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A comprehensive thermodynamic model has been applied to calculating phase equilibria, speciation, and
other thermodynamic properties of systems that are of geochemical importance. The analyzed systems are
relevant to the mineralization of Pb, Ni, Cu, Zn, and Fe. The thermodynamic framework is based on a
previously developed model for mixed-solvent electrolyte solutions. The framework has been designed to
reproduce the properties of salt solutions at temperatures ranging from the freezing point to 300 °C and for
concentrations ranging from infinite dilution to the fused salt limit. The accuracy of the model has been
demonstrated by calculating solubilities in multicomponent solutions and predicting the effects of chemical
speciation, pH, temperature, CO2 partial pressure, and concentrations of acids, bases, and selected salts on
the formation of various solid phases.
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1. Introduction

Electrolyte thermodynamics is of great importance for understand-
ing and being able to simulate various processes that involve miner-
alizing environments and hydrometallurgical systems. In such systems,
multicomponent electrolyte solutions are encountered at high concen-
trations under diverse conditions of temperature and pressure.
Solutions of this nature are challenging for computational models
because of their complex chemical behavior and strong nonideality. A
self-consistent treatment of speciation and phase equilibria is of utmost
importance for realistic simulation of electrolyte systems because phase
equilibria and other thermodynamic properties are often inextricably
linked to speciation equilibria due to ion pairing, hydrolysis, acid–base
reactions, and other phenomena.

Recently, a general, speciation-based thermodynamic model for
mixed-solvent electrolyte solutions has been developed (Anderko, et al.
2002, Wang et al. 2002). This model was shown to reproduce
simultaneously vapor–liquid, solid–liquid and liquid–liquid equilibria,
speciation, caloric and volumetric properties of electrolytes in water,
organic, or mixed solvents (Wang et al. 2004, 2006). The model is valid
for salts from infinite dilution to the fused salt limit and for various
completely miscible inorganic systems (such as acid–water mixtures)
over a full concentration range (Kosinski et al. 2007). This is an
important advantage over other available activity coefficient models,
such as the well-known molality-based model of Pitzer (1991) which
represents solution properties for concentrations up to only 6m for
most electrolyte solutions. Also, the model is capable of representing
phase equilibria in multicomponent inorganic systems containing
multiple salts, acids, and bases (Wang et al., 2004, 2005, Gruszkiewicz
et al., 2007). Applications of this model to hydrometallurgical systems
have been reportedpreviously (Liu andPapangelakis, 2005, 2006; Azimi
et al, 2007, 2008). Complex phase behavior such as the formation of
multiple hydrated salts, double salts, or the presence of eutectic points
has been accurately represented. Themodel is referred to as themixed-
solvent electrolyte (MSE) model because it is equally valid for classical
aqueous systems, those with more than one distinct solvent and
mixtures in which a given component may continuously vary from
being a solute to being a solvent (e.g., in acid–water mixtures).

In this study, we examine the applicability of this model to selected
systems that are of geochemical and hydrometallurgical interest. In
particular, solutions involving transition and post-transition metals are
analyzed because they constitute an important class of systems for these
applications. Rather than focusing on particular processes, the current
work is to provide a stringent test for the model on the basis of the
available experimental thermodynamic data for such systems. The
model is used to represent the properties of multicomponent aqueous
solutions containing metal oxides, sulphides, sulphates, chlorides,
carbonates, and nitrates in the presence of other salts and acids. It is
applied to reproduce the effect of system variables such as temperature,
pH, salt or acid concentration, and CO2 partial pressure on the solubility
behavior of various solids. In particular, solubilities of solids in mixed
water–acid solutions are examined in the full range of acid concentra-
tion. These results can provide a thermodynamic foundation to explain
natural variations in mineral deposits and to evaluate how the
physicochemical properties of mineralizing solutions may affect the
hydrothermal deposit formation.
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2. Thermodynamic model

Details of the thermodynamic model used in this study have been
described elsewhere (Wang et al. 2002, 2004, 2006) and, therefore,
only a brief summary is given here. The thermodynamic framework
combines an excess Gibbs energy model for mixed-solvent electrolyte
systems with a comprehensive treatment of chemical equilibria. The
excess Gibbs energy is expressed as
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from intermolecular interactions. The long-range interaction contri-
bution is calculated from the Pitzer–Debye–Hückel formula (Pitzer,
1991) expressed in terms of mole fractions and symmetrically
normalized. The short-range interaction contribution is calculated
from the UNIQUAC equation (Abrams and Prausnitz, 1975). The
specific ion-interaction contribution is calculated from an ionic
strength-dependent, symmetrical second virial coefficient-type ex-
pression (Wang et al., 2002):
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where Bij(Ix)=Bji(Ix), Bii=Bjj=0 and the ionic strength dependence
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where bij and cij are adjustable parameters and a1 is set equal to 0.01.
In general, the parameters bij and cij are calculated as functions of
temperature as

bij = b0;ij + b1;ijT + b2;ij = T ð4Þ

cij = c0;ij + c1;ijT + c2;ij = T: ð5Þ

For electrolyte systems encountered in geochemical processes, the
specific ion-interaction contribution is by far the most important one
to reproduce the properties of the solutions. When a chemical process
occurs in mixed solvents with organic components, the short-range
contribution must also be introduced to account for the molecular
interactions between solvent components.

While the excess Gibbs energy model is used to calculate
nonideality effects on solution properties, the chemical equilibrium
is governed by the chemical potentials of all species that participate in
various reactions, such as precipitation, ion pairing or complexation.
The chemical potential of each ionic or neutral species i is determined
by its standard-state contribution, μi0(T,P) and its activity coefficient,
γi(T,P,x), i.e.,

μiðT; P; xÞ = μ0
i ðT; PÞ + RT ln xiγiðT ; P; xÞ: ð6Þ

The standard-state chemical potentials of aqueous species, μi0(T,P),
are calculated as functions of temperature and pressure using the
Helgeson–Kirkham–Flowers–Tanger (HKF) equation of state (Helgeson
and Kirkham, 1974, 1976; Helgeson et al., 1981). The parameters of the
HKFmodel are available for a large number of aqueous species including
ions and ion pairs (e.g. Shock and Helgeson, 1988, Sverjensky et al.
1997). It should be noted that standard-state properties calculated from
the model of Helgeson et al. are based on the infinite-dilution reference
state and on the molality concentration scale. To make the equilibrium
calculations consistent when the standard-state properties are com-
bined with the mole fraction-based and symmetrically normalized
activity coefficients, two conversions are performed: (1) the activity
coefficients calculated from Eq. (1) are converted to those based on
the unsymmetrical reference state, i.e., at infinite dilution in water
and (2) the molality-based standard-state chemical potentials are
converted to corresponding mole fraction-based quantities (Wang
et al. 2002). For systems, in which the solution concentration
approaches the infinite dilution limit, the standard-state properties,
as calculated from the HKF equation of state, may be used alone to
represent the solubility behavior or other solution properties. This
can be exemplified by representing extremely low solubilities of
minerals in water (ca. less than 10−5m) without the presence of any
other electrolyte component. The increased solubilities at higher
solution concentrations such as those encountered in mineralizing
and hydrometallurgical processes can only be accurately represented
by combining the standard-state thermochemical properties with an
appropriate activity coefficient model, as described above. Thus, the
calculations are based on the combined usage of the originally
reported HKF parameters for standard-state properties and the
activity coefficient parameters as determined here.

3. Evaluation of model parameters

The parameters of the model are determined using thermody-
namic data of various types, including: (1) vapor–liquid equilibria;
(2) activity and osmotic coefficients; (3) solubility of salts in water
or other solvents; (4) speciation data, such as pH and dissociation
constants; (5) enthalpies of dilution or mixing; (6) heat capacities;
and (7) densities.

The vapor–liquid equilibrium, activity and osmotic coefficient data
constrain directly the excess Gibbs energy, whereas the solid–liquid
equilibrium data can be used to constrain both the excess Gibbs
energy and the properties of the solid phases that are in equilibrium
with the liquid phase. The use of multiple data types is important to
ensure the accuracy of model parameters. For example, caloric data
(heat of mixing or dilution and heat capacities) are useful to
determine the temperature dependence of model parameters. This
makes it possible to make reliable predictions of solubilities well
beyond the temperature range of experimental solubility data.

4. Results and discussion

Validation of the model for a number of fundamental electrolyte
systems and multicomponent solutions has been reported previously
(Wang et al., 2004, 2005, 2006; Kosinski et al., 2007). In this study, we
examine systems containing selected transition and post-transition
metals that are of importance in mineralization and hydrometallur-
gical processes. An important feature of transition metals is their
strong tendency for hydrolysis and complex formation.

First, we apply the model to aqueous solutions containing metal
oxides. Figs. 1 and 2 show the solubility results for CuO and NiO,
respectively, as a function of pH and temperature. In both systems, the
solubility markedly decreases with pH in acidic solutions and then
increases after a minimum is reached. This solubility trend is strongly
correlated to the hydrolysis of the metal cations (Baes and Mesmer,
1976). The effect of temperature on the solubility appears to be more
pronounced for CuO compared with NiO. The solubility minimum for
CuO is shifted to higher values as temperature rises, with an increase
by more than two orders of magnitude from 25 °C to 300 °C. In
contrast, the solubility minimum for NiO decreases, but only by one
order of magnitude in the same temperature range. It should be noted
that only the stable solid phases are presented in Figs. 1 and 2. For
example, at 25 °C, the stable solid phase in nickel solutions is Ni(OH)2,
while NiO is the stable solid phase at higher temperatures (e.g. 150 °C
and 300 °C). These solid phases are, therefore, shown in Fig. 2. CuO is
more stable compared to Cu(OH)2 at all the temperatures shown in
Fig. 1. The model results are in good agreement with literature data



Fig. 1. Calculated and experimental solubilities of CuO as a function of pH at various
temperatures. Experimental data are from Var'yash (1986), Petrov and Palmer (2000),
Linke and Seidell (1965), McDowell and Johnston (1936), and Muller (1923). The lines
are calculated from the model.

Fig. 3. Calculated and experimental solubilities of PbS (galena) in aqueous NaCl solutions
saturated with H2S at 1atm at 80 °C and various NaCl concentrations. Experimental data
are from Rafalskiy and Masalovich (1981), Barrett and Anderson (1982, 1988), and
Anderson (1962).
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within the experimental uncertainty. It should be noted that the pH
values shown in Figs. 1 and 2 are those in the equilibrium solutions at
the indicated temperatures. These pH values were either fixed by
adjusting the amount of added base or acid, or were calculated at the
given concentrations of the added base or acid. For example, the
Fig. 2. Calculated and experimental solubilities of NiO/Ni(OH)2 as a function of pH at
various temperatures. Experimental data are from Almkvist (1918), Gayer and Garrett
(1949), Mattigod et al. (1997), Gayer and Woontner (1952), Tremaine and Leblanc
(1980), Ziemniak et al. (1989), Ziemniak and Goyette (2004). The lines are calculated
from the model.
calculated pH is 17.8 in the saturated aqueous CuO solution when
25m of NaOH is added at 25 °C.

Salt effects on the solubility of solids are of importance for
understanding geochemical processes such as those related to
hydrothermal brines, seawater systems, and evaporite formation.
Therefore, the model has been applied to examine the effect of
common salts on the solubilities of selected solids. Fig. 3 shows the
solubility of lead sulfide (galena) in aqueous sodium chloride
solutions saturated with H2S at 1atm at 80 °C. The solubility of PbS
increases with added salt concentration. Addition of salt may also lead
to more complex solubility behavior. Fig. 4 shows the effect of Na2SO4

on the solubility of PbSO4 (anglesite). The solubility decreases
drastically with added Na2SO4 at very low salt concentrations (e.g.
Na2SO4<0.001m), then it levels off as the salt concentration reaches
~0.01m, and increases again with further additions of Na2SO4. The
initial decrease in the solubility is due to the common-ion effect of
SO4

−2, which suppresses the dissolution of PbSO4. As more Na2SO4 is
Fig. 4. Calculated and experimental solubility of PbSO4 (anglesite) in aqueous Na2SO4

solutions. Experimental data are from Linke and Seidell (1965), Qiu et al. (2006), and
Paige et al. (1992).



Fig. 5. Calculated and experimental solubilities in the PbCl2+NaCl+H2O system at
various temperatures. Experimental data were taken from Linke and Seidell (1965), Tan
et al. (1987), and Mgaidi et al. (1991).
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added, a complex PbSO4
0 is formed so that the Pb is dissolved into the

solution in the form of complexes. A similar solubility behavior is seen
in the system PbCl2+NaCl+H2O (Fig. 5). As NaCl concentration
increases, there is a rapid decrease in the solubility of PbCl2 in the
relatively dilute region (i.e., for NaCl less than ~0.5m). Then, after a
minimum is reached in the intermediate NaCl concentrations (~1m),
the solubility increases due to the formation of complexes, PbCln2−n

(n=1–4). It is noteworthy that the PbCl2 solubility curve is
terminated by the precipitation of NaCl(s), which appears in
equilibrium with the solution at very high NaCl concentrations (i.e.
>6m). The accurate representation of these solubility trends
indicates that the model is capable of correctly predicting the
nonideality of these systems.

After examining solubilities in aqueous salt systems, calculations
have been performed for systemswithmixed solvents consisting of an
acid and water. In particular, we focused on strong acids such as
H2SO4, HNO3, and HCl, which are often used as leaching or oxidizing
reagents in metal extraction processes. The model is applied to the
entire solvent composition range, i.e. from pure water to the pure
acid. Fig. 6 shows illustrative results for PbSO4 solubility in H2SO4+
H2O mixtures. Complex phase behavior can be seen as the acid
concentration goes from infinite dilution to pure H2SO4 (at which
point the salt-free mole fraction of SO3 is 0.5) and beyond, i.e. into
the oleum (SO3+H2SO4) region. The results for FeCl3 and PbCl2 in
Fig. 6. Calculated and experimental solubility results for PbSO4 (anglesite) in mixed
sulfuric acid+water solvents at various temperatures. Experimental data are from
Linke and Seidell (1965).
aqueous HCl are shown in Figures 7a and b, respectively, and those for
Zn(NO3)2 in aqueous HNO3 are illustrated in Fig. 8. The solid phase in
equilibrium with the solutions depends largely on the temperature
and the acid concentration. At lower acid concentrations, hydrates
with more hydrated water are formed. The number of hydration
water molecules decreases with acid concentration, as shown in
Figs. 7a and 8. Also, acid solvates, such as FeCl3·HCl, can be formed at
sufficiently high concentrations (i.e. for HCl concentration above
18m). At elevated temperatures, only the hydrates with a reduced
number of hydration water molecules precipitate, as demonstrated in
Fig. 7a. The solubility in these systems shows a very complex behavior
with multiple hydrates, anhydrous solids, and acid solvates formed
as temperature and acid concentration change. These solubility pat-
terns are determined by highly specific interactions between ions
and solvent molecules, and have been accurately reproduced by the
model.

The effect of partial pressure of CO2 on the solubility of solids is
of particular interest. Fig. 9 shows solubility of PbCO3 (cerussite) as a
function of PCO2

. Results for CaCO3 (calcite) and MgCO3 (magnesite)
are also included in this Fig. for comparison. An increase in partial
pressure of CO2 enhances the solubilities of these metal carbonates. In
the presence of other salts, however, the dependence of the solubility
Fig. 7. Calculated and experimental solubilities in (a) the FeCl3+HCl+H2O system at
0 °C and 40 °C; and (b) the PbCl2+HCl+H2O system from 0 to 100 °C. Experimental
data are from Linke and Seidell (1965), Clever and Johnston (1980), Tan et al. (1987),
and Mgaidi et al. (1991).



Fig. 8. Solubility of Zn(NO3)2 in HNO3+H2O mixtures at 25 °C. Experimental data are
from Linke and Seidell (1965).

Fig. 10. Calculated and experimental solubilities for PbCO3 (cerussite) at various partial
pressures of CO2 in (a) aqueous 0.3m NaClO4 solutions at 25 °C and (b) aqueous KHCO3

solutions containing 0.1m NaCl at 300 °C. Experimental data are from Bilinski and
Schindler (1982) and Baranova and Barsukov (1965).
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on PCO2
may also depend on other system variables such as pH,

temperature, and the salt concentration. This is demonstrated in
Fig. 10 in which the solubility of PbCO3 appears to decrease with CO2

partial pressure in the presence of additional components. The trend
shown in Fig 10a is due to the combined effects of pH and CO2 partial
pressure. At fixed pH, a rise in CO2 partial pressure tends to depress
the solubility of carbonates primarily because of the increased
formation of carbonate ions and the subsequent common-ion effect.
This is in contrast with Fig. 9, in which the rise in CO2 partial pressure
causes a simultaneous acidification of the solution. In Fig. 10b, the
change of the PbCO3 solubility with the concentration of KHCO3 is a
combination of the common-ion effect (which results in a decreased
solubility at low salt concentrations) and ion pair formation between
Pb+2 and CO3

−2 or HCO3
− (resulting in an increased solubility at higher

salt concentrations). The decrease in solubility with increasing PCO2
is

due to the shift of the dissolution reaction (cf. Eq. (7)) to the left upon
the addition of CO2 (cf. Eq. (8)):

PbCO3ðsÞ + KHCO3 = PbðCO3Þ−2
2 + Hþ + Kþ ð7Þ
Fig. 9. Calculated and experimental solubilities in three MCO3–CO2–H2O systems
(M=Pb, Ca, Mg) at 25 °C. Experimental data are from Linke and Seidell (1965), Wolf
et al. (1989), Plummer and Busenberg (1982), MacDonald and North (1974), Moshkina
et al. (1977), Ponizovskii et al. (1979), and Rykova and Shternina (1967).
CO2 + H2O = HCO−
3 + Hþ

: ð8Þ

The correct representation of solubility data demonstrates that the
model accurately predicts the nonideality for all of the investigated
systems.

It should be noted that the model parameters developed in this
study have been verified for all related systems. For example, all
parameters that are pertinent to the PbCl2+HCl+H2O system,
including binary interaction parameters and standard-state thermo-
chemical data for aqueous complexes and solids, are also applicable to
the PbCl2+NaCl+H2O system, and vice versa. These parameters are
reported in Table 1. At low salt or acid concentrations, the solubilities
of the solid phases in these systems are low (e.g. less than 0.1m at
T<100 °C), and are primarily accounted for by the standard-state
thermochemical properties (ΔfG

0, S0, Cp0), supplemented by the long-
range electrostatic contribution to activity coefficients from the
Pitzer–Debye–Hückel formula. As the acid or salt concentration
increases, the solubility rises due to the formation of complexes,
and interactions between H3O+ or Na+ and the complex species
(e.g. PbCl3− or PbCl4−2) are introduced to represent the increasing
solubilities. The interactions are introduced only for species that
appear in significant amounts in the equilibrium solutions.



Table 1
Model parameters for the PbCl2+HCl+H2O and PbCl2+NaCl+H2O systems.

Binary parameters in Eqs. (4) and (5)a,b Parameters for aqueous
speciesc

b0(H3O+, PbCl3−)=b0(H3O+, PbCl4−2)=103.323 Pb+2: ΔfG
0=−23.890,

S0=17.5728d

b2(H3O+, PbCl3−)=b2(H3O+, PbCl4−2)=−25,084.0 PbCl+: ΔfG
0=−163.385,

S0=117.152d

c0(H3O+, PbCl3−)=c0(H3O+, PbCl4−2)=−159.461 PbCl20: ΔfG
0=−297.901,

S0=196.648d

c2(H3O+, PbCl3−)=c2(H3O+, PbCl4−2)=32,575.4 PbCl3−: ΔfG
0=−427.396,

S0=246.856d

b0(Na+, PbCl4−2)=−31.3926 PbCl4−2: ΔfG
0=−558.041,

S0=276.144b

b2(Na+, PbCl4−2)=30,104.3 Parameters for solid speciesc

c2(Na+, PbCl4−2)=−26,488.2 PbCl2: ΔfG
0=−313.358,

S0=133.57b

a Parameters not listed are set to be zero.
b Values are determined from this study.
c Units are in kJ.mol−1 for ΔfG

0, J.mol−1.K−1 for S0.
d Values are taken from Sverjensky et al. (1997) and Shock and Helgeson (1988).
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5. Conclusions

A recently developed comprehensive mixed-solvent electrolyte
model has been applied to calculate phase equilibria in multicompo-
nent systems containing salts and acids in wide concentration and
temperature ranges. The model has been shown to be very useful for
reproducing complex solid–liquid equilibrium diagrams for selected
transition and post-transition metal systems containing salts and acids
over wide concentration ranges including water-depleted environ-
ments as well as classical aqueous systems. Compared to other existing
thermodynamicmodels, thismodel has an extended applicability range
with respect to salt concentration (i.e., from infinite dilution to the fused
salt limit), types of solvent components (either aqueous or non-aqueous
or mixed solvents), and environmental conditions (temperatures up to
300 °C and corresponding pressures), in addition to its capability of
predicting equilibrium speciation. Thus, the model can be used to pre-
dict the ranges of physicochemical conditions for mineral deposition,
and the predicted speciation results can be of value for understanding
the mechanisms of transport of metals and deposition of minerals in
natural environments for mineral exploration.
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