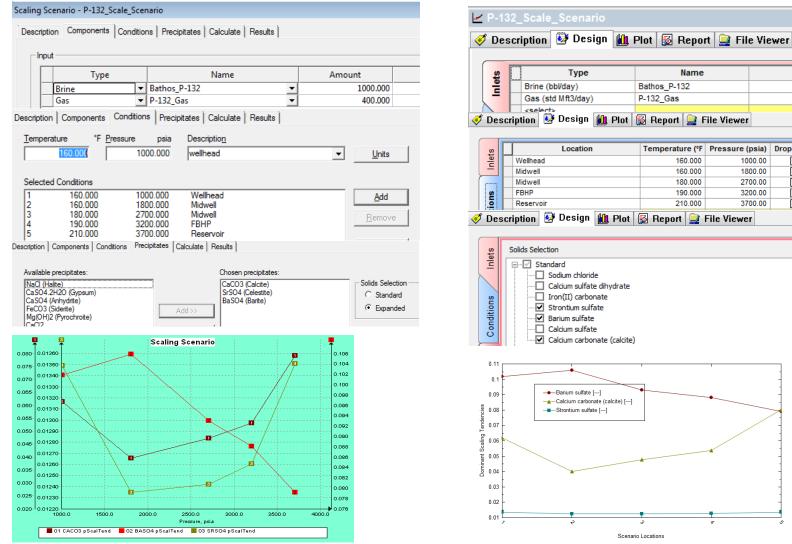
This file contains the output of chapters 2 and 3 of the ScaleChem Course Scenario. This scenario contains a high CO2 content gas and a brine at moderate temperatures and pressures. The main comparison is the CaCO3 scale tendency.

ScaleChem Std Screen – Brine Analysis

Settings - Expanded List, Na/Cl Balance, Equilibrium

escription Species Su	mmary				
Analysis View	d 🔍 Reconci		ecies Display — Formula C		cies List – Standard
Cations	mg/L	A	nions	mg/L	
Na+1	1801.807	CI-1		3200.054	
Ca+2	250.001	SO4-2		16.000	
Mg+2	35.000	HC03-1		217.001	
Sr+2	15.000				
Ba+2	0.300				
Fe+2	2.100				
Fe+2 Variable		Units	Measured	Calculated	Recond
		Units	Measured	Calculated	
Variable		Units			Equilib
Variable Ambient Temperature	°F		77.000	77.000 14.696	Equilib
Variable Ambient Temperature Ambient Pressure	°F psia pH unit		77.000 14.696	77.000 14.696 7.642	Equilib
Variable Ambient Temperature Ambient Pressure pH	°F psia pH unit	ts	77.000 14.696 0.000	77.000 14.696 7.642 214.875	Equilib
Variable Ambient Temperature Ambient Pressure pH Alkalinity	°F psia pH unit as HCC	ts	77.000 14.696 0.000 0.000	77.000 14.696 7.642 214.875 1.001	Reconc Equilibri Upo

Variable	ScaleChem Std	Studio ScaleChem
рН	7.642	7.64
Alk	214.9	214
Balance ion	Na+	Na+
Balance Value	301.8	301.8
Density	1.001	1.00089
Saturated	CaCO3, FeCO3, SrCO3	CaCO3, FeCO3, SrCO3


Studio ScaleChem Screen – Brine Analysis

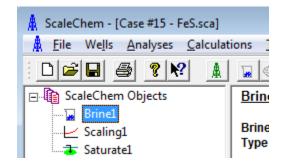
Settings - Expanded List, Na/Cl Balance, Equilibrium Reconciliation

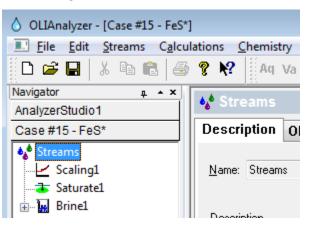
	scription 🧕 Design	🚳 Repo	ort				
							Summary
2		Value	Balanced	Entry Op	tions		User Choice Charge Balance
Entry	Cations	(mg/L)		Units	mg/L	_	Cation: Sodium ion(+1)
ш	Sodium ion(+1)	1500.00	1801.77				
Data	Calcium ion(+2)	250.000	250.000	Display	Display Name	-	Cation Charge: 0.0810235 eq/L
-	Magnesium ion(+2)	35.0000	35.0000	Show	Non-zero Only		Anion Charge: -0.0941498 eq/L
	Strontium ion(+2)	15.0000	15.0000				Imbalance: -0.0131263 eq/L
a	Barium ion(+2)	0.300000	0.300000	Show	Balanced Column	۱ I	301.773 mg/L of Sodium ion(+1)
<u>ci</u>	Iron ion(+2)	2.10000	2.10000				is needed to balance
Reconcile					Manager		is needed to balance.
ŝ	Anions	(mg/L)		Last App	lied: None		Isothermal Calculation
<u> </u>	Chloride ion(-1)	3200.00	3200.00	Expand	ed .		Phase Amounts
\mathbf{i}	Sulfate ion(-2)	16.0000	16.0000	Lypund			Aqueous 1000.89 g
	Bicarbonate ion(-1)	217.000	217.000		Save as		Vapor 0.0 g Solid 0.0 g
						-	2nd Liquid 0.0 g
	Neutrals	s (mg/L)		Balance (Options		2nd Eighta 0.0 g
				Type	Makeup Ion		Aqueous Phase Properties
					<u> </u>		pH 7.64188
							Ionic Strength 1.82885e-3 mol/mo
							Density 1.00089 g/cm3 Summary
~							
Entry	Reconciliation Options						User Choice Charge Balance
ш	Reconciliation Type) Equilibrium	Calculation				Cation: Sodium ion(+1)
ata		CO2 Fract				- 1	Cation Charge: 0.08102
õ	-	,			Calc	ulate 🥝	Anion Charge: -0.094149
	C) pH Aikalini	ty Reconcile				Imbalance: -0.0131263 e
	Allow solid						induando: 0.01012000
-e	Allow Solid	s to form					301.773 mg/L of Sodium io
ů.				_			is needed to balance.
Reconcile		operties			Measured	Calculated	Isothermal Calculation
~	Temperature (°F)				77.0000		Phase Amounts
	Pressure (psia)				14.6960		Aqueous 1000 89 g
·	pH - Aqueous				0.0	7.64188	Vapor 0.0 g
			g HCO3/L)		0.0	214.018	
	Alkalinity, Measured - /	2m2)			1.00100	1.00089	2110 Elquid 0.0 g
	Density - Aqueous (g/				0.0	0.985482	
	Density - Aqueous (g/ Elec Cond, specific - A	queous (mh	io/m)				
	Density - Aqueous (g/	queous (mh (mg/L)			0.0	5537.17	Aqueous Phase Properties
	Density - Aqueous (g/ Elec Cond, specific - A	queous (mh (mg/L)	io/m) omposition	Adjustm	0.0	5537.17	

ScaleChem Std Screen - Scale Scenario

Settings - One Brine, One Gas, five conditions, three scales

Studio ScaleChem Screen - Scale Scenario


Settings – One brine, one gas, five conditions, three scales


Name Flow Bathos P-132 1000.00 P-132 Gas 400.000 🎻 Description 🔮 Design 📶 Plot 📓 Report 💂 File Viewer Temperature (°F Pressure (psia) Drop Solids 160.000 1000.00 160.000 1800.00 Summary 180.000 2700.00 190.000 3200.00 Unit Set 210.000 3700.00 Based 🎻 Description 🥺 Design 🛍 Plot 👼 Report 🚘 File Viewer S<u>u</u>mmary Unit Set Base Scale S Calculat

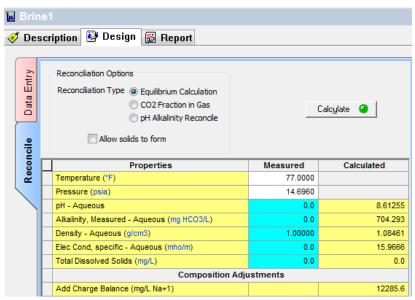
ScaleChem	Std						
Pressure	BASO4	CACO3	SRSO4	CASO4.2H2O	CASO4	FEIICO3	NACL
psia	pST	pST	pST	pST	pST	pST	pST
1000	0.10	0.06	0.01	0.00	0.01	0.05	0.00
1800	0.11	0.04	0.01	0.00	0.01	0.03	0.00
2700	0.09	0.05	0.01	0.00	0.01	0.04	0.00
3200	0.09	0.05	0.01	0.00	0.01	0.05	0.00
3700	0.08	0.08	0.01	0.00	0.01	0.07	0.00
Studio SC							
	BaSO4	CaCO3	SrSO4	CaSO4.2H2O	CaSO4	FeCO3	NaCl
	pST	pST	pST	pST	pST	pST	pST
1	0.10	0.05	0.01	0.00	0.01	0.04	0.00
2	0.11	0.03	0.01	0.00	0.01	0.03	0.00
3	0.09	0.04	0.01	0.00	0.01	0.03	0.00
4	0.09	0.04	0.01	0.00	0.01	0.04	0.00
5	0.08	0.06	0.01	0.00	0.01	0.05	0.00
Difference	(StudioSC-SO	CStd)/SCStd]				·	
1	0%	-14%	4%	0%	0%	-15%	0%
2	0%	-21%	3%	0%	0%	-22%	0%
3	0%	-22%	4%	0%	0%	-23%	1%
4	0%	-23%	-3%	0%	0%	-25%	0%
5	1%	-24%	-3%	0%	-3%	-24%	0%

Case #15 – FeS

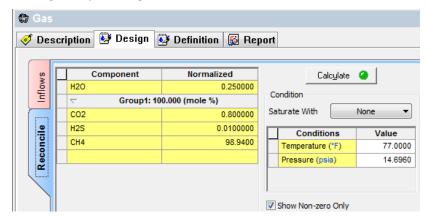
This file contains one Brine Analysis, one Saturation, and one Scaling for a fluid saturated with FeS and CaCO3 in a gas containing relatively high concentrations of CO2 and H2S. This is a high TDS brine with high concentrations of organic acids and borates. The saturation calculation appears to work properly in ScaleChem Std. the Saturation calculation failed to converge in Studio SC.

ScaleChem Std Screen – Brine/Gas Analysis

Settings – Non-zero List, Na/Cl Balance, Equilibrium

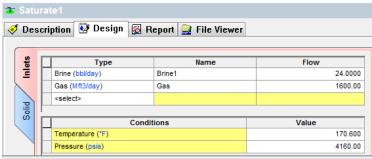

escription Species Su	mmary					
Analysis View © Original O Balance	d C Reconcil		ecies Display — Formula – ©		cies List Standard C Expanded	C Non Zero
Cations	mg/L	A	nions	mg/L	Neutrals	mg/L
Na+1	36541.000	CI-1		78140.000	CO2, aq	0.00
K+1	1414.000	SO4-2		236.000	H2S, aq	0.0
Ca+2	942.000	HC03-1		360.000	SiO2, aq	0.0
Mg+2	253.000	B(OH)4-1		231.000	B(OH)3, aq	0.0
Sr+2	26.000	HS-1		5.000		
Ba+2	1.000	C2H3O2-	1	640.000		
Fe+2	10.000					
Variable	U	Inits	Measured	Calculated	Reconciliation Type	
Ambient Temperature	°F		77.000	77.000	Equilibrium Calculation	-
Ambient Pressure	psia		14.696	14.696	Update Brine with resul	te
pН	pH unit	s	0.000	8.613	j opdate bille warread	
Alkalinity	as HCO	3-, mg/L	0.000	729.290		
Density	g/cc	-	1.000	1.085	Units	
Total Dissolved Solids	mg/L		118799.000	118799.000		Balance
Electrical Conductivity	1/ohm-		0.000	0.160		

Settings – Standard gas, no water saturation

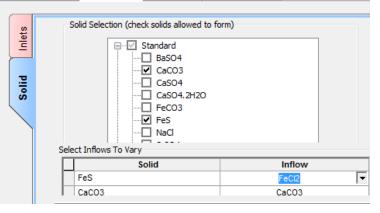

Gas Analysis Data - Gas		
Description Composition	Dew Point Summar	у]
Gas	Mole / Vol %	Display —
Water	0.250	C by For
Nitrogen	0.000	• by Na
Carbon dioxide	0.800	
Hydrogen sulfide	0.010	
Methane	98.940	Gases Dis
		Show
		C Show
		C Show
Total Percent	100.00	

Studio ScaleChem Screen – Brine/Gas Analysis

Settings - Expanded List, Na/Cl Balance, Equilibrium


Settings – Expanded	l gas, water s	aturation ON and	USED
---------------------	----------------	------------------	------

ScaleChem Std Screen – Saturate


	Туре		Na	me	Amount	Units
	Brine		Brine1	▼	24.000	bbl/day
	Gas	-	Gas	•	1600.000	kscf/day
irati	on Study - Satura	te1	-		_	
escri	iption Component	s (Conditions Satura	tion Calculate	Results	
Ter	mperature °F	<u>P</u> re	ssure psia	Description_		
	339.080		61135.360	surface		- U
Sel	ected Conditions					
1	170.600		4160.000	surface		
irati	on Study - Satu	rate				
	on otacy outa		-			-
escr	iption Compone	nts	Conditions Sa	turation Calcula	te Results	
escr	iption Compone	nts	Conditions Sa	turation Calcula	te Results	
		nts	Conditions Sa	turation Calcula		ts: Solid [Inflov
A	vailable solids:	nts	Conditions Sa	turation Calcula	Chosen solid	
A	vailable solids: NaCl (Halite)			turation Calcula	Chosen solid	ds: Solid [Inflov tite) [FEIICL2] Icite) [automat
A	vailable solids:			turation Calcula	Chosen solid	tite) [FEIICL2]
A	vailable solids: NaCl (Halite)	osun)	turation Calcula	Chosen solid	tite) [FEIICL2]
A	vailable solids: NaCl (Halite) Ca SO4.2H2O (Gyr	osun)	turation Calcula	Chosen solid	tite) [FEIICL2]
	vailable solids: VaCl (Halite) CaSO4 2H2O (Gyr ify inflow to v	osun)		Chosen solid	tite) [FEIICL2]
A peci	vailable solids: VaCl (Halite) CaSO4.2H2O (Gyp ify inflow to v aturate Solid	osum)	by Varying	Chosen solid	tite) [FEIICL2]
A Peci Sa Fe	vailable solids: VaCl (Halite) CaSO4 2H2O (Gyr ify inflow to v	osun /aŋ)		Chosen solid	tite) [FEIICL2]

Studio ScaleChem Screen – Saturate

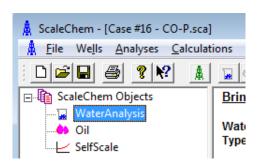
😎 Saturate1

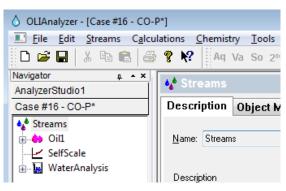
< Description 📴 Design 👼 Report 🚊 File Viewer

ScaleChem Std Screen – Scale Scenario

Settings –Gas+Brine, five conditions, all standard scales

caling Scenario - Scaling1				
Description Components Conditio	ns Precipitates Calcu	ulate Results		
- Input				
Туре	Nan	ne	Amount	Units
	SatBrine	▼	24.000	bbl/day
	Gas	-	1600.000	kscf/day
caling Scenario - Scaling1	and in case			
Description Components	Conditions Precipi	tates Calculate	Results	
Temperature °F Pre	ssure psia	Description		
284.000	8817.600	Separator		▼ Units
204.000	0017.000	Sebararon		
Selected Conditions				
1 130.000 2 140.000	1700.000 600.000	wellhead Separator		<u>A</u> dd
3 157.000	3100.000	Midwell		Bemov
4 165.000	3800.000	Bottomhole		<u>H</u> emov
5 170.600	4160.000	reservoir		
Description Components	Precipi	tates Calaulata	Desulta	
Description Components (conditions incorp.		Nesuits	
Available precipitates:			Chosen precipitate	S:
KCI (Sylvite)			NaCl (Halite)	
Mg(OH)2 (Pyrochroite) CaCl2			CaCO3 (Calcite) CaSO4.2H2O (Gy	(musum)
CaCl2.1H2O		Add >>	CaSO4 (Anhydrite	
CaCl2.2H2O			SrSO4 (Celestite)	
CaCl2.4H2O CaCl2.6H2O		Add All >>	BaSO4 (Barite) FeCO3 (Siderite)	
Ca3(BO3)2			FeS (Pymhotite)	
SrCO3 (Strontianite)		<< Remove	FeS (Mackinawite	;)


Studio ScaleChem Screen – Scale Scenario Settings – Conversion is the same

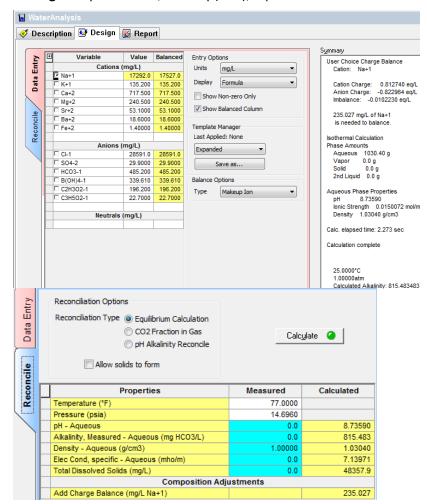

🛃 Sci	alin	g1							
🎺 De	escr	iption	🥸 De	esign	<u>ku</u> ,	Plot	5	Repo	ort
nlets	F	Ty Brine (t	vpe obl/day)	N Brine1	lame			ow 24.00	00
-	E	Gas (M <select< th=""><th>ft3/day) ></th><th>Gas</th><th></th><th></th><th></th><th>1600.</th><th>00</th></select<>	ft3/day) >	Gas				1600.	00
🛃 Sc. 🦪 De	alin escr		💽 De	sign	<u>ku</u>	Plot	1	Repo	ort
					_			-	
Inlets		L Separa	ocation			perat 0.000		sure 0.000	Dro [
Ξ		wellhea				0.000		0.00	
_ (Midwel			15	7.000	310	0.00]] [
Su		Bottom	nole		16	5.000	380	0.00	
nditions		reservo	oir		17	0.600	416	0.00	[
ono		<enter i<="" td=""><td>Location I</td><td>Name</td><td></td><td></td><td></td><td></td><td></td></enter>	Location I	Name					
Conditions Inlets	_	lids Sele Standard Standard V	andard BaSO4 CaCO3 CaSO4 CaSO4. FeCO3 FeS NaCl	2H2O					

ScaleChe	em Std										
Pressure	e FEIIS pST	FEIICO3 pST	рН	CACO3 mg/l	CACO3 pST	FeS pST	CO2 aq (mg/l)	H2S, aq (mg/l)	Hac, vap (molfx)	Water rate I/hr	Gas rate I/hr
1700	1.16	1.57E-03	5.91	0	0.67		291.448	8.886	2.48E-08	159	17799
600	3.34	4.62E-03	6.16	204	2.29		129.616	4.232	1.87E-08	154	54311
3100	1.11	2.01E-03	5.89	0	0.88		341.655	10.222	5.46E-08	159	10621
3800	1.03	2.04E-03	5.88	0	0.93		362.38	10.651	6.85E-08	159	9090
4160	1.00	2.10E-03	5.88	1	1.00		370.518	10.79	7.51E-08	159	8558
StudioS	2										
1	0.84	1.16E-03	5.84	0	0.37	0	3.18E+02	9.52E+00	2.45E-08	200	15848
2	2.50	3.54E-03	6.21	41	1.20	0.04035 3	1.42E+02	4.53E+00	1.40E-08	196	48364
3	0.83	1.54E-03	5.81	0	0.46	0	3.71E+02	1.08E+01	5.50E-08	200	9457
4	0.78	1.59E-03	5.80	0	0.49	0	3.93E+02	1.12E+01	6.94E-08	200	8093
5	0.78	1.66E-03	5.80	0	0.52	0	4.01E+02	1.14E+01	7.62E-08	200	7620
Rel Diffe	rence										
1	27%	26%	1%		45%		-9%	-7%	1%	-26%	11%
2	25%	23%	-1%	80%	47%		-9%	-7%	25%	-27%	11%
3	25%	23%	1%		47%		-8%	-6%	-1%	-26%	11%
4	24%	22%	1%		47%		-8%	-6%	-1%	-26%	11%
5	23%	21%	1%	100%	48%		-8%	-5%	-2%	-26%	11%

Case #16 - C-OP1

This file contains one brine, one oil and one scale scenario. The oil phase includes pure components up to C40 (the maximum in ScaleChem). In addition, the starting pressure is 11000 psia (758bar). The oil phase density differed between the two calculations. Also the PVT curve calculator and plot needs to be created manually. This is not a problem since it does not affect the scale calculations.

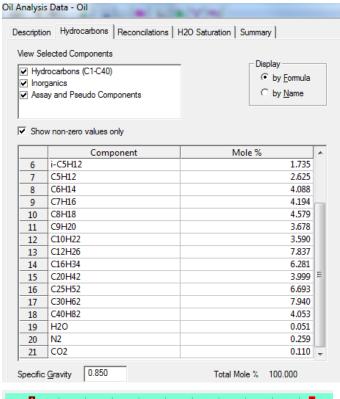
ScaleChem Std Screen – Brine Analysis

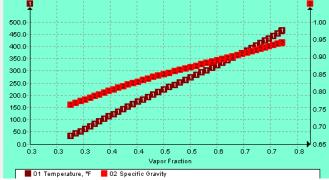

Notes

Settings – Standard, Na/Cl balance Equilibrium

Description Species Sumr	C D	C					
Original C Balanced	 Reconcil 		ecies Display — Formula C		cies List Standard © Expanded © I		
Cations	mg/L	A	nions	mg/L	Neutrals		
Na+1	17292.000	CI-1		28591.000			
K+1	135.200	SO4-2		29.900			
Ca+2	717.500	HC03-1		485.200			
Mg+2	240.500	B(OH)4-1		339.610			
Sr+2	53.100	C2H3O2-	-	196.200			
Ba+2	18.600	C3H5O2-	1	22.700			
Fe+2	1.400						
Variable		Units Me		Calculated	Reconciliation Type		
Ambient Temperature	°F			77.000	Equilibrium Calculation		
Ambient Pressure	psia		77.000	14,696	Update Brine with results		
pH	pH units	5	0.000	8.736			
Alkalinity	as HCO	3-, mg/L	0.000	829.062			
Density	g/cc		1.000	1.030	Units		
Total Dissolved Solids	mg/L		48122.910	48122.910			
Electrical Conductivity	1/ohm-	cm	0.000	0.071			
ariable Sc	aleChen	n Std		Studio	ScaleChem		
H 8.	74			8.74			
lk 82	29.1			815.5	815.5		
ensity 1.	03			1.03	1.03		
alance ion Na	a+			Na+			
alance Value 23	35			235			
	aCO3, Ba CO3)3, BaSO4, FeCO3, 3			, BaSO4, FeCO3, SrCO		

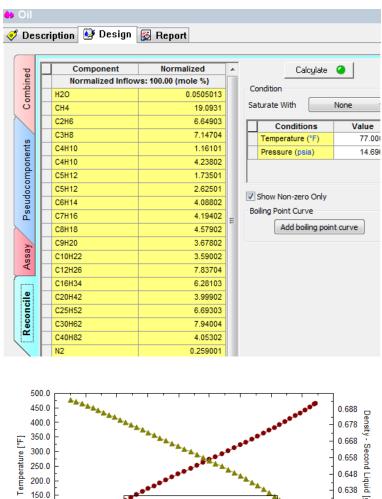
Studio ScaleChem Screen – Brine Analysis


Settings – Expanded List, Makeup(Na=), Equilibrium



Notes –

ScaleChem Std Screen – Oil Analysis


Settings - All components on, water sat on, SG=0.85

Studio ScaleChem Screen – Oil Analysis

Settings - H2O Sat Off. Boiling point curve is manually created

- Temperature [°F]

50,0

Vapor Frac. (Apparent) [mole %]

8.0

- Density - Second Liquid [g/cm3] (Y2)

550

60,0

65.0

20.0

g/c

ച്ച

0.628

0.618

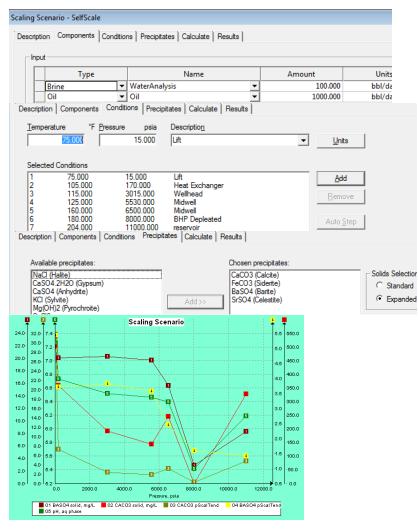
0.608

30

100.0

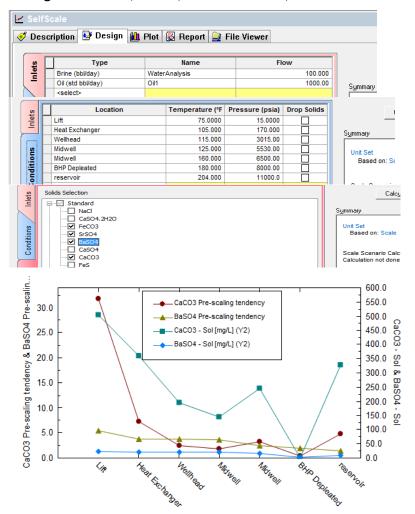
50.0

0.0


30,0

350

×0.0


ScaleChem Std Screen – Scale Scenario

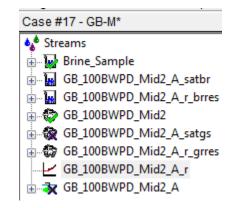
Settings - One water, one oil, seven conditions, seven solids

Studio ScaleChem Screen – Scale Scenario

Settings - One water, one oil, seven conditions, seven solids

Notes – Plots will be different because we are no longer showing mg/l

ScaleChen	n Std					
Pressure	BASO4 mg/l	CACO3 mg/l	CACO3 pST	BASO4 pST	рН	H2O (org), molfx
15	24	504	32	5	7.3	4.65E-04
170	20	358	7	4	6.7	1.01E-03
3015	20	192	2	4	6.5	9.93E-04
5530	20	143	2	4	6.5	1.03E-03
6500	16	244	3	2	6.4	2.02E-03
8000	3		0.3	2	5.4	
11000	8	327	5	1	6.2	3.42E-03
StudioSC						
15	23	503	32	5	7.3	4.65E-04
170	20	358	7	4	6.7	1.01E-03
3015	20	194	2	4	6.5	9.93E-04
5530	20	145	2	4	6.5	1.03E-03
6500	16	246	3	2	6.4	2.02E-03
8000	3		0.3	2	5.5	
11000	8	327	5	1	6.2	3.42E-03
Rel Differe	ence					
15	0.2%	0.2%	-0.3%	0.2%	0.0%	0.1%
170	0.0%	-0.1%	-0.3%	-0.3%	0.0%	-0.1%
3015	0.0%	-0.9%	-1.4%	0.1%	0.0%	0.0%
5530	0.0%	-1.5%	-1.4%	0.1%	0.0%	-0.2%
6500	0.0%	-0.5%	-1.3%	0.1%	0.0%	0.2%
8000	-10.9%		-26.8%	-21.6%	-0.9%	
11000	0.1%	-0.2%	-0.9%	0.0%	0.0%	0.1%


Case #17 – GB-M-

This file contains one brine, one gas, one saturate, one scale object and two optional brines and gases. The brines contains several of the expanded elements, Pb, Zn, Ni, Cu, and Fe(III). It also contains the anions, nitrate, fluoride, nitrite, and sulfite. Lastly, it contains dissolved silica. The saturation calculation did not converge to the same initial endpoint between the two software initially. The ScaleChem Std. software did not have 2nd Liquid on automatically because it had just been installed. Consequently, the gas phase was forced into the Aqueous phase. THe 2nd Liquid needed to be turned on manually, and the calculation worked as expected thereafter. This calculation also uses the Advanced button, in which CaCO3 is saturated by adding Na2CO3 We noticed that the Advanced button no longer included the alternative inflows for fluoride. This was reported to OLI.

The Saturation calculation failed in StudioSC. If CaF2 is removed from the saturation set, then the calculation converges. This was done in order to continue with the work. The water saturated gas did not converge in Studio SC. This appeared to be the result of importing a file that was saved in ScaleChem V2, since the T/P values in the water saturation appeared to be multiplied by the metric to English units conversion, even though the initial data was in English units. Once this was fixed, the calculation could be computed, although since the hydrocarbon was a dense phase, there was no water saturation to compute and the saturation option was converted to none.

There are two additional streams that are computed from the last scale calculation. They represent the reservoir gas and brine. These are transferred to Studio SC, but are not needed since the optional brine/gas/oil has been eliminated. The inputs to the Scale scenario in Studio SC were therefore changed to include the output of the saturation calculation.

🛔 ScaleChem - [Case #17 - GB-M.SCA]
🛔 <u>F</u> ile We <u>l</u> ls <u>A</u> nalyses <u>C</u> alculat	ions <u>T</u> ools
	🚡 💿 🐫
□ I ScaleChem Objects	
Brine_Sample	
GB_100BWPD_Mid2_A_satb	
GB_100BWPD_Mid2_A_satg	
GB_100BWPD_Mid2_A	
GB_100BWPD_Mid2_A_r	

ScaleChem Std Screen – Saturate

Settings – CaCO3, CaF2 sat,

1 276.000 7999.000	bottomhole	Add	
turation Study - GB_100BWPD_M	lid2_A		1
Description Components Conditio	ns Saturation Calculate Res	ulte	
Available solids:		Chosen solids: Solid [Inf	low to Vary]
NaCl (Halite)	*	CaCO3 (Calcite) [NA2C	
CaSO4.2H2O (Gypsum) CaSO4 (Anhydrite)		CaF2 (Fluorite) [automa	ticj
View Calculations			
	150.71		
Brine Flow:	150.74	bbl/day	
Scale Mineral	Maximum Scale	•	Scaling Te
	mg/L	lb/bbl	pre-scalir
NACL	0.0	0.0000	0.0833
CACO3	0.1	0.0000	1.0000
CASO4.2H2O	0.0	0.0000	0.0019
CASO4	0.0	0.0000	0.0053
SRSO4	0.0	0.0000	0.0033
BASO4	0.0	0.0000	0.8368
CAF2	0.0	0.0000	1.0000
KCL	0.0	0.0000	0.0004
MGOH2	0.0	0.0000	0.0007
SRC03	0.0	0.0000	0.0348
BACO3	0.0	0.0000	0.0003
NIOH2	0.0	0.0000	0.0004
ZNCO3	0.0	0.0000	0.0006
CUOH2	0.0	0.0000	0.0017
CUCO3	0.0	0.0000	0.0004
Saturation Results:			
Inflow Varied	Amount added	Final Value	
	mg/L	mg/L 344.45	
NA2CO3	89.041		

Studio ScaleChem Screen – Saturate Settings – The Saturated solids did not transfer

🏞 GB_100BWF	PD_Mid2_A								
🦪 Description	🎻 Description 😼 Design 📓 Report 🚘 File Viewer								
Solid Inlets	id Selection (check solids allowed to for Standard BaSO4 CaCO3 CaSO4 CaSO4 CaSO4.2H2O NaCl SrSO4 ⊕♥ All t Inflows To Vary								
	Solid	Inflow							
	CaCO3	Na2CO3							

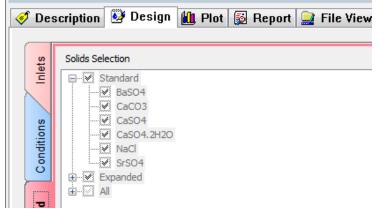
ScaleChem Std Screen – Scale Scenario

Settings - Six conditions, most solids, no special conditions

Scaling Sce	enario - GB_1	LOOBWPD_	Mi	d2_A_r				
Description	on Compone	ents Condit	tion	ns Precipitates C	alculate Results			
- Inpu	t							
	Ту	/pe		1	Name		Amoun	t
	Brine		•	GB_100BWPD_Mi		•		146.000
	Gas		•	GB_100BWPD_Mi		-	1	4130.000
Description	Components	Conditions	Pr	recipitates Calculate	Results			
<u>T</u> emperat	ure °F <u>F</u>	ressure	psi	ia Descriptio <u>n</u>				
	170.600	215	97	2 ambient conditi	ons	-	<u>U</u> nits	
Selected	Conditions 48.000	1799.	201	0 surface			Add	1
2	63.000	2060	873	3 riser base			Aaa	1
3	77.000 148.400	14.69 2091.		ambient condit 2 wellheadafterc			<u>R</u> emove	
5	217.100 276.000	5331. 7999.			choke		Auto Step	1
	Components			cipitates Calculate	Results		AURA STAR	
	precipitates:				Chosen precipitates:			– Solids Sele
BaSO4 (NaBr.2H	20				CaSO4 (Anhydrite) CaCO3 (Calcite)			C Stand
CaCl2.11 CaCl2.21				Add >>	CaBr2 CaCl2			Expan
CaCl2.4	H2O			Add >>	SrSO4 (Celestite) Cu(OH)2 (Spertinite)			
CaBr2.4	H2O			Add All >>	CaSO4.2H2O (Gypsu	m)		
CaBr2.6 SrCO3 (S	H2O Strontianite)			<< Remove	NaCl (Halite) Mg(OH)2 (Pyrochroite)	:)		
	Witherite)				Ni(OH)2 (Theophrasti KBr	te)		
ZnČl2.H	2Ò Í			<< Remove All	KCI (Sylvite)			
ZnCl2.3 ZnBr2.2	H2O				NaBr ZnBr2			
CuCO3 ((Malachite)				ZnCO3 (Smithsonite) ZnCl2			

Studio ScaleChem Screen – Scale Scenario

Settings – The scaling solids did not transfer

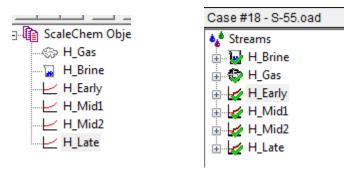

GB_100BWPD_Mid2_A_r

< Description 🔮 Design 🛍 Plot 👼 Report 🚘 File Viewer

	_			
0		Туре	Name	Flow
nlet		Brine (bbl/day)	GB_100BWPD_Mid2_A	146.000
=		Gas (Mft3/day)	GB_100BWPD_Mid2_A	14130.0

w		Location	Temperature (°F)	Pressure (psia)	Drop Solids
Inlets	Г	surface	48.0000	1799.89	
=		riser base	63.0000	2060.87	
		ambient conditions	77.0000	14.6961	
Suc		wellheadafterchoke	148.400	2091.87	
Ē	Г	wellheadbforechoke	217.100	5331.67	
onditions		bottomhole	276.000	7999.51	

GB_100BWPD_Mid2_A_r


ScaleChem	Std						
Pressure	рН	CAF2-pST	CACO3-pST	BASO4-pST	CACO3 mg/l	BASO4 mg/l	CAF2 mg/l
1799.89	5.5	22.3	0.1	3.4	0.0	13.9	6.9
2060.87	5.6	15.3	0.1	3.2	0.0	13.3	6.5
14.696	6.7	83.2	15.6	5.6	133.4	25.3	12.1
2091.87	5.6	11.0	0.1	3.0	0.0	13.0	6.1
5331.67	5.6	3.9	0.2	2.1	0.0	9.9	4.3
7999.51	5.8	1.0	1.0	0.8	0.0	0.0	0.0
StudioSC			·	·	·		
Locations	pH - Aq	CaF2 Pre-ST	CaCO3 Pre-ST	BaSO4 Pre-ST	CACO3 mg/l	BaSO4 - Sol	CAF2 mg/l
1799.89	5.8	27.1	0.2	3.6		14.9	
2060.87	5.8	18.0	0.2	3.4		14.4	
14.696	5.8	16.9	0.2	2.9		13.2	
2091.87	5.8	12.7	0.2	3.2		14.1	
5331.67	5.8	4.3	0.2	2.2		10.8	
7999.51	5.8	1.0	1.0	0.8		0.0	
Relative Di	fference			·			
1		22%	78%	5%		8%	
2		18%	61%	6%		8%	
3		80%	98%	49%		48%	
4		15%	42%	7%		8%	
5		12%	39%	5%		9%	
6		0%	0%	1%			

Case #18 - S-55

This file contains two brines, one gas and four scale scenario. This is a straightforward case, and was selected for review because the brine contained high concentrations of organic acids and silica and the gas contained all the hydrocarbons plus ammonia. The scale scenarios are for different well phases, from early life to late life. No solids were selected in the scale calculations.

The ScaleChem Std default had second liquid off. This created an initial difference in the results between the two software. The 2nd liquid was turned on, and these are the results that are presented below.

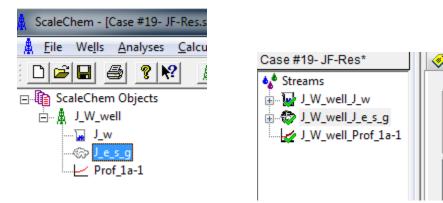
The scale tendency results are consistent between the two software, with the exception of one scenario, Mid2, which shows significant difference for FeCO3 and CaSO4. However, these solid phases are well below saturation, so this difference is due to the difference of small numbers, and it does not affect overall decisions about scaling.

Brine Analyses (two) Brine Analysis Data - H_Brine

escription Species Su	immary					
Analysis View • Original C Balance	d C	Reconci		ecies Display — Formula C		cies List Standard O Expanded •
Cations	mq	/L	A	nions	mg/L	Neutrals
Na+1	382	48.300	CI-1		65936.100	SiO2, ag
Ca+2	29	43.550	SO4-2		10.454	
Mg+2	5	11.741	HC03-1		196.752	
Sr+2	2	53.902	CH02-1		36.000	
Ba+2	2	54.647	C2H3O2-	1	264.000	
Fe+2		9,743	C3H5O2-	1	143.000	
			C4H7O2-	1	23.000	
			C5H9O2-	1	15.000	
Variable		ι	Inits	Measured	Calculated	Reconciliation Type
Ambient Temperature		°F		77.000	77.000	Equilibrium Calculation
Ambient Pressure		psia		14.696	14.696	Update Brine with results
pН		pH unit	s	0.000	7.006	, opene bine marroodae
Alkalinity		as HCO	3-, mg/L	0.000	327.105	
Density		g/cc		0.000	1.071	Units
Total Dissolved Solids		mg/L		108846.189	108846.189	
Electrical Conductivity		1/ohm-	cm	0.000	0.139	-

H_Br			
🎺 Desi	cription 🔮 Design 溪	Report	
	Variable	Value	Balanced
Entry	Cations (Dalanceu
- ū		38248.3	38440.3
Data	Ca+2	2943.55	2943.55
	□ Mg+2	511.741	511.741
	Fe+2	9.74276	9.74276
	Ba+2	254.647	254.647
<u>S</u>	□ Sr+2	253.902	253.902
Reconcile			
r a l	Anions (I	mg/L)	
	CI-1	65936.1	65936.1
	□ S04-2	10.4539	10.4539
	□ HCO3-1	196.752	196.752
	CH02-1	36.0000	36.0000
	C2H3O2-1	264.000	264.000
	C3H5O2-1	143.000	143.000
	C4H7O2-1	23.0000	23.0000
	C5H9O2-1	15.0000	15.0000
	Neutrals (
	SiO2	27.0000	

Reconcile Data Entry		Reconciliation Options Reconciliation Type Equilibrium Calculation CO2 Fraction in Gas pH Alkalinity Reconcile Allow solids to form	Ca	cylate 🥥
COL	Г	Properties	Measured	Calculated
Re	Г	Temperature (°F)	77.0000	
		Pressure (psia)	14.6960	
		pH - Aqueous	0.0	7.00641
		Alkalinity, Measured - Aqueous (mg HCO3/L)	0.0	319.004
	Г	Density - Aqueous (g/ml)	0.0	1.07139
	Г	Elec Cond, specific - Aqueous (mho/m)	0.0	13.8537
		Total Dissolved Solids (mg/L)	0.0	0.0
		Composition Ac	ljustments	
		Add Charge Balance (mg/L Na+1)		191.979


	Early	– Scale Te	ndencies			Mid1	L – Scale T	endencies			Mid2	-Scale Ter	ndencies			Late-	Scale Tend	dencies		
Pressure	рН	BASO4	CACO3	CASO4	FEIICO3	рН	BASO4	CACO3	CASO4	FEIICO3	рН	BASO4	CACO3	CASO4	FEIICO3	рН	BASO4	CACO3	CASO4	FEIICO3
1800	5.9	7.6	4.6	0.002	0.9	5.3	11.2	0.1	0.003	0.03	5.1	15.2	0.0	0.002	0.00	5.0	17.2	0.0	0.001	0.00
2145	5.8	6.9	5.9	0.002	1.4	5.4	9.8	0.2	0.003	0.04	5.1	13.5	0.0	0.002	0.01	5.1	13.4	0.0	0.002	0.01
3030	5.8	5.8	8.8	0.003	2.4	5.4	7.6	0.2	0.004	0.07	5.2	10.9	0.1	0.003	0.02	5.3	7.1	0.1	0.004	0.04
3825	5.8	5.4	9.1	0.003	2.6	5.4	6.7	0.2	0.004	0.07	5.2	7.5	0.1	0.004	0.03	5.3	5.2	0.2	0.005	0.06
7500	5.4	4.8	57.0	0.012	12.1	5.5	3.7	1.0	0.006	0.25	5.4	3.7	0.5	0.007	0.14	5.4	3.7	0.5	0.007	0.15
Locations	pН	BASO4	CACO3	CASO4	FEIICO3	PH	BASO4	CACO3	CASO4	FEIICO3	рН	BASO4	CACO3	CASO4	FEIICO3	рН	BASO4	CACO3	CASO4	FEIICO3
1	6.2	7.6	4.7	0.002	0.9	5.3	11.2	0.1	0.003	0.03	5.1	15.2	0.0	0.002	0.00	5.0	17.2	0.0	0.001	0.00
2	6.2	6.9	6.1	0.002	1.4	5.4	9.8	0.2	0.003	0.04	5.1	13.5	0.0	0.002	0.01	5.1	13.4	0.0	0.002	0.01
3	6.2	5.7	9.1	0.003	2.5	5.4	7.6	0.2	0.004	0.07	5.2	10.9	0.1	0.003	0.02	5.3	7.1	0.1	0.004	0.04
4	6.2	5.4	9.4	0.003	2.7	5.4	6.7	0.3	0.004	0.07	5.2	7.5	0.1	0.003	0.03	5.3	5.2	0.2	0.005	0.06
5	6.2	4.9	59.7	0.012	12.5	5.5	3.7	1.0	0.006	0.25	5.4	3.7	0.5	0.007	0.14	5.4	3.7	0.5	0.007	0.15
	5%	1%	3%	1%	3%	0%	0%	2%	0%	1%	0%	0%	1%	63%	183%	0%	0%	0%	0%	6%
	6%	1%	4%	1%	3%	0%	0%	2%	0%	1%	0%	0%	1%	71%	252%	0%	0%	1%	0%	2%
	7%	1%	4%	1%	3%	0%	0%	2%	0%	2%	0%	0%	1%	81%	429%	0%	0%	0%	0%	0%
	8%	1%	4%	1%	3%	0%	0%	2%	0%	0%	0%	0%	1%	88%	755%	0%	0%	0%	0%	1%
	15%	2%	5%	2%	3%	0%	0%	2%	0%	1%	0%	0%	1%	95%	1928%	0%	0%	0%	0%	0%

.

Case #19 – JF-Res

This file contains One brine, two gases, and two scale scenarios. The Brine analyses are similar, with no difference in the amount of HCI/CO2 required to set the pH and Alkalinity. The gas analysis however differs. The H2O saturation is not automatically included in SCStd. As a result, the H2O saturation sent to the scale scenario is 0.528. By comparison, the H2O in the StudioSC is 0.53. This is a small value but it is a reflection of the different way that the two software handles the saturated water calculation – one is manual adjustment and one is automatic.

There is significant difference in the scaling results between the two software. This is the most severe of the cases observed. It appears to be due to calculations in water volume. StudioSC computes a water volume that is between 4 and 100 times larger than ScaleChem STd. This data is presented in the table below.

ScaleChem Std Screen – Brine Analysis

Settings – Expanded, Na/Cl, pH&Alk

Saturated

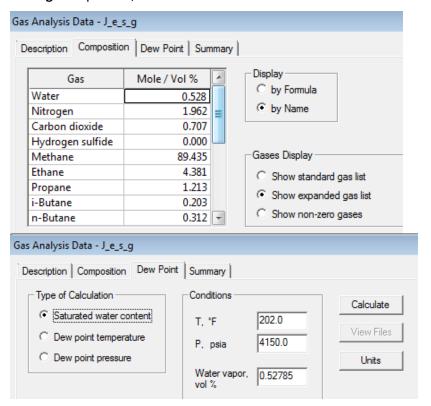
Notes

Brine Ana	alysis Data - J	_w							
Descript	ion Species	Sur	mmary						
	ysis View Driginal C E	Balanced	d 🖲 Reconcil		Species D Formul				cies List Standard C Expanded
	Cations		mg/L		Anions		mg/L		Neutrals
Na+1			59604.380	CI-1			131972.4	00	
K+1			1379.983	SO4-2			409.9	995	
Ca+2			17599.790	HCO3-	1		190.2	244	
Mg+	2		2499.970						
Sr+2			733.991						
Ba+2			3.800						
Fe+2			142.998						
H+1			0.273						
, 	Variable		Un		Measu	red	Calculated		Reconciliation Type
Anala			°F	its		7.000	77.000		pH and Alkalinity
	ient Tempera ient Pressure		psia			1.696	14.696		
pH	ient Pressure		psia pH units			5.000	6.000		Update Brine with result
Alka	inity		as HCO3	ma/l	-	9.000	128.984	E	
Dens			g/cc	, mg/ L		.140	1.145	-	Units
	Dissolved So	olids	mg/L		214537		214537.824		
'ariabl	e	Sca	leChem St	ď		St	udio Scal	еC	hem
H	-	6.0				6			
lk		128	3			12	8.7		
ensity	/	1.14	45			1.1	145		
alance	e ion	Na-	F			Na	9+		

705 Balance Value 705

CaCO3, BaSO4, SrSO4

CaCO3, BaSO4, SrSO4

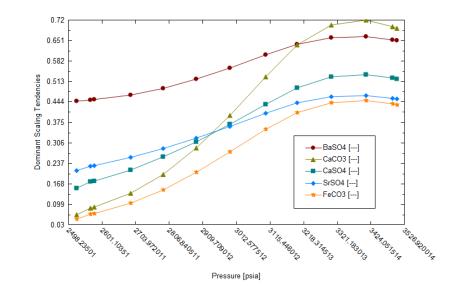

Studio ScaleChem Screen – Brine Analysis

Settings – Expanded, Makeup (Na+), pH&Alk

	1						Π	Summary
ŀ	Variable	Value	Balanced	Entry Opt				Cation: Na+1
ŀ		ons (mg/L)	50005 4	Units	mg/L	•		
ł	Na+1	58900.0 1380.00	59605.1 1380.00	Display	Formula			Cation Charge: 3.70322 eq/ Anion Charge: -3.73389 eg/
ŀ	Ca+2	17600.0	17600.0					Imbalance: -0.0306699 eq/L
ŀ	□ Mg+2	2500.00	2500.00	Show	Non-zero On	ly		
	Sr+2	734.000	734.000	Show	Balanced Col	umn		705.101 mg/L of Na+1
	Ba+2	3.80000	3.80000					is needed to balance.
lŀ	Fe+2	143.000	143.000	- Template I	Manager			Alkalinity Calculation
II				Last Appl	ied: None			Phase Amounts
II	Anio	ons (mg/L)		Expande	d	_		Aqueous 1145.10 g
	CI-1	1.32000e	1.32000e	Expande	iu ii	_		Vapor 0.0 g
	C S04-2	410.000	410.000	S	ave as			Solid 0.0 g 2nd Liquid 0.0 g
	- HC03-1	129.000	129.000					211a Liquia 0.0 g
				Balance O	ptions		>	Aqueous Phase Properties
	Neuti	rals (mg/L)		Type	Makeup Ion	• • •		pH 6.00000
								lonic Strength 0.0731344 m
	Reconciliation Options							Cation: Na+1
	Reconciliation Type 🔘	CO2 Fraction in pH Alkalinity Re	n Gas		Calc	ulate 🥥		Cation: Na+1 Cation Charge: 3.7032 Anion Charge: -3.7338
	Reconciliation Type O O O Allow solids	CO2 Fraction in pH Alkalinity Re	n Gas	Mea	Calc <u>i</u> sured	ulate 🕢		Cation: Na+1 Cation Charge: 3.7032 Anion Charge: -3.7338 Imbalance: -0.0306699 705.101 mg/L of Na+1
F	Reconciliation Type O O O Allow solids	CO2 Fraction in pH Alkalinity Re to form	n Gas	Mea				Summary Cation: Na+1 Cation Charge: 3,7032 Anion Charge: -3,7338 Imbalance: -0.0306699 705.101 mg/L of Na+1 is needed to balance.
F	Reconciliation Type () () () () Allow solids () Pro	CO2 Fraction in pH Alkalinity Re to form	n Gas	Mea	sured			Summary Cation: Na+1 Cation Charge: 3.7032 Anion Charge: -3.7338 Imbalance: -0.0306699 705.101 mg/L of Na+1 is needed to balance. Alkalinity Calculation Phase Amounts Aqueous 1145.10 g
F	Reconciliation Type () () () () () () () () () () () () () (CO2 Fraction in pH Alkalinity Re to form	n Gas	Mea	sured 77.0000			Summary Cation: Na+1 Cation Charge: 3.7032 Anion Charge: -3.7338 Imbalance: -0.0306699 705.101 mg/L of Na+1 is needed to balance. Alkalinity Calculation Phase Amounts Aqueous 1145.10 g Vapor 0.0 g
F	Reconditation Type () () () () () () () () () () () () () (CO2 Fraction in pH Alkalinity Re to form perties	n Gas econcile	Mea	sured 77.0000 14.6960	Calculated		Summary Cation: Na+1 Cation Charge: 3.703 Anion Charge: -3.733 Imbalance: -0.0306699 705.101 mg/L of Na+1 is needed to balance. Alkalinity Calculation Phase Amounts Aqueous 1145.10 g Vapor 0.0 g Solid 0.0 g
F T P	Reconciliation Type Allow solids Pro Temperature (*F) Pressure (psia) H - Aqueous	CO2 Fraction in pH Alkalinity Re to form perties	n Gas econcile	Mea	sured 77.0000 14.6960 6.00000	Calculated		Summary Cation: Na+1 Cation Charge: 3.7032 Anion Charge: -3.7333 Imbalance: -0.0306695 705.101 mg/L of Na+1 is needed to balance. Alkalinity Calculation Phase Amounts Aqueous 1145.10 g Vapor 0.0 g
F T P A	Reconciliation Type Allow solids Pro Prossure (rF) Pressure (psia) Altalinity, Measured - A Altalinity, Measured - A	CO2 Fraction in pH Alkalinity Re to form perties queous (mg HC	n Gas econcile	Mea	sured 77.0000 14.6960 6.00000 129.000	Calculated		Summary Cation: Na+1 Cation Charge: 3.703 Anion Charge: -3.7338 Imbalance: -0.0306699 705.101 mg/L of Na+1 is needed to balance. Alkalinity Calculation Phase Amounts Aqueous 1145.10 g Vapor 0.0 g Solid 0.0 g 2nd Liquid 0.0 g
F P A A	Reconciliation Type () () () () () () () () () () () () () (CO2 Fraction in pH Alkalinity Re to form perties queous (mg HC m3)	n Gas econcile 203/L)	Mea	sured 77.0000 14.6960 6.00000 129.000 4.50000	Calculated 6.00000 128.787		Summary Cation: Na+1 Cation Charge: 3.703 Anion Charge: -3.733 Imbalance: -0.0306699 705.101 mg/L of Na+1 is needed to balance. Alkalinity Calculation Phase Amounts Aqueous 1145.10 g Vapor 0.0 g Solid 0.0 g
F T P A A D E	Reconciliation Type Reconciliation Type	CO2 Fraction in pH Alkalinity Re to form perties queous (mg HC m3) queous (mho/m)	n Gas econcile 203/L)	Mea	sured 77.0000 14.6960 6.00000 129.000 4.50000 1.14000	Calculated 6.00000 128.787 1.14510		Summary Cation: Na+1 Cation Charge: 3.703 Anion Charge: -3.733 Imbalance: -0.0306695 705.101 mg/L of Na+1 is needed to balance. Alkalinity Calculation Phase Amounts Aqueous 1145.10 g Vapor 0.0 g Solid 0.0 g 2nd Liquid 0.0 g Aqueous Phase Properties pH 6.00000 Ionic Strength 0.07313
F T P A D E	Reconciliation Type Reconciliation Type	CO2 Fraction in pH Alkalinity Re to form perties queous (mg HC m3) queous (mho/m) mg/L)	n Gas econcile 203/L)		sured 77.0000 14.6960 6.00000 129.000 4.50000 1.14000 4.80000 0.0	Calculated 6.00000 128.787 1.14510 20.5989		Summary Cation: Na+1 Cation Charge: 3.703 Anion Charge: -3.733 Imbalance: -0.0306695 705.101 mg/L of Na+1 is needed to balance. Alkalinity Calculation Phase Amounts Aqueous 1145.10 g Vapor 0.0 g Solid 0.0 g 2nd Liquid 0.0 g Aqueous Phase Properties pH 6.00000 Ionic Strength 0.07313
F P A D E T	Reconciliation Type Reconciliation Type	CO2 Fraction in pH Alkalinity Re to form perties queous (mg HC m3) queous (mho/m) mg/L) Comp	n Gas econcile :03/L)		sured 77.0000 14.6960 6.00000 129.000 4.50000 1.14000 4.80000 0.0	Calculated 6.00000 128.787 1.14510 20.5989		Summary Cation: Na+1 Cation Charge: 3,703 Anion Charge: -3,733 Imbalance: -0.0306699 705.101 mg/L of Na+1 is needed to balance. Alkalinity Calculation Phase Amounts Aqueous 1145.10 g Vapor 0.0 g Solid 0.0 g 2nd Liquid 0.0 g Aqueous Phase Properties pH 6,00000 lonic Strength 0.07313 Density 1.14510 g/cm
F P A D E T	Reconciliation Type Reconciliation Type	CO2 Fraction in pH Alkalinity Re to form perties queous (mg HC m3) queous (mho/m) mg/L) Comp L)	n Gas econcile :03/L)		sured 77.0000 14.6960 6.00000 129.000 4.50000 1.14000 4.80000 0.0	Calculated 6.00000 128.787 1.14510 20.5989 2.14505e5		Summary Cation: Na+1 Cation Charge: 3.703 Anion Charge: -3.733 Imbalance: -0.0306695 705.101 mg/L of Na+1 is needed to balance. Alkalinity Calculation Phase Amounts Aqueous 1145.10 g Vapor 0.0 g Solid 0.0 g 2nd Liquid 0.0 g Aqueous Phase Properties pH 6.00000 Ionic Strength 0.07313

Notes – The results are the same. Nothing new observed

ScaleChem Std Screen – Gas Analysis Settings – Expanded, H2O Sat On


Studio ScaleChem Screen – Gas Analysis

Settings – Expanded gas, H2O sat on for both

⁾ Desc	ription 🥺 Design	🥸 Defini	ition <u> </u> Rep	port
<u>ه</u> [Component	Normalize	Reconciled G	Calculate 🥝
Inflows	H2O	0.527852	0.530660	
트	N2	1.96241	1.96236	Condition
	CO2	0.707183	0.707027	Saturate With H2O 🔻
<u>e</u>	CH4	89.4354	89.4329	Conditions Value
Reconcile	C2H6	4.38132	4.38125	Temperature (°F) 202.000
O O	C3H8	1.21341	1.21339	Pressure (psia) 4150.00
Ř	C4H10	0.202901	0.202900	
	C4H10	0.312311	0.312309	
	C5H12	0.118361	0.118360	
	C5H12	0.108410	0.108410	Show Non-zero Only
	C6H14	0.133281	0.133280	
	C7H16	0.253631	0.253630	
	C8H18	0.172071	0.172070	Colored USO Assesses
	C9H20	0.0865324	0.0865319	Saturated H2O Amount: 0.530660 mole 9
	C10H22	0.384922	0.384920	0.530660 mole %

Notes –. Results are the same

ScaleChem	Std								
Pressure	KgMoles (Aq)	Water Vol (bbl/day)	рН	BASO4	CACO3	CASO4	FEIICO3	NACL	SRSO4
3503	119	13	5.2	0.65	0.68	0.52	0.432	0.085	0.45
3490	119	13	5.2	0.65	0.69	0.52	0.435	0.086	0.45
3409	117	13	5.3	0.66	0.71	0.53	0.446	0.089	0.46
3302	118	13	5.3	0.65	0.70	0.52	0.439	0.088	0.46
3198	122	14	5.2	0.63	0.63	0.49	0.405	0.08	0.44
3102	130	15	5.2	0.60	0.52	0.43	0.346	0.069	0.40
2992	142	16	5.2	0.55	0.38	0.36	0.268	0.055	0.36
2890	155	17	5.2	0.51	0.28	0.302	0.199	0.044	0.32
2789	172	19	5.1	0.48	0.19	0.25	0.141	0.035	0.28
2688	189	21	5.1	0.45	0.13	0.208	0.097	0.028	0.25
2577	210	24	5.0	0.44	0.08	0.171	0.064	0.022	0.22
2566	212	24	5.0	0.44	0.08	0.168	0.061	0.022	0.22
2523	226	26	5.0	0.43	0.06	0.147	0.045	0.019	0.20
Studio SC	0								
Pressure	KgMoles (Aq)	Water Vol (bbl/day)	рН	BASO4	CACO3	CASO4	FEIICO3	NACL	SRSO4
3503	513	60	4.8	0.13	0.020	0.086	0.016	3.22E-03	0.08

3490	481	56	4.8	0.14	0.024	0.092	0.018	3.64E-03	0.09
3409	383	45	4.9	0.18	0.041	0.119	0.031	5.66E-03	0.11
3302	425	50	4.9	0.16	0.032	0.105	0.024	4.63E-03	0.10
3198	887	103	4.6	0.08	0.006	0.044	0.005	1.16E-03	0.04
3102	2674	311	4.4	0.02	0.001	0.011	0.001	1.55E-04	0.012
2992	5907	687	4.2	0.010	0.000	0.004	0.000	3.66E-05	0.005
2890	9533	1106	4.2	0.006	0.000	0.002	0.000	1.52E-05	0.003
2789	13633	1580	4.2	0.004	0.0001	0.0012	0.0001	7.86E-06	0.002
2688	17990	2081	4.2	0.003	0.0001	0.0007	0.0001	4.69E-06	0.001
2577	22817	2633	4.2	0.002	0.0000	0.0005	0.0000	3.01E-06	0.001
2566	23278	2686	4.2	0.002	0.0000	0.0004	0.0000	2.90E-06	0.001
2523	26665	3072	4.1	0.002	0.0000	0.0003	0.0000	2.24E-06	0.001
Difference									
3503	330%	347%	9%	80%	97%	83%	96%	96%	82%
3490	305%	320%	8%	78%	97%	82%	96%	96%	81%
3409	227%	240%	7%	73%	94%	78%	93%	94%	76%
3302	260%	274%	7%	75%	95%	80%	94%	95%	78%
3198	626%	654%	12%	88%	99%	91%	99%	99%	90%
3102	1961%	2037%	17%	96%	100%	97%	100%	100%	97%
2992	4072%	4214%	18%	98%	100%	99%	100%	100%	99%
2890	6037%	6229%	19%	99%	100%	99%	100%	100%	99%
2789	7849%	8076%	18%	99%	100%	100%	100%	100%	99%
2688	9400%	9648%	18%	99%	100%	100%	100%	100%	100%
2577	10778%	11037%	17%	100%	100%	100%	100%	100%	100%
2566	10894%	11154%	17%	100%	100%	100%	100%	100%	100%
2523	11680%	11941%	17%	100%	100%	100%	100%	100%	100%

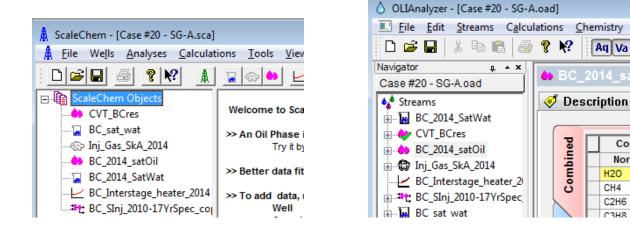
Case #20 - SG-A

This file contains two brines, one gas, two oils, one scale tendency, and one facility. The scale scenario and Facilities results were similar with one exception. The StudioSC Facilities dropped the solids from block 1 to 2, which was not the case in the ScaleChem STd object. However, if you look at the ScaleChem Std facility, you will notice that the user selected drop solids for the Oil phase and not for the water.

When the Solids removal button is deselected in StudioSC, then the results are sill different. It appears that this facility object in StudioSC continues to remove the solid phase. However, the results do not indicate that the solids were removed in any way. This has been submitted to OLI.

Aq Va

Com


Norm

H20

CH4

C2H6

C3H8

The brines and gas analyses are similar between ScaleChem Std and Studio SC. Their results are not presented.

ScaleChem Std Screen – Oil Analysis

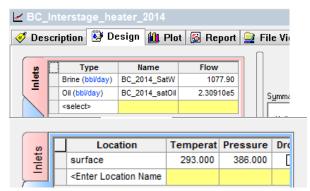
Settings – Pure/Pseudo Comp, Water saturation, density not set

 ✓ Hyd ✓ Inor ✓ Ass 	elected Components Irocarbons (C1-C40) ganics ay and Pseudo Components	Display ○ by <u>F</u> omula ⓒ by <u>N</u> ame
Sho	w non-zero values only Component	Mole %
3	Propane	4.216
4	i-Butane	0.667
5	n-Butane	1.797
6	i-Pentane	0.657
7	n-Pentane	0.920
8	Water	0.047
9	Nitrogen	0.307
10	Carbon dioxide	1.816 =
11	C6	1.309
12	C7	2.440
13	C8	2.947
14	C9	0.855
15	C1015	21.098
16	C1620	0.000
17	C2127	0.000
18	C2837	0.000 🚽
cription	Caravity 1.000 Hydrocarbons Reconcilations H20 with H20, at Conditions	Total Mole % 100.000 Saturation Summary Enter conditions, an optional output name, and press Calculate.

Studio ScaleChem Screen – Oil Analysis

Settings – Pure/Pseudo Comp., no Water Sat

	ription	w Desig	n 🛃 D	enniaon 🔅	Repor	t	
" Г	Cor	nponent	Value	Normalized	Entry	Options	
		malized Inf			Units	mole %	•
ŀ	H2O		0.0466	0.0466459			
ŀ	CH4		54.242	54.2418	Displa	y Formula	-
ŀ	C2H6		6.6835	6.68348	V Sł	iow Non-zero Only	
	C3H8		4.2162	4.21619			
	C4H10		0.6667	0.666728	SP SP	ow Normalized Colur	nn
	C4H10		1.7965	1.79649	Trend		
	C5H12		0.6566	0.656638		ate Manager	
	C5H12		0.9199	0.919907	Last	Applied: None	_
	N2		0.3066	0.306639	AJ-P	c •	·
	CO2		1.8156	1.81559		C	Γ.
						Save as	
		lized Pseud		ents: 28.65 (m	Norma	lize Options	
	C1015		21.098	21.0979			
	C6		1.3093	1.30930	Туре	Prorate	•
	C7 C8		2.4400	2.43999			
	C9		0.8553	0.855347	-		
		Compone	nt	Value	Entry	Options	
				21.0980	Units	mole %	-
				0.0			
i				0.0	Displa	y Formula	•
	± C283			0.0	Sh	ow Non-zero Only	
	E C388			0.0		,	
i		-		1.30930			
	E C7			2.44000			
1	E C8			2.94730			
ï	E C9			0.855350			
		rmo Method		API-5			
ï		mal Boiling Po	int (°F)	32.0000			
	- Spe	cific Gravity					
				0.785000			
L	- Mol	ecular Weigh		0.785000			
	BCres				_		
	BCres	ecular Weight	in 🛐 A	118.100 Report			
	BCres cription	ecular Weight	jn <u> </u> F	118.100 Report		Calcul	atej 🙆
	BCres	ecular Weight	In 🛐 A	118.100 Report alize Recond 1.35 (mole %)			atej 🕢
	BCres cription	ecular Weight	jn <u> </u> F	118.100 Report alize Recond 1.35 (mole %)	69056	Condition	
	BCres	ecular Weight	In S F	118.100 teport alize Recond 1.35 (mole %) 6459 0.04	69056		ate
	BCres cription CCC H2O CH4	ecular Weight	In S F	118.100 teport alize Recond 1.35 (mole %) 6459 0.04 2418 0.3	69056 60491	Condition Saturate With	H2O
	BCres cription Cription Cription Cription	ecular Weight	In S F Norm Inflows: 7 0.046 54. 6.6	118.100 alize Recond 1.35 (mole %) 6459 0.04 2418 0.3 8348 0.2	69056 60491 74622	Condition	H2O
	BCres cription CCC H2O CH4	ecular Weight	In S F Norm Inflows: 7 0.046 54. 6.6	118.100 alize Recond 1.35 (mole %) 6459 0.04 2418 0.3 8348 0.2 1619 0.6 0.6 0.6	69056 60491 74622 23575	Condition Saturate With	H2O Value
	BCres cription Cription Cription Cription	ecular Weight	In S F	118.100 alize Recond 1.35 (mole %) 6459 0.04 2418 0.3 8348 0.2 1619 0.6 0.6 0.6	69056 60491 74622	Condition Saturate With Conditions Temperature ('F	H2O Value
	BCres cription H20 CH4 C2H6 C3H8	ecular Weight	Norm Inflows: 7 0.046 54. 6.6 4.2 0.66	118.100 alize Recond 1.35 (mole %) 0.44 2418 0.32 8348 0.22 1619 0.66 6728 0.22	69056 60491 74622 23575	Condition Saturate With Conditions	H2O Value) 77.00
	BCres cription H20 CH4 C2H6 C3H8 C4H10 C4H10	ecular Weight	Norm Inflows: 7 0.046 54. 6.6 4.2 0.66 1.7	118.100 alize Recond 1.35 (mole %) 0.459 0.459 0.04 2418 0.3 8348 0.2 1619 0.6 6728 0.2 9649 0.8	69056 60491 74622 23575 30956 80203	Condition Saturate With Conditions Temperature ('F	H2O Value) 77.00
	BCres cription H20 CH4 C2H6 C3H8 C4H10 C4H10 C4H10 C5H12	ecular Weight	Norm Inflows: 7 0.046 54. 6.6 4.2 0.66 1.7 0.65	118.100 alize Recond 1.35 (mole %) 6459 6459 0.04 2418 0.3 8348 0.2 1619 0.6 66728 0.2 9649 0.8 6638 0.6	69056 60491 74622 23575 30956 80203 79571	Condition Saturate With Conditions Temperature ('F	H2O Value) 77.00
	BCres cription H20 CH4 C2H6 C3H8 C4H10 C4H10	ecular Weight	Norm Inflows: 7 0.046 54. 6.6 4.2 0.66 1.7 0.65	118.100 alize Recond 1.35 (mole %) 6459 6459 0.04 2418 0.3 8348 0.2 1619 0.6 66728 0.2 9649 0.8 6638 0.6	69056 60491 74622 23575 30956 80203 79571	Condition Saturate With Conditions Temperature ('F Pressure (psia)	H20 Value) 77.00 14.69
	BCres cription H20 CH4 C2H6 C3H8 C4H10 C4H10 C4H10 C5H12	ecular Weight	Norm Inflows: 7 0.046 54. 6.6 4.2 0.66 1.7 0.65 0.91	118.100 alize Recond 1.35 (mole %) 6459 6459 0.04 2418 0.3 8348 0.2 1619 0.6 6728 0.2 9649 0.8 6638 0.6 9907 1.	69056 60491 74622 23575 30956 80203 79571	Condition Saturate With Conditions Temperature ('F Pressure (psia)	H20 Value) 77.00 14.69
	BCres cription H20 CH4 C2H6 C3H8 C4H10 C4H10 C5H12 C5H12 N2	ecular Weight	Norm Inflows: 7 0.046 54. 6.6 4.2 0.66 4.2 0.66 0.66 0.65 0.91 0.30	118.100 alize Recond 1.35 (mole %) 6459 6459 0.04 2418 0.3 8348 0.2 1619 0.6 6728 0.2 9649 0.8 6638 0.6 9907 1. 6639 6.538	69056 60491 74622 23575 30956 80203 79571 16177 10e-4	Condition Saturate With Conditions Temperature ('F Pressure (psia)	H2O Value) 77.00 14.69
	BCres cription H20 CH4 C2H6 C3H8 C4H10 C4H10 C5H12 C5H12	ecular Weight	Norm Inflows: 7 0.046 54. 6.6 4.2 0.66 4.2 0.66 0.66 0.65 0.91 0.30	118.100 alize Recond 1.35 (mole %) 6459 6459 0.04 2418 0.3 8348 0.2 1619 0.6 6728 0.2 9649 0.8 6638 0.6 9907 1. 6639 6.538	69056 60491 74622 23575 30956 80203 79571 16177	Condition Saturate With Conditions Temperature ('F Pressure (psia)	H2O Value) 77.00 14.69
	BCres cription H20 CH4 C2H6 C3H8 C4H10 C4H10 C5H12 C5H12 N2	ecular Weight	Norm Inflows: 7 0.046 54. 6.6 4.2 0.66 4.2 0.66 0.66 0.65 0.91 0.30	118.100 alize Recond 1.35 (mole %) 6459 6459 0.04 2418 0.3 8348 0.2 1619 0.6 6728 0.2 9649 0.8 6638 0.6 9907 1. 6639 6.538	69056 60491 74622 23575 30956 80203 79571 16177 10e-4	Condition Saturate With Conditions Temperature ('F Pressure (psia)	H2O Value) 77.00 14.69
	BCres cription H20 CH4 C2H6 C3H8 C4H10 C4H10 C5H12 C5H12 C5H12 C5H12	ecular Weigh	Norm Inflows: 7 0.046 54. 6.6 4.2 0.66 1.7 0.65 0.91 0.30 0.31 8	118.100 alize Recond 1.35 (mole %) 6459 6459 0.04 2418 0.3 8348 0.2 1619 0.6 6728 0.2 9649 0.8 6638 0.6 9907 1. 6639 6.538	69056 60491 74622 23575 30956 80203 79571 16177 10e-4 83328	Condition Saturate With Conditions Temperature ('F Pressure (psia) Show Non-zero O Boiling Point Curve Add boiling	H2O Value) 77.00 14.69 nly point curve
	BCres cription H20 CH4 C2H6 C3H8 C4H10 C4H10 C5H12 C5H12 C5H12 N2 C02 C02 Norm	ecular Weigh	Norm Inflows: 7 0.046 54. 66.6 4.2 0.66 1.7 0.65 0.91 0.30 1.8 0.30 1.8	118.100 alize Recond 1.35 (mole %) 6459 0.04 2418 0.3 8348 0.2 1619 0.6 6728 0.2 9649 0.8 6638 0.6 9907 1. 6639 6.539 1559 0.05 0.05 0.05	69056 60491 74622 23575 30956 80203 79571 16177 10e-4 83328	Condition Saturate With Conditions Temperature ('F Pressure (psia)	H2O Value) 77.00 14.69 nly point curve unt:
	BCres cription H20 CH4 C2H6 C3H8 C4H10 C4H10 C5H12 C5H12 C5H12 C5H12	ecular Weigh	Norm Inflows: 7 0.046 54. 6.6 4.2 0.66 1.7 0.65 0.91 0.30 1.8 0.30 0.30 0.31 0.30 21.	118.100 alize Recond 1.35 (mole %) 6459 6459 0.04 2418 0.3 8348 0.2 1619 0.6 6638 0.6 9907 1.1 6639 6.539 1559 0.05 ments: 28.65 (tr)	69056 60491 74622 23575 30956 80203 79571 16177 10e-4 83328 mole	Condition Saturate With Conditions Temperature ('F Pressure (psia) Show Non-zero O Boiling Point Curve Add boiling	H2O Value) 77.00 14.69 nly point curve


Scale Scenario – BC-Interstage Heater

One brine, one gas, one condition, no precipitates,

Scenario - BC_Int	erstage_he	ater_2014	·		1.2.	Concession in the local division of the loca
iption Component	s Condition	ns Precipitates Calculate F	Results			
iput		1				
Тур	e	Name		Amount	Units	Add
Brine	-	BC_2014_SatWat	•	1077.900	bbl/day	
Oil	-	BC_2014_satOil	-	230910.000	bbl/day	Remove
	ption Component put Type Brine	ption Components Condition put Type Brine	put Type Name Brine VC_2014_SatWat	ption Components Conditions Precipitates Calculate Results put Type Name Brine V BC_2014_SatWat V	ption Components Conditions Precipitates Calculate Results put	ption Components Conditions Precipitates Calculate Results put

Scale Scenario - BC-Interstage Heater

One brine, one gas, one condition, no precipitates,

Notes – The results are the same there is little difference between the two cases

pH:	5.2	5.205	
Ionic Strength:	2.0487	0.0344	
Brine Density:	1.013	1.01275	g/cc
Oil Density:	0.197	0.197	g/cc
Brine Flow:	1077.9	1077.9	bbl/day
Gas Flow:	0	1077.5	kscf/day
Oil Flow:	2.31E+05	2.31E+05	bbl/day
OILLIOW.	2.511.05	2.511.05	Oil Mole
Components	Oil Mole %	Components	%
H2O	1.92052	H2O	[%] 1.92%
C2H6	6.10161	C2H6	6.10%
C3H8	3.15661	C3H8	3.16%
C3H8 C4H10	1.10239	C4H10	1.10%
C5H12	0.480691	C5H12	0.48%
C6H14	0.329681	C6H12	0.48%
C6H14 C6	0.254029	C6H14	0.33%
C6 C7	0.254029	C6 C7	0.25%
C7 C8		•	
C8 C9	0.571828 0.16596	C8 C9	0.57% 0.17%
		C9 CH4	
CH4	78.1562	••••	78.16%
CO2	2.336	CO2	2.34%
C1015	4.0934	C1015	4.09%
HCL	1.54E-08	HCL	0.00%
IPENTAN	0.357691	IPENTAN	0.36%
ISOBUTANE	0.440461	ISOBUTANE	4.40E-03
N2	5.96E-02	N2	0.06%
Scale Mineral	Maximum Scale		
			pre-
	pre-scaling		scaling
NACL	0.0211	NaCl	0.021139
CACO3	1.0002	CaCO3	0.999901
KCL	0.014	KCI	0.014019
MGOH2	0.0006	Mg(OH)2	5.98E-04
SRCO3	0.0965	SrCO3	0.097
BACO3	0.0036	BaCO3	3.64E-03

Facilities – BC_Sinj_2010-17yrSpec_Copy

Two nodes, one brine, and one gas

	Node Nam	ne	Description	T, *	°F P, bar	Ready	Add
	Node1		1	293.0	386.0	✓	
	Node2			293.0	386.0	~	Remove
							Units
2	e1 Inlets						
	et one or more	hri	nes, oils or gases as ing		via mada		
,	ct one of more	DII	ies, oils of gases as inj		lis node.		
	Туре		Name		Amount		Add
	Brine	•	BC_sat_wat	-	1701.000	bbl/day	Remove
	Gas	•	Inj_Gas_SkA_2014	-	169884.000	kscf/day	Nemove
	Oil	•	CVT_BCres	-	19418.000	bbl/day	Units
							More
1	2 Inlets						
0	ct one or more	brir	nes, oils or gases as in	put(s) to t	his node.		
Г			-			1	
	Туре		Name		Amount		Add
	Brine fro	•	Node1	-	Calculated	Carry soli 💌	Remove
	Oil from	•	Node1	-	Calculated	Drop solids	- Temove


Case	CACO3 mg/l	CACO3-pST	рН
1	280.781	8.54	5.205
2	280.781	8.54	5.205

Notes – the drop solids is turned on automatically in the Node 1. There is a drop solids in Oil from node, but this should not have affected the results. There are differences in the scale tendencies and scale mass.

Facilities – BC_Sinj_2010-17yrSpec_Copy

₽t BC_SInj_2010-17YrSpec_copy

🝼 Description 🔮 Design 🛍 Plot 👼 Report 🚘 File Viewer

Condit	Value			
Temperature (°F)	293.0			
Pressure (bar)	386.0			
Туре	Name	Flow		
Brine (bbl/day)	BC_sat_wat	1701.00		
Gas (Mft3/day)	Inj_Gas_SkA_2014	1.69884e5		
Oil (bbl/day)	CVT_BCres	19418.0		

C		Value			
Temperature (°F)	293.0				
Pressure (bar)		386.0			
Туре		Flow			
Brine from (bbl/day)	Node1		Calculated		
Oil from (bbl/day)	Node1		Calculated		
<select></select>					

NODE	CACO3 mg/l	CACO3-pST	рН
1	271.5	8.19	5.21
2		8.19	5.21

Case #22 – SW

This file contains a number of objects, and too many to discuss in detail. Instead, the saturation results will be presented in its own section (and table) and a select number of random facilities calculations will also be presented.

Saturation Objects - The saturating solids were not automatically selected in any of the eight saturation calculations. Also, several of the saturation calculations differed. The first saturation calculation differed significantly. This is the case in which gas, oil, brine were added. The remaining saturation calculations were brine only.

Facilities Objects – None of the facilities objects had solids selected. The solids selected in ScaleChem Std were not transferred during the importing step. Most of the calculations were similar. These calculations were either brine only and one was brine-oil. There were several calculations that different significantly between the software. These calculations contained brine, gas, and oil inflows. They also had low brine flow rates.

ScaleChem - [Case #22	
<u>Eile Wells A</u> nalyse	SW01_2001
🖃 👔 ScaleChem Objects	***: SW01_2007
	***: SW01_2008
SW01	
SW04	
	***: SW01_2012
🕁 SW04	**: SW01_2013
SW01_sat	**t: SW01_2014
SW01_sat	*** SW04_2003
SW04_sat	
SW04_sat	*** SW04_2005
SW04_sat_oil	
SW05_sat	
SW05_satPA	*t: SW05_2012
SW05_suu A	*t: SW05_2013
SW05_satPC	
SW05_satPC	#t: SW05_2015
The SW06_sat	
	#t SW06_2005
Two SW06_satb	#t: SW06_2009
SW06_sat	
SW05_satPA_oil	
SW05_satPC_oil	
SW07_sat_oil	
SW06	
SW06_sat_oil	
SW08_sat	
SW08_sat	
SW08_sat_oil	
#t: SW01_2007	
*t: SW01_2009	
*t: SW01_2010	바밙 SW08_2016
**: SW01_2011	
*t: SW01_2012	
#1 SW01_2013	SW01_sat_brine

Case #22 - SW*	
	Case #22 - SW*
	♦.♥ Streams
⊕	SW01_sat
	SW01_sat
	🖶 🚂 SW05
₩ # 1 SW01_2012	🖶 🚡 SW05_satPA
	🛓 🗄 SW06
⊕ #•t: SW01_2014	🗄 🚡 SW05_satPC
	🗄 🚡 SW07_sat
⊕	
	SW01_sat_brine
	5W01
⊕	SW041
	SW04 sat oil
⊕	SW05_satPA_oil
	1 T
	SW05_satPC_oil
	🛓 🤙 SW07_sat_oil
	🛓 🕁 SW061
	🗄 🤙 SW06_sat_oil
	🗄 🤲 SW08_sat_oil
∰ #મ દ્દ SW07_2006	🗄 🤙 SW01_sat_oil
	🖶 🎲 SW011
₩	SW04 sat gas
	SW01 sat1
⊕# ! ‡ SW08_2002	SW04_sat1
	🚽 🚡 SW05_sat
	SW05_satPC1
	SW06_sat1
	📥 SW07_sat1
	🛛 🚠 SW06_satb
	The SW08_sat1
	· · · · · · · · · · · · · · · · · · ·

Saturation calculation

There are eight saturation calculations. All inputs except for the saturating solids were converted properly. The results for the first saturation SW01, had significant difference because of hydrocarbon flow rate. This was forwarded to OLI for review. The remaining saturation calculations were similar.

Sat Object		Brine Vol	Oil Vol	Total Moles/hr	Na+1 (total)	Ca+2 (total)	HCO3-1	H2O in Oil	рН	CaCO3 added
SW01 sat	SC Std	54133	1.7e5	2.36e7	61682	17617	3.01	2.45	4.54	-292
	StudioSC	18887	1.57e7	9.40e8	176764	50888	n.r.	1.3	4.34	
SW04_sat	SC Std	1057		3.66e5	63181	18018	454.2		5.0	-366
	StudioSC	1057		3.66e5	63167	18021	463.6		5.0	
SW05_sat	SC Std	1054.8		3.66e5	58531	21457	641		4.82	-421
	StudioSC	1054.8		3.66e5	58660	21514	665.5		4.78	
SW06_sat	SC Std	1075.6		3.66e5	62084	17704	445		4.92	-362
	StudioSC	1075.7		3.66e5	62076	17849	454.4		4.8	
SW07_sat	SC Std	1093		3.66e5	61088	17420	437		4.87	-357
	StudioSC	1093.2		3.66e5	61077	17563	446.6		4.87	
SW08_sat	SC Std	1087		3.66e5	61431	17518	440		4.88	-357
	StudioSC	1087		3.66e5	61420	17661	450.2		4.87	

Facilities Calculation

There are fifty facility calculations in the ScaleChem file and the first fifteen facilities were computed. There was little difference for most of the facility objects. However, several of them produced significant differences;

- 1) Some of the ScaleChem Std facilities did not converge
- 2) Some of the ScaleChem Std facilities predicted NaCl solids.
- 3) Several of the downstream nodes in the same facility were missing the CaCO3 scale mass. This is similar to what was observed in Case #20.

Secondly, none of the scales selected for precipitation in the ScaleChem facilities objects were imported to the StudioSC objects. Therefore, users would need to check to be sure that these scales are selected before running the calculation.

ScaleChem Std Screen – Facilities

Facilities Scaling - SW01_2001

#	Node Name	Description	T, °C	P, psia	Ready	Add
1	Node1	Reservoir	180.0	14976	v	
2	Node2	Tubing Head	144.0	9106.0		Remov
3	Node3	Flowline	142.0	1305.0	·	Units
L						
						+

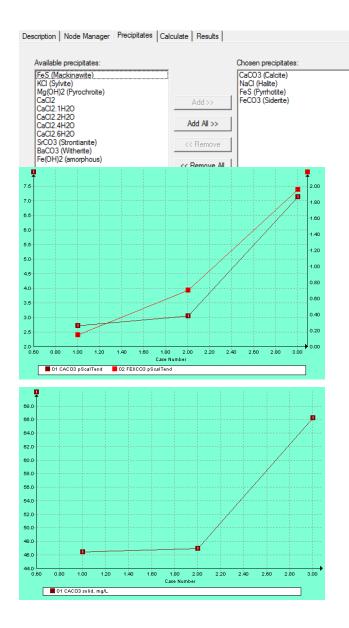
Γ	Туре		Name		Amount		Add	
	Brine	•	SW01_sat	-	5.000	bbl/day	Remove	I

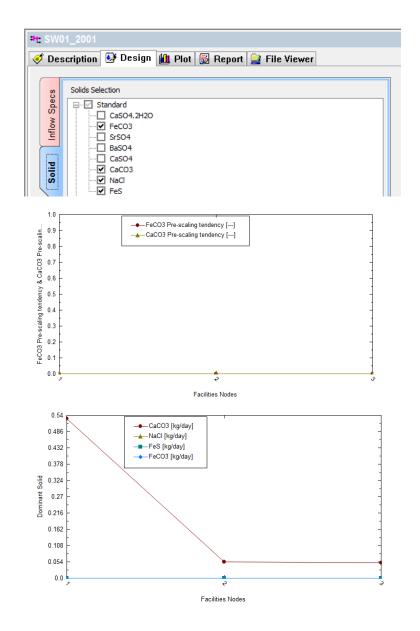
Node2 Inlets

Select one or more brines, oils or gases as input(s) to this node.

Γ	Туре		Name		Amount		Add
	Brine fro	•	Nodel	•	Calculated	Carry soli 💌	Remove
	Gas from	•	Nodel	•	Calculated	Carry solids	Remove
	Oil from	•	Node1	•	Calculated	Carry solids	Units
1							

Node3 Inlets


Select one or more brines, oils or gases as input(s) to this node.

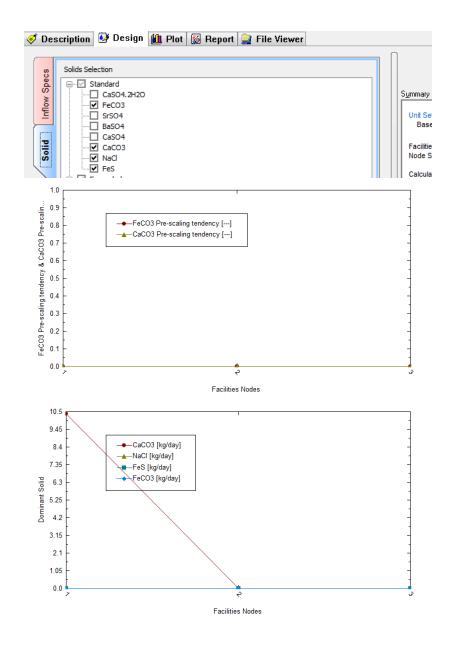

Туре	Name		Amount		Add
Brine fro	Node2	-	Calculated	Carry soli 💌	Remove
Gas from	Node2	-	Calculated	Carry solids	hemove
Oil from	Node2	-	Calculated	Carry solids	Units

Studio ScaleChem Screen – Facilities

ካቲ SW01_2001							
🎻 Description 📑 Desig	jn 📶 Plot 📓 Report 🕻	🔰 File Viewer					
Node	Node2	Node3					
Node Input Node Name Node 1 Add Node Remove Node		Separate Gas Separate Oil Drop Solids					
Cond	litions	Value					
Temperature (°C) Pressure (psia)		180.0 14976.3					
Type Brine (bbl/day) <select></select>	Name SW01_sat	Flow 5.00000					
Node Input Node Name Node2 Add Node Remove Node	Rename Node	 ✓ Separate Gas ✓ Separate Oil ✓ Drop Solids 					
Con	Conditions						
Temperature (°C) Pressure (psia)		144.0 9106.0					
Туре	Name	Flow					
Brine from (bbl/day) Gas from (Mft3/day) Oil from (bbl/day)	Node1 Node1 Node1	Calculated Calculated Calculated					
Node Input Node Name Node3 Add Node Remove Node	le Rename Node	Separate Gas Separate Oil Drop Solids					
Cor	Value						
Temperature (°C) Pressure (psia)		142 1305					
Туре	Name	Flow					
Brine from (bbl/day) Gas from (Mft3/day)	Node2 Node2	Calculated Calculated					
Oil from (bbl/day)	Node2	Calculated					

Notes –





Facilities Scaling - SW01_2003 Description Node Manager Precipitates Calculate Results -Nodes Add # Node Name Description T, °C P, psia Ready 175.0 9259.3 • 1 Node1 Reservoir Remove 2 Node2 Tubing Head 175.0 9259.3 7 3 Node3 Flowline 134.89 1305.0 ~ Units 1 Ŧ -Node1 Inlets Select one or more brines, oils or gases as input(s) to this node. Add Type Name Amount SW01_sat_brine 500.000 bbl/day Brine Remove SW04_sat_oil -20000.000 Oil bbl/day Node2 Inlets Select one or more brines, oils or gases as input(s) to this node. Add Type Name Amount Brine fro... 🔻 Node1 Calculated Drop solids 💌 -Remove Gas from ... 💌 Node1 Ŧ Calculated Drop solids Oil from ... 🔻 Node1 -Calculated Drop solids Units Node3 Inlets Select one or more brines, oils or gases as input(s) to this node. Type Name Amount Add

	1,266		i sui i c		Amount		
	Brine fro	•	Node2	•	Calculated	Carry soli 💌	Remove
	Gas from	•	Node2	•	Calculated	Carry solids	Tremove
	Oil from	•	Node2	•	Calculated	Carry solids	Units
							More

: SW01_2003 < Description 🔮 Design 📶 Plot 📓 Report ⊒ File Viewer . Inflow Specs E **_ Node1 Node2 Node3 Node Input Separate Gas Node Name Node1 🗸 Separate Oil Remove Node Rename Node Add Node **Drop Solids** Conditions Value 175.0 Temperature (°C) Pressure (psia) 9259.29 Туре Name Flow 500.000 Brine (bbl/day) SW01_sat_brine Oil (std bbl/day) SW04_sat_oil 20000.0 Node Input 🚽 📝 Separate Gas Node Name Node2 Separate Oil Add Node Remove Node Rename Node Drop Solids Conditions Value Temperature (°C) 175.0 Pressure (psia) 9259.29 Name Flow Туре Brine from (bbl/day) Node1 Calculated Gas from (Mft3/day) Calculated Node1 Oil from (bbl/day) Node1 Calculated Node Input Separate Gas Node Name Node3 Separate Oil Remove Node Add Node Rename Node Drop Solids Conditions Value Temperature (°C) 134.89 Pressure (psia) 1305.0 Name Туре Flow Brine from (bbl/day) Node2 Calculated Gas from (Mft3/day) Node2 Calculated Oil from (bbl/day) Node2 Calculated

		SCStd	SSC	
Facility object	Case	CACO3 (s), mg/l	CACO3(s), mg/l	Rel Diff
SW01_2001	1	46.379	46.3818	0%
	2	46.94	0	0%
	3	66.242	19.5	0%
SW01_2003	1	43.838	41.77	-192%
	2	0	0	0%
	3	35.01	33.74	1%
SW01_2005	1	56.043	56.0	0%
	2	62.52	5.1	0%
	3	61.538	0	0%
SW01_2007	1	59.111	59.1	0%
	2	61.004	0.25	0%
	3	60.332	0	0%
SW01_2008	1	60.1	60.1	0%
	2	61.004	0	0%
	3	60.332	0	0%
SW01_2009	1	60.852	60.8	0%
	2	52.502	0	0%
	3	50.499	0	0%
SW01_2010	1	61.435	61.4	0%
	2	52.502	0	0%
	3	50.499	0	0%
SW01_2011	1	61.841	61.8	0%
	2	52.502	0	0%
	3	50.499	0	0%
SW01_2012	1	61.804	61.8	0%
	2	52.502	0	0%
	3	50.499	0	0%
SW01_2013	1	62.067	62.1	0%
	2	42.16	0	0%
	3	39.404		0%
SW01_2014	1	61.698	61.7	0%
	2	42.16	0	0%
	3	39.404	0	0%

Results for the first ten facilities objects

SW04_2003 1 0 1 0 2 0 1 0 1			1	•	
SW04_2003 1 0 Image: style s					
2 0 Image: constraint of the system 3 35540 Image: constraint of the system Image: constraint of the system SW04_2004 1 0 Did not Image: constraint of the system 3 251508 Image: constraint of the system Image: constraint of the system Image: constraint of the system SW04_2005 1 0 Did not Image: constraint of the system 3 252591 Image: constraint of the system Image: constraint of the system Image: constraint of the system SW04_2006 1 0 Did not Image: constraint of the system Image: constraint of the system SW04_2006 1 0 Did not Image: constraint of the system Image: constraint of the system SW05_2010 1 0 Image: constraint of the system Image: constraint of the system Image: constraint of the system SW05_2011 1 0 Image: constraint of the system SW05_2012 1 Did Not Image: consystem		Case	NaCl (s) mg/l	NaCl (s), mg/l	Rel Diff
3 35540 Did not SW04_2004 1 0 Did not 2 0 Converge 3 251508 SW04_2005 1 0 Did not 2 43833 Converge 3 252591 SW04_2006 1 0 Did not 2 31858 converge SW05_2010 1 0 0 3 0 0 SW05_2010 1 0 0 3 0 0	SW04_2003	1	0		
SW04_2004 1 0 Did not 2 0 Converge Converge 3 251508 SW04_2005 1 0 Did not 2 43833 Converge 3 252591 SW04_2006 1 0 Did not SW04_2006 1 0 Did not SW05_2010 1 0 O 3 221149 SW05_2010 1 0 0 2 52.4, 94690 (NaCl) 130.9 150% 3 0 0 4 0 0 SW05_2011 1 0 13.6 3 0 0 3 0 0 3 0		-	0		
2 0 Converge 3 251508 Image: SW04_2005 1mmm 0 Did not 2 43833 Converge Image: SW04_2006 1mmm 0 Immm		3	35540		
3 251508 Did not SW04_2005 1 0 Did not 2 43833 Converge 3 252591 SW04_2006 1 0 Did not 2 31858 converge 3 221149 SW05_2010 1 0 0 2 52.4, 94690 (NaCl) 130.9 150% 3 0 0 SW05_2011 1 0 0 4 0 0 SW05_2011 1 0 0 4 0 0 3 0 0 3 0 0 3 0 0 3 0 0 3 0 0 4 0 0 SW05_2012 1 Did Not 18.7 2 Converge	SW04_2004	1	0	Did not	
SW04_2005 1 0 Did not 2 43833 Converge 3 252591 SW04_2006 1 0 Did not 2 31858 converge 3 221149 SW05_2010 1 0 0 2 52.4, 94690 (NaCl) 130.9 150% 3 0 0 SW05_2010 1 0 0 3 0 0 3 0 0 <		2	0	Converge	
2 43833 Converge 3 252591 Image: Converge SW04_2006 1 0 Did not 2 31858 converge 3 221149 Image: Converge 3 221149 Image: Converge SW05_2010 1 0 0 2 52.4, 94690 (NaCl) 130.9 150% 3 0 0 Image: Converge SW05_2012 1		3	251508		
3 252591 Did not SW04_2006 1 0 Did not 2 31858 converge 3 221149 SW05_2010 1 0 0 2 52.4, 94690 (NaCl) 130.9 150% 3 0 0 0 4 0 0 0 SW05_2011 1 0 13.6 2 68.9 137.5 1 3 0 0 0 4 0 0 1 5W05_2012 1 Did Not 18.7 2 Converge 139.7 1	SW04_2005	1	0	Did not	
SW04_2006 1 0 Did not 2 31858 converge 3 221149		2	43833	Converge	
2 31858 converge 3 221149		3	252591		
3 221149 0 SW05_2010 1 0 0 2 52.4, 94690 (NaCl) 130.9 150% 3 0 0 0 4 0 0 0 SW05_2011 1 0 13.6 2 68.9 137.5 0 3 0 0 0 4 0 0 0 SW05_2012 1 Did Not 18.7 2 Converge 139.7 139.7	SW04_2006	1	0	Did not	
SW05_2010 1 0 0 2 52.4, 94690 (NaCl) 130.9 150% 3 0 0 0 4 0 0 0 SW05_2011 1 0 13.6 2 68.9 137.5 0 3 0 0 0 4 0 0 0 5W05_2012 1 Did Not 18.7 2 Converge 139.7 1		2	31858	converge	
2 52.4, 94690 (NaCl) 130.9 150% 3 0 0 0 0 4 0 0 0 0 SW05_2011 1 0 13.6 0 2 68.9 137.5 0 0 3 0 0 0 0 5W05_2012 1 Did Not 18.7 2 2 Converge 139.7 1 1		3	221149		
3 0 0 4 0 0 5W05_2011 1 0 2 68.9 137.5 3 0 0 4 0 0 SW05_2012 1 Did Not 4 0 0 5W05_2012 1 Did Not 18.7 2 Converge	SW05_2010	1	0	0	
4 0 0 SW05_2011 1 0 13.6 2 68.9 137.5 3 0 0 4 0 0 SW05_2012 1 Did Not 18.7 2 Converge 139.7		2	52.4, 94690 (NaCl)	130.9	150%
SW05_2011 1 0 13.6 2 68.9 137.5 3 0 0 4 0 0 SW05_2012 1 Did Not 18.7 2 Converge 139.7		3	0	0	
2 68.9 137.5 3 0 0 4 0 0 SW05_2012 1 Did Not 18.7 2 Converge 139.7		4	0	0	
3 0 0 4 0 0 SW05_2012 1 Did Not 18.7 2 Converge 139.7	SW05_2011	1	0	13.6	
4 0 0 SW05_2012 1 Did Not 18.7 2 Converge 139.7		2	68.9	137.5	
SW05_2012 1 Did Not 18.7 2 Converge 139.7		3	0	0	
2 Converge 139.7		4	0	0	
	SW05_2012	1	Did Not	18.7	
		2	Converge	139.7	
3 0		3		0	
4 0		4		0	
SW05_2013 1 Did not 19.9	SW05_2013	1	Did not	19.9	
2 Converge 140.4		2	Converge	140.4	
3 0		3		0	
4 0		4		0	
SW05_2014 1 Did Not 20.1	SW05_2014	1	Did Not	20.1	
2 Converge 140.7		2	Converge	140.7	
3 0		3		0	
4 0		4		0	
SW05_2015 1 0, (870805 nacl) 19.6	SW05_2015	1	0, (870805 nacl)	19.6	
2 0, (1570000 nacl) 140.6		2		140.6	
3 79.5, (595683 nacl) 0		3	79.5, (595683 nacl)	0	
74.9, (534528 NaCl) 0			74.9, (534528 NaCl)	0	