
A Guide to Using

OLI Studio

Version 9.5

Including Stream Analyzer ScaleChem Corrosion Analyzer EVS

OLI Systems, Inc.

Copyright[©] 2018 OLI Systems, Inc. All rights reserved.

The enclosed materials are provided to the lessees, selected individuals and agents of OLI Systems, Inc. The material may not be duplicated or otherwise provided to any entity without the expressed permission of OLI Systems, Inc.

240 Cedar Knolls Road, Suite 301 Cedar Knolls, NJ 07927 973-539-4996 (Fax) 973-539-5922 <u>Oli.support@olisystems.com</u> www.olisystems.com

Disclaimer:

This manual was produced using the OLI Studio / OLI Analyzer version 9.5 build 3 (9.5.3). As time progresses, new data and refinements to existing data sets can result in values that you obtain being slightly different than what is presented in this manual. This is a natural progress and cannot be avoided. When large systematic changes to the software occur, this manual will be updated.

1.	Welcome	to	OLI
----	---------	----	-----

Who is OLI Systems?	7
What does OLI Systems do?	
Aqueous Simulation	
Oil-Field Chemistry	
Corrosion Chemistry	
Process Modeling	

2. Introduction to Aqueous Speciation

13

35

61

69

7

Overview	
What is the pH of the Following Stream?	
Answer:	
Speciation in Sour Water	23
Sour Water Species	23
Chemistry Summary (Molecular Equilibrium)	23
Chemistry Summary (Electrolyte Equilibrium)	23
Calculating Partial Pressures	24
Considering only the Vapor-Liquid equilibria	
Considering the full OLI Speciation Model	
An Example of Speciation	
Summary:	34

3. Removing Nickel from Wastewater

The Removal of Nickel using the OLI Studio	
How to run the tour?	
The Tour Starts Here	
Scenario 1: Wastewater without additives	
Optional	
Scenario 2: Now, What about the Real Waste?	
Scenario 3: Is All Really Lost?	
Final Thoughts	
Save, Save and then Save again	59

4. The Mathematical Model

Overview	61
Specific Problem	61
Recipe for Writing the Model	
The Components of the Simulator	
The Database	
The Chemistry Model	65
The Generator	
The OLI Engine	66
Phase Selection	

5. Solids Precipitation

Overview	
The Tour	
Objectives	
Let's begin	
Selecting the precipitation point calculation	
Expanding the Chemistry	75

Removing Solids	76
Repeating the precipitation point calculation	
Removing Dolomite	
Units manager (alternative Entry)	
Now would be a good time to save your files.	

6. Aqueous Thermodynamics

85

Overview	85
The Equilibrium Constant	85
Question:	85
Principal Thermodynamic Properties	86
HKF (Helgeson-Kirkham-Flowers)Equation of State	87
The Helgeson Equation of State	88
What is the standard State?	90
Excess Properties	90
Ionic Strength	91
Definition of Aqueous Activity Coefficients	91
Modern Formulations	93
Neutral Species	97
Multiphase Model	98
Solid-Aqueous Equilibrium	98
Solid Phase Thermodynamic Properties	99
Mixed EOS Model	99
Limitations of the Current OLI Thermodynamic Model	100
Scaling Tendencies	101
What is a scaling tendency?	101
Pre-scaling Tendencies	104
What is a Pre-scaling tendency?	
Estimated Pre-Scales	104
Rigorous Pre-Scales	107
Differences	109
Calculating Osmotic Pressures	
Summary	110

7. Single Point Calculations

Objectives	
Isothermal	
Mix Calculations	
Bubble Point	
Dew Point	
Vapor Amounts/Fractions	

8. Multiple Point Calculations

Objectives	
Temperature	
Pressure	
Composition	
pH (Mixer)	
Cascading Mixers	
Secondary Surveys	
Contour Plots	

9. Water Analysis in OLI Studio: An Overview

111

131

	Summary	
10.	Water Analysis in OLI Studio: A Tour	183
	Reconciling a Brine from an Oil Field	
	The Application	
	Tour Conventions	
	The tour Starts here!	
	Calculating Alkalinity Creating a stream from the sample	
11.	Autoclaves	201
	Overview	201
	Basic Autoclave #1 – Ideal Gas Law, Inert Gas	
	Getting Started	
	Setting the Vessel volume to 5L and 20L	
	Testing a higher pressure	
	Testing at High Temperature	
	Basic Autoclave #2 – Ideal Gas Law, Reactive Gas	
	Getting Started	
	Testing with 0.1m NaOH	
	Testing a higher pressure	
12.	Reaction Kinetics	217
	Overview	
	Arrhenius type reaction kinetics	
	Reaction of Ammonia and Carbon Dioxide	
	Non-standard SPEC type reaction kinetics	
	Ammonia Hydrolysis	
13.	Petroleum Calculations	237
	Overview	
	Assays	
	Pseudocomponents	
14.	Studio ScaleChem Overview	251
	Why Use Studio ScaleChem?	
	Studio ScaleChem's Development	
15.	Studio ScaleChem Chemistry	253
	Aqueous Chemistry	
	ScaleChem Standard Chemistry	
	The Standard Chemistry Model	
	The Expanded Chemistry Model	
	Hydrocarbon Petroleum Fractions	
	Density	
	Thermodynamic Methods (pseudo-components and petroleum fractions)	
	Summary	
16.	Studio ScaleChem Getting Started	257

	Calculating a Scaling Tendency	
	Calculating a Scale Index	
	Putting together a calculation	
	Starting the Studio ScaleChem Program	
	Studio ScaleChem Tour	
	Brine and Gases	
17.	Studio ScaleChem Calculations	277
	Calculations Overview	
	Calculations: Adding a new brine sample	
	Calculations: Adding a Gas Sample	
	Calculations: Adding an Oil sample	
	Calculations: Hydrocarbon - Pseudocomponent approach	
	Mix Calculation: Overview	
	Mix Calculation: Set Up	
	Saturate Calculations: Overview	
	Saturate Calculations: Set Up	
	Facility Calculation: Overview	
	Create the above brines	
	Facility Calculation: Set Up	
18.	Studio ScaleChem Interpreting Results	301
	Overview	
	Valid Water Analysis Data	
	Assumptions	
	Electroneutrality	
	pH/Alkalinity	
	Speciation	
	Supersaturation of Solids	
	Summary Content	
	Reconciliation summary	
	Gas Analysis	
	Node Summary	
	Overview of Studio ScaleChem Output	
	Summaries	
	Plot	
	Determining the Default Plot	
	Viewing Data	
	Data Available	
19.	Scope of Corrosion Analyzer	314
	Overview	
	Thermodynamics of Corrosion	
	Kinetics of general corrosion	
	Other phenomena	
	Real-solution stability diagrams	
	Assumptions	
20.	Generating Stability Diagrams in Corrosion Analyzer	317

A Guide to Using OLI Studio

Welcome to OLI • 4

	How to Use Stability Diagrams	
21.	Generation of Stability Diagrams	329
	Examples	330
	Cases when both the metal and ligands are subject to redox equilibria	
	Simulated titrations	
	Equilibrium lines for chemical reactions	
	Determination of predominance areas	
22.	A Tour of Corrosion Analyzer	333
	Overview	
	Iron in Water	
	Adding Hydrogen Sulfide	
23.	Modeling the Effects of Acidity & Alkalinity on Corrosion	347
	Overview	
	High Temperature Iron in Water	
	How does the prediction of passivation relate to corrosion rate data?	
	Neutralization of Refinery Streams with Alkanolamines	
4.	Modeling the Effects of Complexation on Corrosion	354
	Overview	354
	Copper and Ammonia.	
	Gold in the presence of Cyanides	
5.	Modeling the Effect of Oxidizing Inhibitors on Corrosion	363
	Overview	363
	Iron in the presence of chromates	
	Iron in the presence of arsenates	
6.	Implications of Stability Diagrams on Cathodic Protection	369
	Overview	
	Example: Iron at 25 and 300 degree centigrade	
7.	Selective Oxidation and Reduction Chemistry	371
	Overview	
	Creating the default oxidation case	
	Selective Redox, removing an undesired oxidation state.	
		~ = =
8.	Introduction to Rates of Corrosion	377
8.	Chemistry	
8.	Chemistry Calculation types	
28.	Chemistry Calculation types Metal Chemistry	
8.	Chemistry Calculation types Metal Chemistry Flow conditions	377 377 378 379
28.	Chemistry Calculation types Metal Chemistry	377 377 378 379
28. 29.	Chemistry Calculation types Metal Chemistry Flow conditions	377 377 378 379
	Chemistry Calculation types Metal Chemistry Flow conditions Kinetics of general corrosion	

Setting up the calculation	385
Flow survey	389

30. Thermal Aging and Variations in Alloy Composition Introduction 393

What can be simulated?	
Alloy Chemistry	
Calculation types	
Output specific to thermal aging	
e alpar speenie to alerinar aging	

31. Thermal Aging and Variations in Alloy Composition 397

Overview	397
Example 1: Thermal aging of alloy 600	398
Setting up the calculation	
Analyzing the results	401
Example 2: Thermal aging of alloy 825	
Setting up the calculation	
Analyzing the results	
Example 3: Localized corrosion of annealed and thermally aged duplex alloy 2205	411
Setting up the calculation	413
Analyzing the results	416
Setting up the calculation	
Analyzing the results	

32. Extreme Value Statistics for Predicting Pitting Damage – Intro 422

Extreme Value Statistics	
Input and Output	
Advantages and Disadvantages of EVS	

33. Extreme Value Statistics for Predicting Pitting Damage – A Tour 425

Overview	
Example 1: Corrosion of aluminum alloy in tap water	
Setting up the calculation (Pit depth prediction)	
Analyzing the results	
Setting up the calculations for engineering tasks	
Example 2: Corrosion in Pipelines.	
Example 3: Possible Case of Insufficient Data	

34. Petroleum Fraction Thermodynamic Methods

Distillation Methods of the ASTM	
Average Bulk Density	
Thermodynamic Methods	
,	

35. How to create Chemical Diagrams

36.	Managing Private Databases in the OLI Analyzer	469
	Selecting Databases	469
	How to load a private database into the OLI Analyzers	
	How to unload a database from the OLI Analyzers	481

455

457

37.	OLI Units Manager	48
38.	Tools Options	4
	Setting the Auto Save and Automatic Backup Features	4
	Changing the default file locations	
	Turning off hardware acceleration	4
39.	Modifying the plot	4
	Hiding Curves	
	Switching Variables between plots	
	Plotting two separate graphs at the same time	
40.	Customizing the Report	5
41.	Displaying Transport Properties and Extra Thermodynar	nic
41. Para	Displaying Transport Properties and Extra Thermodynar imeters	
		5
	imeters	5
	Single Point Calculations	5
Para	Single Point Calculations	5
Para	Single Point Calculations Survey Calculations Using the OLI Tester	5
Para	Single Point Calculations Survey Calculations Using the OLI Tester Overview Installation and Activation Activating the Tester	5
Para	Single Point Calculations	5
Para	Single Point Calculations Survey Calculations Using the OLI Tester Overview Installation and Activation Activating the Tester Activating the Tester for multiple point surveys Starting and Setting up the OLI Tester for the First Time	5
Para	Single Point Calculations	5
Para	Single Point Calculations Survey Calculations Using the OLI Tester Overview Installation and Activation Activating the Tester Activating the Tester for multiple point surveys Starting and Setting up the OLI Tester for the First Time	5

1. Welcome to OLI

Who is OLI Systems?

OLI Systems was founded in 1971 by Dr. Marshall Rafal. During the past four decades OLI, has developed, at a cost of almost \$40,000,000, commercial computer software which has established the company as the world leader in simulating aqueous-based chemical systems

OLI's unique capability is providing the world with the only **predictive thermodynamic framework** for calculating the physical and chemical properties of multi-phase, aqueous-based systems. This framework is applicable to most multi-component mixtures of chemicals in water, and is predictive over almost any conceivable temperature, pressure and concentration of interest.

Employing this unique and powerful framework, the OLI Engine, supported by a very large, in-place databank, allows users to predict the chemical and phase behavior (including aqueous, vapor, non-aqueous liquid and multiple solids), of

most mixtures of inorganic or organic chemicals in water. The resulting phase separation into aqueous, vapor, organic liquid and multiple solids is performed automatically. In the laboratory, in steady-state or dynamic process conditions or in the natural environment, the OLI Engine is broad-based and accurate.

OLI's world leadership is reflected in many ways, including authorship of AIChE's Handbook of Aqueous Electrolyte Thermodynamics. OLI software is used by nearly all of the largest companies in the Chemicals and Oil & Gas sectors of the Chemical Process Industries (CPI) as well as companies in other sectors such as Metals and Mining, Forest Products and Pharmaceuticals. In addition, OLI software is used extensively in Environmental, E & C and Basic Research. OLI has created several widely-used products:

OLI Engine

OLI's aqueous thermodynamics are at the heart of the OLI software. OLI Engine refers to the thermodynamic database, thermodynamic framework, and supporting numerical computation to simulate the chemical and phase behavior of aqueous-based systems.

OLI Studio

Never has aqueous chemistry problem solving been easier. The OLI Studio combines ease of learning, ease of use with the power of the OLI Engine. It supports single and multiple point calculations, utilizing OLI's extensive PUBLIC databanks. **Ionic input is possible.** The OLI Studio allows customers to input, store, manipulate, adjust and reconcile laboratory data, with facilities to adjust laboratory errors in pH and charge balance.

Environmental Simulation Program (ESP)

ESP is OLI's **steady-state flowsheet simulation** package capable of simulating rigorous environmental unit operations including stripping/scrubbing, pH control, ion exchange, biotreatment, clarification, UF/RO, electrodialysis, and many others. Feedback control and recycle convergence are included.

Corrosion Analyzer

CSP provides a framework to **analyze metal and alloy redox solution chemistry** for any mixture of chemicals at almost any condition of interest. The package provides for real-solution stability diagrams (e.g., Pourbaix and Yield) and accurate prediction of electrical conductivity and ORP. CSP supports calculation of predictive rates of corrosion for a limited set of chemistry.

DynaChem

Dynamic is a **flowsheet simulation** package for time-dependent and transient processes. DynaChem includes support for scheduled entry feeds, PID control, open and closed loop, feedback and feed-forward, multi-cascade, adaptive gain, pH,

Welcome to OLI • 8

compositional control and many others. Operator intervention to introduce upsets, manually adjust valves and control settings is also possible.

OLI ScaleChem

OLI ScaleChem is OLI's solution for **oil-field applications** including surface and subsurface mineral scale prediction, saturation profiles, and produced/formation water mixing. OLI ScaleChem is based upon accurate fitting of binary, ternary and quaternary data up for several common scales, and many more "not-so-common" scales!

OLI is comprised of an extraordinary staff of advanced degree scientists and engineers who enable OLI to maintain a high-level of Research & Development while offering a full range of Support Services and Professional Services.

What does OLI Systems do?

As the recognized experts in modeling aqueous electrolyte thermodynamics, backed by a large in-place databank, we provide computer software tools to solve your problems quickly and accurately for:

Aqueous Simulation

It is essential for scientists and engineers to understand the effects of aqueous chemistry of their processes. This includes the effects of trace components, pH, temperature, and other factors on their process systems. Over the past 30 years, OLI has refined software which accurately models multiphase, multi-component aqueous solutions for virtually any mixture of chemicals. The basis for OLI's Software is the "OLI Engine." The OLI Engine is made up of the Solvers and the Databanks.

The OLI Databank contains proprietary coefficients for the prediction of thermodynamic, transport, and physical properties for **80 inorganic elements** of the periodic table, and their associated aqueous species, as well as **over 8000 organic species.** Thus, most mixtures of chemicals in water can be modeled, provided the solvent of the solution is water.

Upon the user's request, the aqueous model can incorporate redox chemistry, co-precipitation and reaction kinetics. Also available are surface phenomena such as ion exchange, surface complexation and molecular adsorption. Transport properties such as electrical conductivity, viscosity and diffusivity are also available.

Oil-Field Chemistry

ScaleChem is software which assesses potential scaling problems for oil-field applications. The ability to calculate the high temperature and pressure effects typically found in oil-field production is solved using the OLI Engine. OLI Systems is a recognized leader in the world of aqueous chemistry, and has a generalized modeling capability, the OLI Aqueous Thermodynamic Model which is being applied here specifically to the problems of the oil-field industry.

Corrosion Chemistry

Most corrosion problems are addressed by treating the symptoms. A treatment plan would constitute:

- measuring corrosion rates,
- determining life expectancy,
- Regularly replacement of corroded material and equipment.

Corrosion Analyzer and CSP are unique software used to investigate **the Rate of Corrosion** and determine the **causes of corrosion before they happen**, allowing preventive actions to be evaluated and implemented. This includes choosing correct operating conditions and corrosion resistant materials.

Elemental and alloy metal oxidation and reduction reactions for 79 inorganic elements and thousands of species are available in the OLI Databank. The software automatically generates the redox reactions and the resulting species and solves for the equilibrium conditions using its predictive thermodynamic model.

Because of OLI's unique, predictive aqueous model featuring accurate activity coefficients, the corrosion software offers a few types of real-solution diagrams for your analysis. Our competitors only offer idealized solution diagrams and none of a general prediction of rates of uniform corrosion.

Real Solution Pourbaix Diagrams

Graphical depiction of EH vs. pH for any mixture of chemicals in water is available to evaluate stable and meta-stable corrosion and redox products. This allows assessment of the effect of passivating species in real solutions without any simplifying assumptions.

Real Solution Stability Diagrams

Flexible selection of independent variables and graphical depiction of local and global equilibria in various projections is available in CSP. Depictions include EH vs. composition and composition vs. pH for any chemical mixture, including trace components, to assess stable and meta-stable species in real solutions.

Uniform corrosion rates and predicted polarization curves are featured in OLI's unique Rates of Corrosion calculations. Single-Point and Multiple-Point calculation points are available.

Process Modeling

The Environmental Simulation Program (ESP) is a steady-state process simulator with a proven record in enhancing the productivity of engineers and scientists. With applications industry-wide, the software is not only applied to environmental applications but to any aqueous chemical processes.

A wide range of conventional and environmental unit operations are available:

Mix	Precipitator	Feedforward
Split	Extractor	Crystallizer
Separate	Component Split	Clarifier
Neutralizer	Incinerator	Sensitivity
Absorber	Compressor	Membrane (UF, RO)
Stripper	Bioreactor	Electrodialysis
Reactor	Manipulate	Saturator
Exchanger	Controller	Dehydrator

ESP provides the engineer or scientist accurate answers to questions involving complex aqueous systems. Design, debottlenecking, retrofitting, troubleshooting and optimizing of existing or new processes is easy with ESP. Upstream waste minimization, as well as the waste treatment itself, is possible with ESP. The dynamic response of a process can be studied using the dynamic simulation program, DynaChem, to examine control strategy, potential upsets, scheduled waste streams, controller tuning, and startup/shutdown studies.

Process Flow-sheeting and Control

Process flow-sheeting with multiple recycles and control loops are allowed. Feed-forward and feedback Controllers and Manipulate blocks help to achieve process specifications.

2. Introduction to Aqueous Speciation

Overview

It is our belief that the predictive modeling of aqueous systems requires that the system be fully speciated. This allows for smoother extrapolation of experimental data with less "Faith" placed on corrections.

The user, after completing this section, should have a better understanding of why full speciation is required and how the OLI Studio performs calculations.

What is the pH of the Following Stream?

=	25 Centigrade
=	1 Atmosphere
=	55.508 ¹ moles
=	1.0 moles
	=

We will now take our first look at the OLI Studio software to answer this question.

We start by first clicking on the OLI Studio icon or by selecting the OLI Studio from the Start button. The OLI Studio momentarily displays a Splash Screen.

After a few moments, the main OLI Studio window will display. A tips box may also appear; you can close it.

¹ This is 1 kilogram of water. All of OLI's internal aqueous concentrations are based on the molal concentration scale. You will see this value frequently in the course.

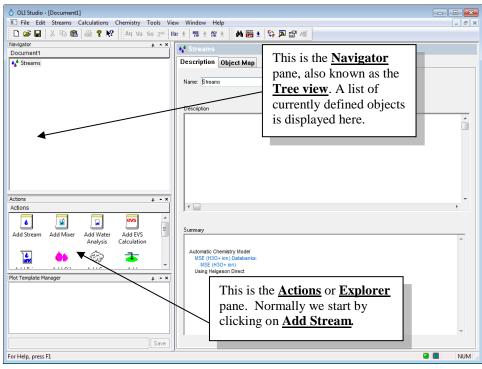


Figure 2-1 The main OLI Studio window

Click on the <u>Add Stream</u> icon.

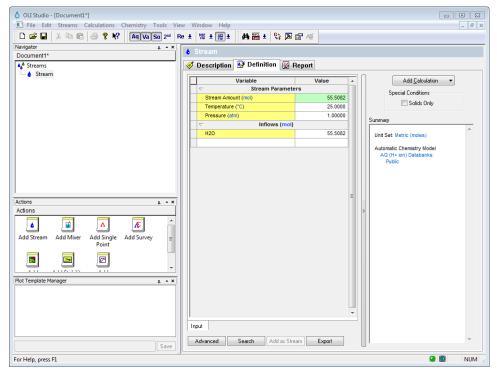


Figure 2-2 Adding a new stream

Note: The OLI Studio now allows users to choose the type of thermodynamic framework used to perform simulations. Two thermodynamic frameworks/models are available:

Aqueous (H⁺ ions): This is the traditional framework applicable to most multi-component mixtures of chemicals in water and is predictive over almost any conceivable temperature, pressure and concentration of interest.

Mixed Solvent Electrolyte / MSE (H_30^+ ion): The MSE framework is OLI's newly developed model capable of reproducing speciation, chemical, and phase equilibria applicable to water-organic-salt systems in the full range of concentrations as well as aqueous electrolytes from dilute solutions to the fused salt limit.

Unless otherwise noted, all examples discussed in this guide use the Aqueous model. Make sure that the Aqueous Model is being used by selecting <u>Model Options...</u> from the <u>Chemistry</u> menu.

Stream Chemistry Model Options	? <mark>×</mark>			
Databanks Redox Phases T/P Span				
Databanks Thermodynamic Framework AQ (H+ ion)				
Available Selected Geochemical Public Corrosion Import Databank Surface Complexation C Import Databank Import Databank Databank search order is from top to bott Unload Databank Selected				
OK Cancel Apply Help				

Figure 2-3: Selecting the thermodynamic framework used for simulation.

Or by clicking the AQ/FW button from the toolbar:

Figure 2-4 Toolbar - AQ framework Selected

♦ OLI Studio - [Document1*]			×
File Edit Streams Calculations Chemistry Tools Vi	ew Window Help		×
🗅 🚅 🔒 🐇 🖻 💼 🦪 🦿 🛠 🛛 🗛 Va So 2ª 🗍	8e 🛨 🎬 🛓 🎆 🛓 🚺 🎆 🛓 💱 🎘 😭	16	
Navigator + * *			_
Document1*	6 Stream		
♦♠ Streams	🛷 Description 🤒 Definition 📓 Re	eport	
Stream	Variable	Value Add Calculation	
	Stream Parameters		٦.
	Stream Amount (mol)	56.5082	
	Temperature (°C)	25.0000 Survey	
	Pressure (atm)	1.00000 Summary Chemical Diagram	
	Inflows (mol)	Stability Diagram	
	H2O FeCl3	55.5082 Unit Se Corrosion Rates	
	- Fecis	Automatic Chemistry Model	-
		At (H+ ion) Databanks:	
Actions g. • ×	7	=	
Actions			
The yellow fields indic	ate mandatory		
We enter	the data in the white		
spaces in the grid. The	component iron (III)		
Chloride is entered here	e as FeCL3		
Not Template Manager # * *			
		/	
	Clicko	n the Add Calculation button an	d
	land		
	select S	<i>ingle</i> Point to start a calculation.	•
Save	Advanced Sear		
or Help, press F1	J		4
or neip, press ra			· ///

Figure 2-5 Entering Stream Information

The shaded areas of the stream definition are required by the program. By default, we will start at 25 degrees centigrade, 1 atmosphere and 55.5082 moles of water. This amount of water is 1 kilogram of water. This effectively makes any component concentration a molal concentration.

If a red X appears next to the name you entered, then the program does not recognize the name. Please check to see if the spelling is correct. There will be more about entering user data later in this course. We enter the chemical formula of $FeCl_3$ in the inflow grid and then enter a value of 1.0. You may use the mouse or tabs keys to move around the grid.

The concept employed here is that the user will define a stream (or import it from another program or process) whose values will propagate throughout all subsequent calculations.

Enter the chemical formula *FeCl3* and then enter a value of *1.0* in mole units. *Click* on the <u>Add Calculation</u> button and select <u>Single Point</u> when finished.

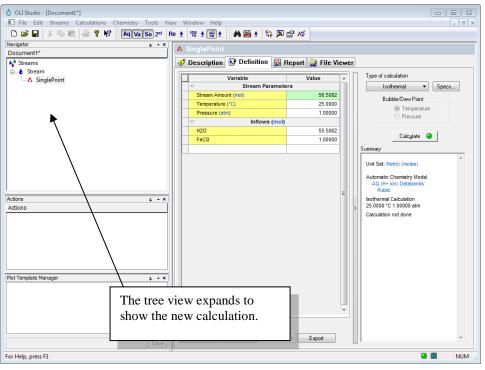


Figure 2-6 Starting the calculation

We are now ready to start the calculations but let us review some options on this screen.

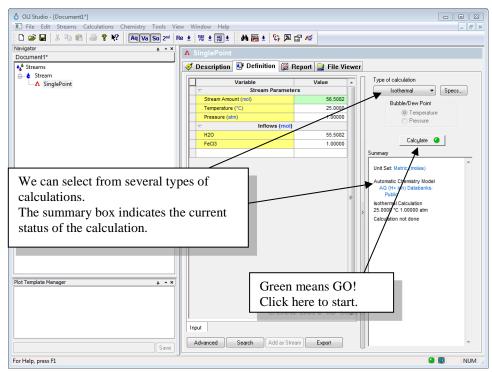


Figure 2-7 Entering the calculation conditions.

The data in the **<u>Definition</u>** grid has been propagated from the stream that we just entered. You may change the values or add to the list of species. This does not affect the original stream definition.

Please note: The names that you enter in the grid may be different from what is displayed depending on settings in the Tools menu. This will be discussed later.

We will leave the values as is, *click* the <u>**Type of Calculation**</u> button.

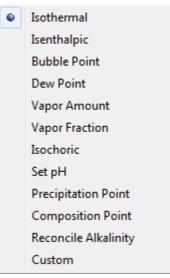


Figure 2-8 Single Point Calculation Types

There are several types of calculations that can be performed. We will use the default calculation type of **Isothermal** for this demonstration. The following types of calculations are defined:

Isothermal	A constant temperature and pressure calculation.
Isenthalpic	A constant heat loss/gain is applied to the calculation and a temperature or pressure can be adjusted to meet this new heat content.
Bubble Point	The temperature or pressure is adjusted to reach a condition where a small amount of vapor begins to appear.
Dew Point	The temperature or pressure is adjusted to reach a condition where a small amount of aqueous liquid appears.
Vapor Amount	The temperature or pressure is adjusted to produce a specified amount of vapor.
Vapor Fraction	The temperature or pressure is adjusted to produce a specified amount of vapor as a fraction of the total quantity.
Isochoric	The temperature or pressure is adjusted to produce a total volume.
Set pH	The pH of the solution can be specified by adjusting the flowrate of species.
Precipitation Point	The amount of a solid (solubility point) may be specified by adjusting the flowrate of a species.

Composition Point	The aqueous concentration of a species may specified by adjusting the flowrate of a species.
Reconcile Alkalinity	The alkalinity of a solution can be specified by adjusting the flowrate of species.
AutoClave	This simulates a closed pressure vessel. ²
Custom	Combinations of the above calculations can be created.

Select **Isothermal** calculations.

(.			
OLI Studio - [Document1*]			
File Edit Streams Calculations Chemistry Tools Vie			- 8 ×
	e 🛓 🎬 🛓 🎆 🛓 👫 🎆 🛓 🛟 🔊	r As	
Navigator # * X	∧ SinglePoint		
Document1*		n	
♦ Streams	🦪 Description 🤡 Definition 📓	Report 🔜 File Viewer	
▲ SinglePoint	Variable	Value 🔺	Type of calculation
Unglet one	Stream Paramet	ers	Isothermal 🔻 Specs
	Stream Amount (mol)	56.5082	Bubble/Dew Point
	Temperature (°C)	25.0000	Temperature
	Pressure (atm)	1.00000	Pressure
	Inflows (mol)		
	H2O	55.5082	Calculate 🥥
	FeCI3	1.00000	
			Summary
			Unit Set: Metric (moles)
			utomatic Chemistry Model AQ (H+ ion) Databanks:
		= /	Public
Actions # * ×			Isothermal Calculation
Actions			25.0000 °C 1.00000 atm Calculation not done
			Calculation not done
We're alı	eady to go, click		
		/	
Plot Template Manager the green	calculate button!		
		•	
	Input		
	Advanced Search Add as Str	eam Export	
Save	Add as sit	ean Export	
For Help, press F1			
rorriep, presert			

Figure 2-9 Let's GO! Click the Calculate button!

Click the green <u>Calculate</u> button.

The program will now start the calculation. After a moment, an "Orbit" will appear illustrating that the calculation is proceeding. For long-time users of the OLI Software, the graphic might seem familiar.

² You may have to enable this calculation from Tools | Options | Enable Features Under Development

	Calculation Dialog	8 22	
	OLI	Cancel Close	Cancel will end the calculation. Close hides this dialog and the calculation keeps going.
For surveys a progress indicator will show here.	Generating the Chemistry Model for SinglePoint1 SinglePoint1 Display this dialog when calculating		The current operation is displayed as well as the current calculation point.

Figure 2-10 The OLI Calculation Status Dialog

The calculation may continue for several moments. When it is done, you will be returned to the same <u>**Definition**</u> screen. *Click* on the <u>**Report**</u> tab.

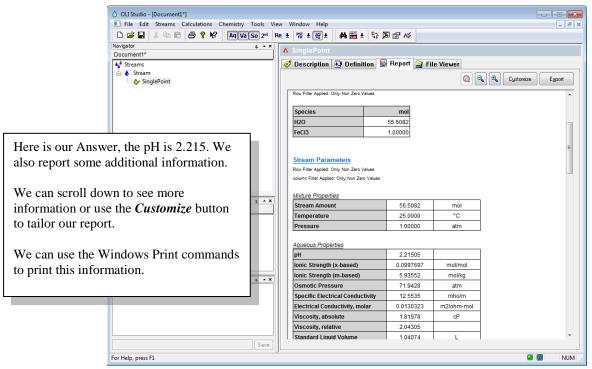


Figure 2-11 The Answer to our question

The answer to our question is that the pH of the solution is approximately 2.215. This is fairly acidic and a good question to ask is why it is so acidic. To see the full list of species we need to modify the report.

Figure 2-12 Click on the customize button

Click on the <u>Customize</u> button.

ategory	Report Contents
 Report Contents Calculation Summary Stream Inflows Speciation Summary Stream Parameters Total/Phase Flows Scaling Tendencies Species Output Molecular Output Element Balance Species Activity Coe Species K-Values Species K-Values Species Mobilities Aqueous Phase Self Vapor Diffusivity Mat Gibbs Free Energy S Entropy Entropy Entropy Standard St. 	To add or remove a section, click the check box. A shaded box means that only part of the component will be printed. To see what's included in a component, click Details. Sections Calculation Summary Stream Inflows Speciation Summary Stream Parameters Total/Phase Flows Scaling Tendencies Species Output Molecular Output Element Balance Species Activity Coefficients Species Fugacities Species K-Values Species K-Values Species Mobilities Aqueous Phase Self Diffusivities Vanor Phase Self Diffusivities Vanor Phase Self Diffusivities Vanor Deaco Diffusivities
4 III >	

Figure 2-13 Report content options

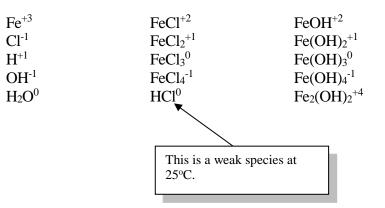
Locate the **Speciation Summary** check box and select it.

Click the <u>OK</u> button. Click on definition tab to refresh the report tab.

Jser Inflows	Related Inflows	Aqueous Species	Vapor	Species	Solid Species	Second Liquid Species		
120	FeCl3.2.5H2O	H2O	H20		FeCI3.2.5H2O		=	
eCI3	FeCI3.2H2O	H+1	HCI		FeCI3.2H2O			
	FeCI3.6H2O	OH-1			FeCI3.6H2O			ļ
	FeCI3.HCI	CI-1			FeCI3 (Molysite)			
	Fe(OH)3	FeCI3			Fe(OH)3 (Bernalite)			
	HCI	Fe2(OH)2+4						
		FeCl2+1						
		FeCl4-1						
		FeCI+2						
		Fe+3		Thes	e aqueous s	species are	very	stable, even
		Fe(OH)2+1		at los	w рĤ.	-	•	
		Fe(OH)3		at 10.	<i>w</i> pm.			
		Fe(OH)4-1						
		FeOH+2						
		HCI						

Figure 2-14 Modifying the report

Answer:


$$pH = 2.215$$

Why is the pH so low? The aqueous iron species form complexes with the hydroxide ion which shifts the water dissociation in the direction to replenish the hydroxide ions³. This also produces hydrogen ions which do not have a corresponding place to go and therefore remain free, lowering the pH.

This equilibrium is always present:

$$H_2O = H^+ + OH^-$$

Speciation:

³ Le Châtelier's principle. P.W.Atkins. Physical Chemistry. W.H.Freeman and Company, San Francisco (1982) p 269.

Speciation in Sour Water

Now we will look at a different system; the sour water system (NH₃/H₂S/CO₂/H₂O).

Sour Water Species

Vapor Species:

H₂O, CO₂, H₂S and NH₃

Aqueous Neutral Species: H₂O, CO₂, H₂S and NH₃

Aqueous Ionic Species:

H⁺, OH⁻, NH₄⁺, HS⁻, S²⁻, HCO₃⁻, CO₃²⁻, and NH₂CO₂⁻

Chemistry Summary (Molecular Equilibrium)

Vapor - Liquid equilibrium reactions considered:

H ₂ O _(vap)	=	H_2O
NH _{3(vap)}	=	NH _{3(aq)}
CO _{2(vap)}	=	CO _{2(aq)}
H ₂ S _(vap)	=	$H_2S_{(aq)}$

Chemistry Summary (Electrolyte Equilibrium)

Additional electrolyte reactions needed

H_2O	=	$H^+ + OH^-$
$NH_{3(aq)} + H_2O$	=	$NH_4^+ + OH^-$
$CO_{2(aq)} + H_2O$	=	$\mathrm{H^{+}} + \mathrm{HCO_{3}^{-}}$
HCO ₃ -	=	$H^{+} + CO_{3}^{2}$
$NH_2CO_2^- + H_2O$	=	$NH_{3(aq)} + HCO_3^{-1}$
$H_2S_{(aq)}$	=	$\mathrm{H^{+}} + \mathrm{HS^{-}}$
HS ⁻	=	$H^{+} + S^{2-}$

Notice that this is the hydrolysis of an ion.

Calculating Partial Pressures

In oil and gas refining, it is frequently important to remove impurities from the gas and oil. This may be done via a scrubbing mechanism in which a gas is scrubbed with a liquid. Alternatively, a polluted waste stream may be stripped of the pollutant using air. In either case, the calculating the partial pressures of the components is very important.

We now want to calculate the partial pressures of CO2, H2S, and NH3 with and without the aqueous phase equilibrium considered.

Data Summary^{4,5}

Temperature 20°C & 60°C

Solution Composition

- NH₃: 1.126 2.160 molal (1.8 3.3 wt %)
- CO₂: 0.424 1.601 molal (1.8 6.4 wt %)
- H₂S: 0.040 0.407 molal (0.1-1.3 wt %)
- H₂O: Balance

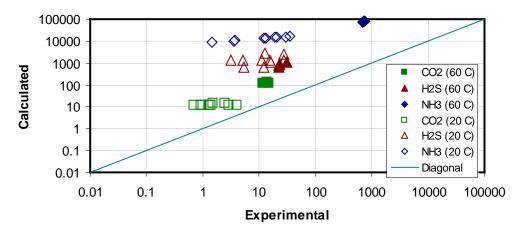
Table 2-1 Experimental and Calculated Partial Pressures of NH3, H2O and CO2

	Liqu	id Conce (molalit						tial Pressure (mmHg)				
					NILI2		r ai tiai		(iiiiiiig)		1120	
					NH3		<u>г</u> .	CO2		H2S		
				г ·			Experim			Experi		
		000		Experim-			-	011		m-	01.1	
Temp (C)	NH3	CO2	H2S	ental	OLI	VLE	ental	OLI	VLE	ental	OLI	VLE
C 0	0.076	1.516	0.064	14.744	10 000	101 6	751.48	502 102	70504.0	01 (1)	26.026	1022 6
60	2.076	1.516	0.064	14.744	12.388	121.6	8	592.192	79594.8	31.616	36.936	1033.6
	2 000	1 (01	0.050	12 (04	10 702	100.0	738.11	744 570	0.47(0.0	00.056	25 1 1 2	0.42.6
	2.098	1.601	0.052	13.604	10.792	129.2	2	744.572	84/62.8	23.256	35.112	843.6
	1.054	1 471	0.04	11 476	11 170	114	691.90	(20.4	7(000 0	22.0	25.004	COD 4
	1.954	1.471	0.04		11.172	114	4		76820.8	22.8	25.004	638.4
	2.16	1.581	0.05	13.68		129.2	705.28	590.52	83524	22.42	28.12	813.2
20	1.231	0.424	0.196	4.104	3.648	12.16	1.444	1.672	8580.4	3.192	3.04	1292
												1325.4
	1.236	0.507	0.201	2.888		12.16	3.496		10290.4	5.092	4.484	4
	1.45	0.517	0.407	2.432	2.736	14.44	3.724	4.028	10526	12.54	10.944	2690.4
												2634.1
	1.439	0.665	0.396	1.52		14.44	13.072		13611.6	26.98	20.672	6
	1.132	0.681	0.1	1.368	1.216	11.4	12.16		13892.8	5.32	4.94	663.48
	1.234	0.694	0.199	1.292	1.216	12.16	13.072	16.036	14181.6	11.172	11.096	1322.4
	1.238	0.712	0.203	1.292	1.064	12.16	19	18.62	14561.6	15.276	12.464	1345.2
	1.234	0.725	0.199	0.912	0.988	12.16	20.444	20.672	14835.2	15.96	13.072	1079.2
												1333.0
	1.235	0.771	0.2	0.912	0.836	12.16	29.184	30.324	15808	27.36	17.024	4
	1.126	0.794	0.095	0.684	0.684	11.4	35.188	36.252	16271.6	12.236	8.892	633.08

Table 2-1 Comparing Experimental Partial Pressures to Calculated values.

⁴ IGT Process Research Division, "HYGAS, 1972 to 1974 Pipeline Gas from Coal - Hydrogenation (IGT

Hydrogasification Process)" R & D Report No. 110; Interim Report No. 1. ERDA July 1975.


⁵ D.W.VanKrevelen, P.J.Hoftijzer, and F.J Juntjens. "Composition and Vapour Pressures of Aqueous Solutions of Ammonia, Carbon Dioxide and Hydrogen Sulphide" <u>Rec.Trav.Chem.</u>, <u>Pay-Bas</u> 68, 191-216 (1949)

The data contained in **Table 2-1** compares the experimental partial pressures of carbon dioxide, ammonia and hydrogen sulfide against a VLE only model and the full OLI speciated model.

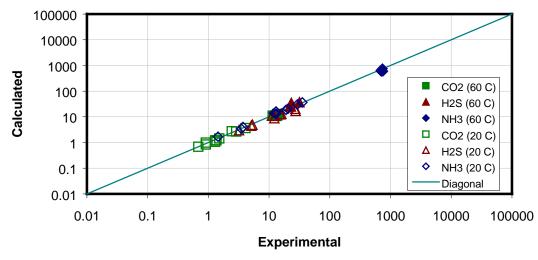
Considering only the Vapor-Liquid equilibria

Only the following equilibria are considered in these calculations:

$H_2O_{(vap)} =$	H_2O
NH _{3(vap)} =	NH _{3(aq)}
CO _{2(vap)} =	CO _{2(aq)}
$H_2S_{(vap)} \;\; = \;\;$	$H_2S_{(aq)}$

Partial Pressures of Gases (VLE only)

Figure 2-15 Parity plot of the partial pressures of gases without aqueous reactions


In Figure 2-15, the calculated partial pressures of the gases are over predicted. In the case of ammonia (filled and open diamonds), the over prediction may be as much a five orders of magnitude. This data can be improved with statistical corrections or by applying a strong activity model. These corrections, however, are in effect performing most of the "Work" in the calculation. If we desired conditions other than the conditions in these series of calculations, then perhaps the corrections will over-correct.

Considering the full OLI Speciation Model

All of these equilibria are no considered in these new series of calculations:

$H_2O_{(vap)}$	=	H ₂ O
NH _{3(vap)}	=	NH _{3(aq)}
CO _{2(vap)}	=	CO _{2(aq)}
$H_2S_{(vap)}$	=	H ₂ S _(aq)
H ₂ O	=	$\mathrm{H}^{+} + \mathrm{OH}^{-}$
$NH_{3(aq)} + H_2O$	=	$NH_4^+ + OH^-$
$CO_{2(aq)} + H_2O$	=	$\mathrm{H^{+}} + \mathrm{HCO_{3}^{-}}$
HCO ₃ -	=	$H^{+} + CO_{3}^{2}$
$H_2S_{(aq)}$	=	$\mathrm{H}^{+} + \mathrm{HS}^{-}$

HS ⁻	=	$H^{+} + S^{2-}$
$NH_2CO_2^- + H_2O$	=	$NH_4^+ + HCO_3^-$

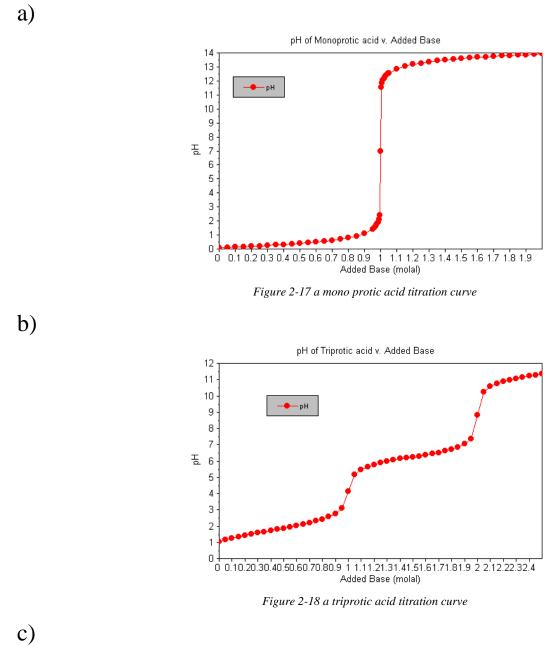

Partial Pressure of Gases (Full OLI Model)

Figure 2-16 Parity plot of the partial pressures of gases with aqueous reactions

When all the equilibria are included in the calculations, the calculated partial pressure of the gases agrees with the experimental values. This was done without specialized data regression to the general range of this data. We may now have confidence that our predictions will hold at other conditions.

An Example of Speciation

A 0.1 molal (moles/ Kg H_2O) hydrofluoric acid sample is to be titrated with calcium chloride (CaCl₂). What will the titration curve look like?

Something Else??

The Answer is "C", Something Else

Before we investigate this problem, let's look at some of the underlying parts to this problem. First, what is the pH of the hydrofluoric acid stream at 30 °C? Let's use the OLI Studio to find out.

The Stream defin	e Stream definition would be:			
Temperature	=	30 °C		
Pressure	=	1 Atmosphere		
H2O	=	55.5082 moles		
HF	=	0.1		

OLI Studio - [Document1*] - - -I File Edit Streams Calculations Chemistry Tools View Window Help - 5 × 🗅 😅 🖬 🐇 🛍 💼 🎒 🛠 校 🗛 Va So 2ª Re 🛨 🌿 🛨 👹 🛨 🗛 🎬 🛓 💱 🔉 😭 🎸 Navigator Document1* а • × ▲ SingleP < Description 🛃 Definition 📓 Report 🚘 File Viewer 褖 Streams FeCL3 Type of calculation Value Variable Stream Parameters Isothermal 55.6082 Stream A Bubble/Dew Point Temperature (°C) 30 0000 Temperature
 Pressure Pressure (atm) 1.00000 Inflows (mol) H20 55.5082 Calculate 🥝 HF 0.100000 Summar Unit Set: Metric (moles) Automatic Chemistry Model AQ (H+ ion) Databanks: Public Isothermal Calculation 30.0000 °C 1.00000 atm Phase Amounts Aqueous 55.6163 mol Action ‡ ▲ × Actions Vapor 0.0 mol Solid 0.0 mol Aqueous Phase Properties vqueous Phase Properties pH 2.12721 Ionic Strength 1.47807e-4 mol/m Density 0.997886 g/ml We have already calculated the pH of this Calc. elapsed time: 0.050 se stream. The value is Plot Template Manager Calculation complete quickly available in the summary box. Input Output Advanced Search Add as Stream Export Image: NUM For Help, press F1

The input should look like this:

Figure 2-19 the pH of the HF stream

The calculated pH of this stream is approximately **2.13**.

Now let's find the pH of the calcium chloride stream. The conditions are:



Figure 2-20 The pH of the Calcium chloride stream.

The pH is approximately **6.8**.

What happens if we mix equal volumes of the two streams? We have the Mix calculation to help us determine the resultant pH.

We click on the "Add Mixer" icon to start adding streams together.

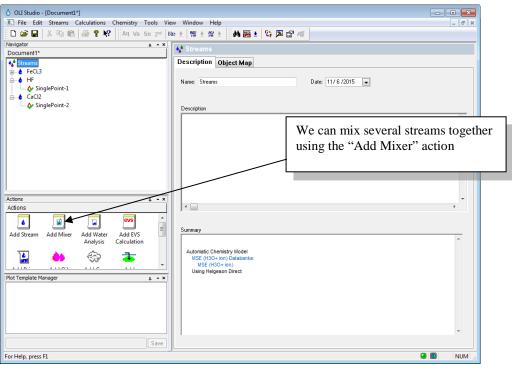


Figure 2-21 The main explorer window. Locating the Mix calculation.

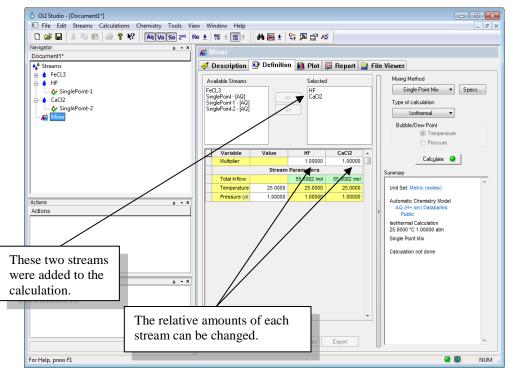


Figure 2-22 The completed mix calculation.

We now need to click on the report tab to see the resultant pH.

Stream Parameters			
Row Filter Applied: Only Non Zero Values			
column Filter Applied: Only Non Zero Values			
Mixture Properties			
Stream Amount	111.216	mol	
Temperature	25.0000	°C	
Pressure	1.00000	atm	
Aqueous Properties]	
pH	1.43676		
lonic Strength (x-based)	2.27328e-3	mol/mol	
lonic Strength (m-based)	0.126587	mol/kg	
Osmotic Pressure	3.73060	atm	
Specific Electrical Conductivity	2.35949	mho/m	
Electrical Conductivity, molar	0.0237004	m2/ohm-mol	
Viscosity, absolute	0.901901	cP	
Viscosity, relative	1.01255		
Standard Liquid Volume	2.01174	L	
Volume, Std. Conditions	2.00895	L	
Solid Properties			
Standard Liquid Volume	1.30476e-3	L	

The resultant pH is 1.44. How can this be? An acid stream (the HF stream had a pH of approximately 2.13) and a nominally basic stream (the CaCl₂ stream had a pH of 6.8) are mixed and the pH is outside the value of either stream.

Let's use the OLI Studio to examine the chemistry in more detail. First, we will perform a composition survey on the HF stream. To do this we will now titrate the stream with $CaCl_2$.

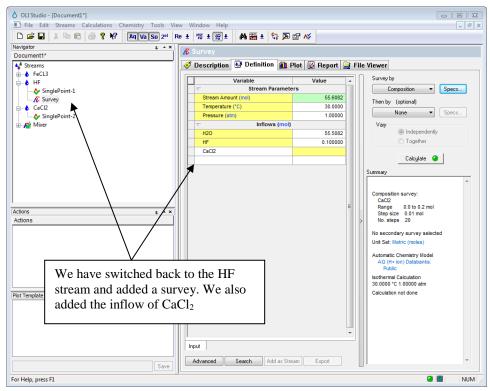


Figure 2-23 The composition survey prior to calculation.

We set the survey to automatically add $CaCl_2$ in the range of 0.0 moles to 0.2 moles in 0.01 mole increments. When the calculation was complete, we displayed the plot.

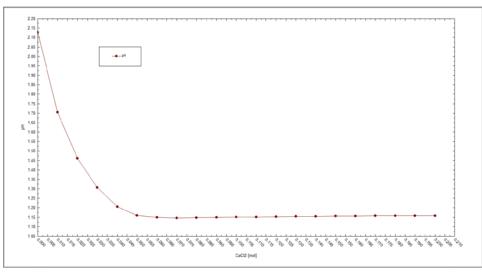
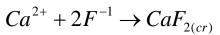



Figure 2-24 pH response to CaCl2 titration

As you can see, adding CaCl2 to this solution lowers the pH initially. The pH does begin to slowly increase after 0.06 moles of CaCl2 have been added.

Why the unusual pH behavior? At low values of $CaCl_2$ the hydrogen fluoride dissociates because of the formation of a solid phase, $CaF_{2(cr)}$. This effectively removes fluoride ion from solution according to the following equation:

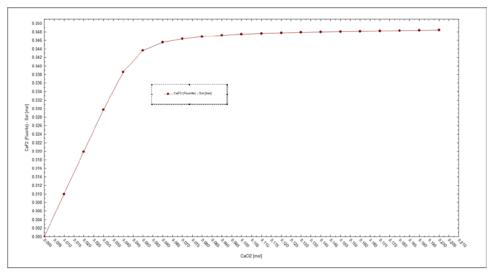


Figure 2-25 the formation of CaF_2

This shifts the following equilibrium to the right.

Is Hydrofluoric Acid a strong Acid?

No, HF is a weak acid with a pKa = 3.45. Compare this to other weak acids:

Acetic Acid: pKa=4.75

Citric Acid: pKa1=3.14 HF is between these values.

$HF^{o} \rightarrow H^{+} + F^{-}$

As CaF_2 is formed, the amount of fluoride ion in solution is decreased. *Le Chatlier's* principle states that any equilibrium under stream which shift to relieve the stress. Thus, more hydrogen ion is produced, lowering pH.

What are the fluoride species doing in solution? The next figure illustrates this:

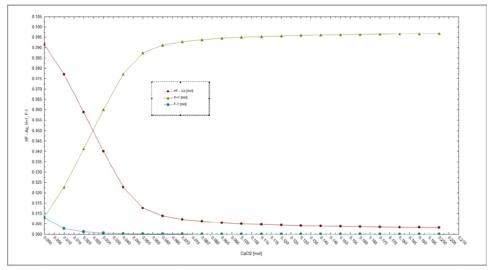


Figure 2-26 The dominant fluoride species in solution.

The neutral HF species continues to dissociate until almost 0.05 moles of calcium chloride. At the same time hydrogen ion is produced. The fluoride ion in solution also decreased as the formation of CaF_2 continues.

Summary:

- 1. Full aqueous Speciation is required to fully simulate the chemistry
- 2. Frequently there is more chemistry involved than simple acid/base chemistry.
- 3. Species concentrations can vary dramatically over relatively small range of conditions.

Click here for a finished Stream Analyzer file for this section: Chapter 02 Tour

3. Removing Nickel from Wastewater

The Removal of Nickel using the OLI Studio

This tour of the OLI Studio is based upon a typical wastewater treatment problem, removal of a trace heavy metal ion (nickel) from a stream in which the presence of another chemical (cyanide) significantly alters the treatment strategy. In this case, we are considering precipitation as an approach to removal of nickel.

In this application, a user is discharging a wastewater that contains nickel ion at a concentration of 0.002 moles/Kg H₂O. The existing treatment strategy is to precipitate the nickel ion as Nickel Hydroxide (Ni(OH)₂). The soluble nickel remaining after precipitation is less than 1 ppm, which is a design specification.

During the course the plant operation, some cyanide ion is inadvertently added to the waste stream. The soluble nickel is now more than 1ppm. Sulfide salts were then added to hopefully precipitate the nickel and once again achieve the design specification.

The power of OLI Studio becomes apparent when we are seeking to study the chemistry of individual streams.

We will illustrate the steps necessary to solve these problems in detail. This section is designed to be used as a guide for future reference.

How to run the tour?

In this tour, and all subsequent tours, when action is required by the user, the instruction will be in *Bold and Italic* type. When you are referred to a feature on a screen, the information will be **Bold and underlined**. Any mouse clicks are left-mouse button clicks unless otherwise noted. This is summarized below:

Type Face	User Action
Bold and Italic	The user is required to enter this information
Bold and Underlined	The user is directed to look for this feature in the program windows
Click	Left-mouse button
Right-Click	Right-mouse button

The Tour Starts Here...

We begin by starting the OLI Studio Program. This may be accomplished by *clicking* on the OLI Studio icon or by using the Start button and finding OLI Studio under *Programs*.

Once started, the OLI Splash screen will appear momentarily.

After a few moments, the main OLI Studio window will appear.

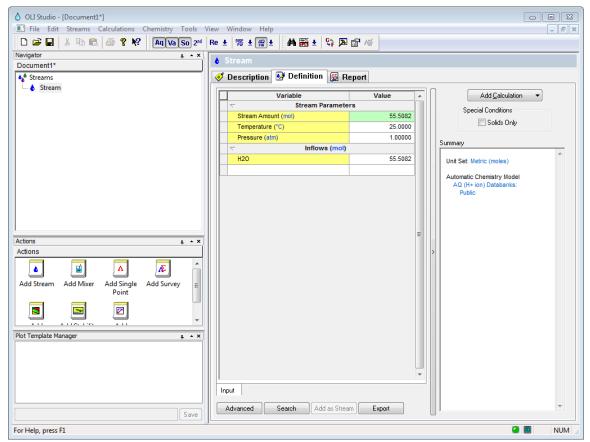


Figure 3-1 The OLI Studio main window

We now need to define the wastewater stream.

Scenario 1: Wastewater without additives

Step 1: Add the Stream

Click on the <u>Add Stream</u> icon. This will display the <u>Definition</u> window.

OLI Studio - [Document1*]		
File Edit Streams Calculations Chemistry Tools V	lian Window Hala	
		- 0 .
	Re ± 1% ± ∰ ± 44 ∰ ± \$; 万 🛱 /종	
Navigator <u> </u>	💧 Stream	
♦▲ Streams	🛷 Description 🛃 Definition 🙀 Report	
Stream		
		alculation 🔻
	Special Cond	litions
	Temperature (*C) 25.000	ds Only
	Pressure (atm) 1.00000	
	Inflows (mol)	
	H2O 55.5082 Unit Set: Metric (mo	les)
	Automatic Chemistr	n Madal
	AQ (H+ ion) Data	
	Public	
	E	
Actions q • ×		
Actions		
Add Stream Add Mixer Add Single Add Survey =		
Point		
Plot Template Manager p x		
	Input	
	Advanced Search Add as Stream Export	-
Save		
For Help, press F1	,	NUM //

Figure 3-2 The streams definition view.

We should add some descriptive information about this stream so we can later identify the stream.

Step 2: Adding definitions

Image: Stream Image: Str	OLI Studio - [Document1*]	
vigator cournent1* © Stream © Description © Definition © Report Name: Stream Date 6/17/2016 ■ Description Description Description Symmay Unit Set Metric (moles) Automatic (File Edit Streams Calculations Chemistry Tools View Window Help	- 8
streams Streams Stream btors tions tio		
Streams Stream Consistent Consis	- Stroom	
Stream Stream Add Mirer Add Single Add Survey Point Complete Manager Complete		
bons tons tons Add Single Add Sin	s Stream	
bons + * tions tions dd Stream Add Mixer Add Single Add Survey Point Point tTemplate Manager + * Save	Name: Stream Date: 6/17/2016	
bons + * tions tions dd Stream Add Mixer Add Single Add Survey Point Point tTemplate Manager + * Save		
bons + * tions tions dd Stream Add Mixer Add Single Add Survey Point Point tTemplate Manager + * Save	Description	
titons Add Single Add Survey Point Summay Unit Set: Metric (moles) Automatic Chemistry Model AQ (H+ ion) Databanks: Public Save		
titons Add Single Add Survey Point Summay Unit Set: Metric (moles) Automatic Chemistry Model AQ (H+ ion) Databanks: Public Save		
titons Add Single Add Survey Point Summay Unit Set: Metric (moles) Automatic Chemistry Model AQ (H+ ion) Databanks: Public Save		
titons Add Single Add Survey Point Summay Unit Set: Metric (moles) Automatic Chemistry Model AQ (H+ ion) Databanks: Public Save		
titons Add Single Add Survey Point Summay Unit Set: Metric (moles) Automatic Chemistry Model AQ (H+ ion) Databanks: Public Save		
titons Add Single Add Survey Point Summay Unit Set: Metric (moles) Automatic Chemistry Model AQ (H+ ion) Databanks: Public Save		
titons Add Single Add Survey Point Summay Unit Set: Metric (moles) Automatic Chemistry Model AQ (H+ ion) Databanks: Public Save		
titons Add Single Add Survey Point Summay Unit Set: Metric (moles) Automatic Chemistry Model AQ (H+ ion) Databanks: Public Save		
Image: Superstand Image: Superstand Image: Superstand Superstand		
Image: Save		
dd Stream Add Single Add Survey Point Point Image: Interplate Manager Image: Ima		
Image: Interference Image: Interference Interference <t< td=""><td>Add Stream Add Mixer Add Single Add Survey 😑 🛛 👘</td><td></td></t<>	Add Stream Add Mixer Add Single Add Survey 😑 🛛 👘	
AQ (H+ ion) Databanks: Public Save	Point Unit Set: Metric (moles)	
t Template Manager t × ×	Automatic Chemistry Model	
t Template Manager t • ×		
		-
	Save	
Help, press F1 🧧 🗐 NU		

Click on the **Description** tab. This will display the description information

Figure 3-3 The Stream Description tab.

It is advisable to change the name of the stream from the default name. You may be entering many streams and will need to sort them out at a later time.

Step 3: Enter Stream Names and Definition

Replace the name *Stream* with the name *Nickel Waste*.

Add the following text to the description box: "Nickel waste water for the OLI Aqueous Modeling Course."

The summary box will contain additional information as the calculations proceed. This information maybe the name of additional databases or chemistry models imported from other OLI software packages. The filled-out windows will look like the following figure:

OLI Studio - [Document1*]	
I File Edit Streams Calculations Chemistry Tools	/iew Window Help
🗅 🗃 🛃 🐇 🛍 📾 😵 💦 🛛 🗛 Va So 2**	Re ± 🐘 ± 📾 ± 😫 🖾 🖓 🖾 🖄
Navigator # * *	Nickel Waste
Document1*	Vickel Waste
🍫 Streams	🛷 Description 😼 Definition 📓 Report
Nickel Waste	
	Name: Nickel Waste Date: 6 /17/2016
	Description
	Nickel waste water for the OLI Aqueous modeling Course

Figure 3-4 The filled-out description window

Click on the <u>Definition</u> tab.

Step 4: Enter component inflows

Click in the white box in the grid below the <u>Inflows</u> line.

Add the formula *Ni(OH)*₂.

Click in the white box next to the species you just entered and enter the value *0.002*. Press <Enter> to update the list.

After entering the values, the grid should look like the following:

Variable	Value
Stream Param	neters
Stream Amount (mol)	55.5102
Temperature (°C)	25.0000
Pressure (atm)	1.00000
Inflows (m)	iol)
H2O	55.5082
Ni(OH)2	2.00000e-3

Figure 3-5 The filled-out grid, notice the name Ni(OH)2 changed.

OLI Studio will automatically change the name of the species to the selected display name. In this instance, the name you entered was $Ni(OH)_2$ but it may have changed to a different form. If it changed you can specify which display system to use in the following optional steps.

Optional

The default display name can be changed using a Menu Item called

Tool | Names Manager.

OLI Studio - [Document1*]			
🔳 File Edit Streams Calculations Chemistry	Tools View Window Help		_ 8 ×
🗅 🛎 🖬 👗 🛍 🛍 🍻 🕈 😽 🛛 🗛 🗸	Component Search	🗛 🎬 🛓 💱 🔎 📽 🖉	
Navigator	Names Manager		
Document1*	Units Manager		
🏘 Streams	Customize	Definition 📓 Report	
Nickel Waste			
	Options	able Value 🔺	Add Calculation 👻
	Alloy Manager	Stream Parameters	Special Conditions
		0 55.5102	C Solids Only
	Temperature (*0) 25.0000	Solids Only

Figure 3-6 the Tools Menu

Select Names Manager from the Tools list.

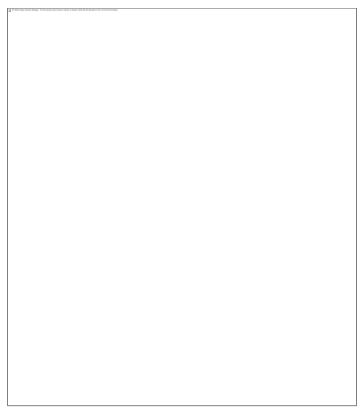


Figure 3-7 The Names Manager

The components can be displayed using the <u>**Display Name**</u> (default) or by the <u>**Formula Name**</u>. Alternatively, the traditional OLI Tag name⁶ can be used.

Select the **Formula** radio button.

Click on the <u>Apply</u> button.

Click on the \underline{OK} button.

Variable	Value
Stream Paramet	ers
Stream Amount (mol)	55.5102
Temperature (°C)	25.0000
Pressure (atm)	1.00000
Inflows (mol)	
H2O	55.5082
Ni(OH)2	2.00000e-3

Figure 3-8 The filled-out grid in with formula names.

The remainder of this tour will use this name display system.

Now enter the 0.002 moles of Ni(OH)₂.

⁶ This is also known as the ESP name.

We are now ready to begin the calculations. Our first task is to determine the pH of this solution.

OLI has added a new feature to the inflow grid. If you hover the cursor over the inflow components, you will see information about that particular chemical.

	Variable	Value
∇	Stream Paramete	rs
Stream Ar	mount (mol)	55.5102
Temperati	ure (°C)	25.0000
Pressure	(atm)	1.00000
∇	Inflows (mol)	
H20		55.5082
Ni(OH)2		2.00000e-3
	Nickel(II) hydroxide Formula = Ni(OH)2 OLI Tag = NIOH2 MW = 92.685	

Step 5: Add a Single Point calculation to the Stream

The local image named ise alignings. The file may been been	moust research, or deleted. Norly that the loss pairs, to the connect list and lossion.			

Figure 3-9 Selecting Single Point

Click on the Add Calculation Button and then select Single Point.

As with the stream definition, each calculation can have its own name and definition. We will add our definition for this calculation to remind us of what we did here. Click on the *Description* Tab.

Replace the Calculation name with Base Case pH.

Add a description: Base Case pH without additives.

The summary box will update with the status of the calculation. The following window shows this information.

Base Case	pН			
Description	🤒 Definition	髮 Report	📄 File Viewer	
lame: Base Cas	ерН		Date: 6 /17/2016	-
)escription				

Figure 3-10 The filled out description

We can now start the calculation.

Click on the <u>Definition</u> tab.

The information on this page does not need to be changed Please

Click on the <u>Calculate</u> button.

When the program is completed (the orbiting e stops) we are ready to review the results. This may be done in several ways. This tour will examine several of the methods.

Step 6: Obtaining results

Click on the <u>Output</u> tab.

	Value 🔺	Type of calculation
Stream Paramete	rs	Isothermal 💌 Specs
Stream Amount (mol)	55.5102	Bubble/Dew Point
Temperature (°C)	25.0000	Temperature
Pressure (atm)	1.00000	Pressure
Inflows (mol)		
H2O	55.5082	
Ni(OH)2	2.00000e-3	Calculate 🥥
		Summary
		Automatic Chemistry Model AQ (H+ ion) Databanks: Public Isothermal Calculation 25.0000 °C 1.00000 atm Phase Amounts Aqueous 55.5083 mol Vapor 0.0 mol Solid 1.99748e-3 mol Aqueous Phase Properties pH 8.65066 Ionic Strength 1.18633e-7 mol/mol Density 0.996845 g/ml Calc. elapsed time: 0.660 sec Calculation complete

Next right-click anywhere in the gray field to display a pop-up menu.

1	De	scrij	otion	🔮 De	finition	5	Repor	rt 📃 F	ile	٠V	iev
Г	Γ		١	/ariable			Va	alue		*	
	$\overline{\nabla}$			Stre	am Paran	neter	s		1		
	P	Strea	m Amo	unt (mol)				55.510	2		
		Mole	es (Tru	e) - Aqueo	ous (mol)			55.508	3		
		Mole	s (Tru	e) - Solid ((mol)		1	.99748e-	3		
		Temp	erature	(°C)				25.000	0		
		Press	ure (at	m)				1.0000	0		
	$\overline{\nabla}$			h	nflows (<mark>n</mark>	lol)					
		H20						55.508	2		
	Ni(OH)2					2	2.00000e-	3	Ξ		
							1				>
			Units	Manage	r						
			Save	default la	ayout						
			Gene	rate Mod	lel						
		✓	Hide	Zero Val	ues						
			Secti	ons	4	•				Ŧ	
In	put	Ou	tput								
	Adv	anced		Search	Add	as Str	eam	Export	t		

Figure 3-11 Displaying additional sections

Select Sections.

Help	\checkmark	Stream Parameters
🗑 ± 🛛 🛤 🎬 ± 🔤 🔊 😭 🎸 📩		Calculation Results
		Inflows
ase pH		Related Inflows
ption 🔮		Additional Stream Parameters
Variable Valu		Phase Flow Properties
Stream Parameters	1	Thermodynamic Properties
m Amount (mol)		Scaling Tendencies
erature (°C)		Pre-scaling Tendencies
sure (atm)		Aqueous
Inflows (mol)		Vapor
1)2 2.	0	Solid
		Molecular Apparent - Aqueous
		Totals
		Molecular Totals
		MBG Totals
		Activity Coefficients
		Fugacity Coefficients
		Fugacities - Vapor
		K-Values
Units Manager	-	Gibbs Free Energy
Units Manager Save default layout Generate Model		Gibbs Free Energy Standard State (x-based)
		Entropy
		Entropy Standard State (x-based)
✓ Hide Zero Values		Mobilities
✓ Hide Zero Values		Self Diffusivities
Sections 🕨		Partial Pressures

Figure 3-12 Displaying all the sections available

Select Additional Stream Parameters

The grid will now change to yellow cells to indicate that these are calculated values. The pH can be found in the grid.

Variable	Value	-	
Stream Paramet	ters		
Stream Amount (mol)	55.5102		
 Moles (True) - Aqueous (mol) 	55.5083		
Moles (True) - Solid (mol)	1.99748e-3		
Temperature (°C)	25.0000		
Pressure (atm)	1.00000		
Inflows (mol))		
H2O	55.5082		
Ni(OH)2	2.00000e-3	1	
Additional Stream Parameters			
Density - Aqueous (g/ml)	0.996845		
Density - Solid (g/ml)	4.14882		
Density - Total (g/ml)	0.996985		
lonic Strength (m-based) - Aqueous	6.58508e-6		
ionic Strength (x-based) - Aqueous	1.18632e-7	Π	
рН	8.65066	Ц	
Standard Liquid Volume - Aqueous	1.00293	ľ	
Standard Liquid Volume - Solid (L)	-2.34689e-5		
nput Output			

3-13 Scroll down to see more data if necessary

The pH is approximately 8.65. Your value may be different if the version you are using is more recent than the version used to create this manual.

Our primary interest in this application is finding the optimum pH for nickel removal. To create a plot of the data, we will need to make a survey.

Step 7: Adding a pH Survey

There are many ways to move around in the OLI Studio. We will constantly highlight them as we move around in the tours. Remember that there is frequently more than one method to achieve a desired result.

Click on the <u>Nickel Waste</u> stream icon in the tree view on the left-hand side of the window.

This will bring you back to the top of the series of calculations by displaying just the stream information.

Click on the <u>Add Calculation</u> button and select <u>Survey.</u>

You can now add descriptive information about this calculation. We recommend the following (please note: We will only display windows that require new explanations)

Enter a new Survey name of **Base Survey**.

Enter a Description: *Base pH survey without additives*.

Click on the <u>Definition</u> tab.

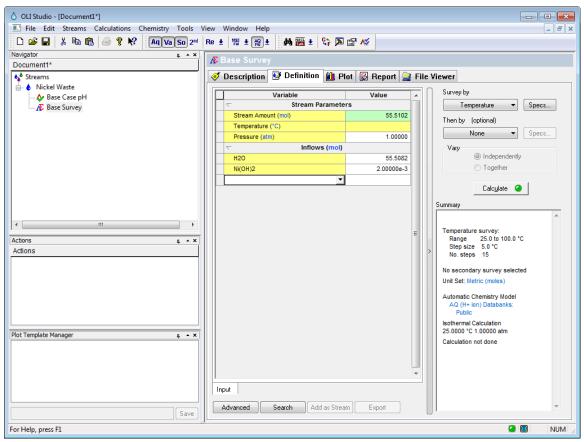


Figure 3-14 The Default Survey Definition Tab.

Since we do not want a temperature survey which is the default, we will need to change the survey type. *Click* on the <u>Survey by</u> button and then select <u>pH</u>.

🔏 Base Survey							
🎻 Description 🛃 Definition 📶 Plot 📓 Report 🚘 File Viewer							
Variable	Value		1	Survey by			
C Stream Paramet	ers	in i		pH 👻 Specs			
Stream Amount (mol)	55.5102			Then by (optional)			
Temperature (°C)	25.0000						
Pressure (atm)	1.00000			None Specs			
Calculation Param	eters			Vary			
Target pH				Independently			
Use Single Titrant	No			 Together 			
pH Acid Titrant	HCL						
pH Base Titrant	NAOH	Ξ		Calc <u>u</u> late 🥥			
C Inflows (mol)			>	Summary			
H2O	55.5082		ľ				
Ni(OH)2	2.00000e-3						
				pH survey: Acid - HCLIN			
				Base - NAOHIN E			
				Range 0.0 to 14.0 Step size 1.0			
				No. steps 14			
				No secondary survey selected			
Input				Unit Set: Metric (moles)			
	Automatic Chemistry Model						
Advanced Search Add as	Stream Export			AQ (H+ ion) Databanks:			

Figure 3-15 Survey Summary (Default Values)

The default acid titrant and the base titrant are already defined (HCl and NaOH.)

We are now ready to begin the calculations.

Step 8: Save, save, save!!!

We should now save our work. It is very frustrating to work for a long period of time and forget to save our work.

We will recommend that you save the name of the file as <u>Chapter 03</u>. Of course, you may use any name you want. We also recommend that you create a working folder and save the file there. We will create a folder named <u>OLI Calcs.</u>

Select **<u>File</u>** and then **<u>Save As</u>** from the menu.

Step 9: Ok then, we're ready to continue

Click on the <u>Calculate</u> button.

The program will run for a short time. When the orbit disappears, check the summary box to see if the calculation is complete. In the tree-view, you can expand the survey to see if all the points converged.

A small calculation result window may appear. If it does, simply close it.

Step 10: Obtaining results

We can now obtain some graphical results.

Click on the <u>Plot</u> tab.

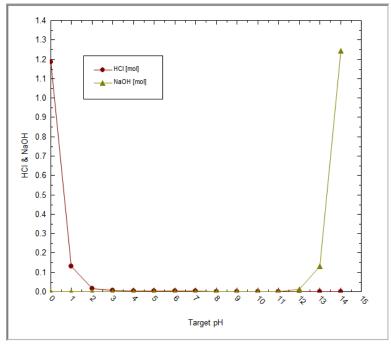


Figure 3-16 the default plot

For many calculations, the values on the plot extend over a very large range of numbers. The default linear axis may not capture all the details we require.

Above the plot window locate and select the **Options** button

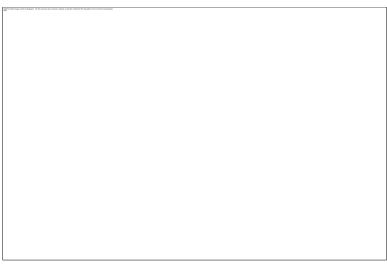


Figure 3-17 Plot Options

Select Y-Axis from the Category List.

ſ	In training unners to displays. The file regimes investigation music, neural or distant length for the part to the source file anti-instant.
I	
I	
I	
L	
I	
I	
I	
I	
I	
I	
I	
I	
I	
I	
I	
I	
I	
I	
I	
I	
I	
I	
I	
I	
I	
I	
I	
I	
I	
I	
I	
I	
I	
I	
I	
I	
I	
I	
I	
I	
I	
I	
I	
I	
L	

Figure 3-18 Setting log for Y-Axis

Check the $\underline{\text{Logarithmic Scale}}$ Box and then $\underline{\text{Click}}$ on the $\underline{\text{OK}}$ box.

The display will now change.

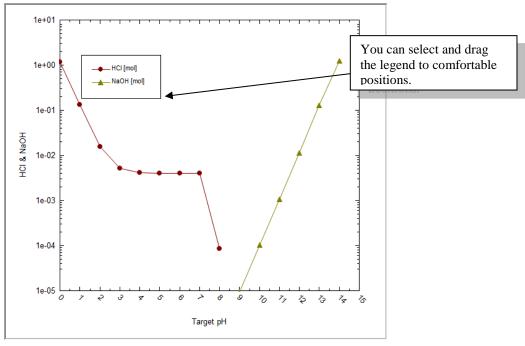


Figure 3-19 log axis plot

Although this plot tells us a great deal, we require more specific information about nickel species. Remember, there is a limit to the amount of soluble nickel that can be discharged. We need to clean this diagram up.

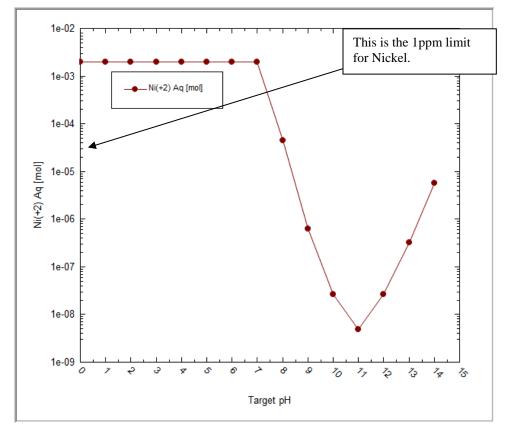
Click on the <u>Variables</u> button.

Base Survey		
🕈 Description 🥸 Definition 🛍 Plot 📓 Report 🚘 File Viewer		
🖉 🔍 🔍 🖾 🔽 View Data	Variables	Options
1e+01		

	Select Data To Plot	? ×
	Curves	
Scroll down this list to find more variables	Stream Parameters X Axis Calculation Results Inflows Additional Stream Parameters Y1 Axis Phase How Properties Scaling Tendencies Scaling Tendencies Aqueous Vapor Solid MBG Totals - Totals MBG Totals - Y2 Axis MBG Totals - Solid X Axis MBG Totals - Solid X Axis Activity Coefficients - Aqueous (n X Axis MBG Totals - Solid X Axis Activity Coefficients - Aqueous (n Select - While zero species Plot data which is only within temperature range.	

Figure 3-20 The curves plot dialog

The <u>NaOH and HCl</u> variables in the <u>Y-Axis</u> box should be displayed. Select them and then *Click* on the left <u>double-arrow</u> (<<) button which will remove it from the plot.


Scroll down the left-hand window to find <u>MBG Totals - Aqueous</u> and expand the list by clicking the small "+" icon.

Select Data To Plot	? 🗙				
Curves					
	V A ···				
Additional Stream Parameters	X Axis				
Phase Flow Properties	>> Target pH				
Thermodynamic Properties					
	Y1 Axis				
	>>				
· Scaling index 	<<				
Molecular Totals					
	Y2 Axis				
MBG Totals - Aqueous					
···· Dominant MBG Totals - Aqueous	>>				
Cl(-1) Aq					
H(+1) Aq					
Na(+1) Aq					
Ni(+2) Aq					
·····O(-2) Aq	Z Axis				
۰ III >	- Select -				
Use short names					
✓ Hide zero species					
Plot data which is only within temperature range.					
ОК	Cancel Apply Help				

Figure 3-21 Selecting more variables

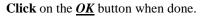
MGB is an abbreviation for Material Balance Groups

The grid updates to show the material balance totals available to display. In this case we desire the Nickel (+2) species. The variable displayed will be the sum of all nickel containing species in the aqueous phase.

Double-Click the <u>NI(+2)</u> item or select it and use the $\geq >$ button. *Click* on the <u>OK</u> button.

Figure 3-22 The results of the pH survey.

The material balance group variable is a sum of all the species for that material in the phase requested. For example, in this case all the NI(+2) –Aq variable is a sum of all nickel containing ions in solution. Any solids are excluded.


You can see that a minimum in aqueous solubility seems to occur in the pH=11 range. This is the result of nickel solids forming and leaving the aqueous phase.

The limit of 1 ppm for Ni^{+2} is approximately 2 x 10⁻⁵ moles. At a pH=10, we are several orders of magnitude below this limit.

What else is important in this solution?

Click on the <u>Variables</u> button and add the following species to the plot (you may need to scroll up or down to find all the species).

Aqueous: Ni(OH)2 NiOH+1 Ni+2 Ni(OH)3-1 Solids: Ni(OH)2

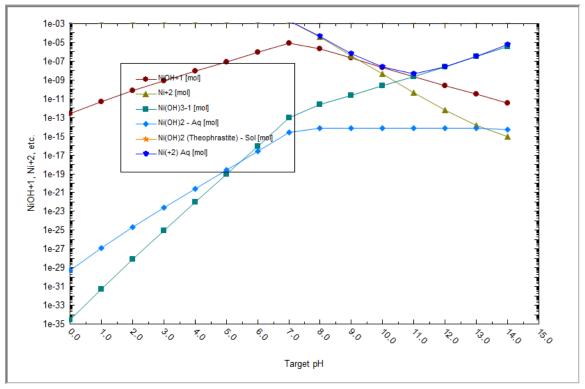
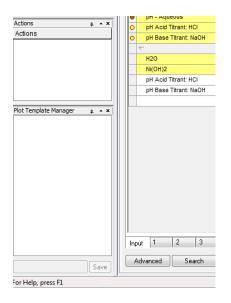



Figure 3-23 Important nickel species

You can see that the soluble nickel (Ni(+2)-Aq) is a summation of the other species. The large drop in the value is because most of the nickel leaves the aqueous solution as Ni(OH)2-Solid at pH's greater than 7.0 with a maximum near pH=11.

Plot Template Manager:

This newly added tool in OLI software is designed to help users save their most frequent plots. For example, you may not want to always look at the dominant Aqueous plot vs. pH in all cases.

For example, if you are always using nickel chemistry you can have a custom plot available. We will create a plot where the MBG Aqueous Totals for Ni(+2) are always displayed. To create this template, please follow the steps:

- 1. Create the case with desired chemistry and inflows
- 2. Add a survey depending on type of calculation
- 3. Customize the survey to your everyday parameters you are interested in, like mass/solids/MBG totals etc

Basically, it could be any combination form the list below:

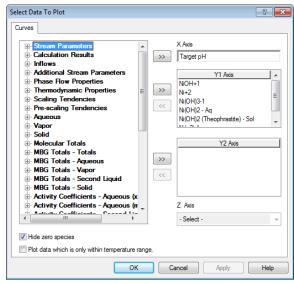


Figure 3-24 Plot data from the previous example.

Remove all the variables from the Y1 Axis box except for Ni(+2) Aq

Select Data To Plot	? ×
Select Data To Plot Curves Curves Curves Calculation Results Curves Calculation Results Curves Calculation Asterna Parameters Calculation Calc	X Axis Target pH Y1 Axis N(+2) Aq Y2 Axis Z Axis - Select - •
Plot data which is only within temperature rang	ge.

Figure 3-25 Selected variables

Click OK.

Save the description in the left-hand corner panel named Plot Template Manager. <u>MBG Aqueous Ni(+2)</u> is the name in this case.

Plot Template Manager	Ļ	•	x
[Default Plot]			
	_		5
MBG Aqueous Ni(+2)	S	av	е

Figure 3-26 Saving a new template for plotting

Hit save. Now here are two plots on that list now. First is default and second is <u>MBG Aqueous Ni(+2</u>. You are now able to see these plot conditions for any other analyzer object in this case when you add survey for that object.

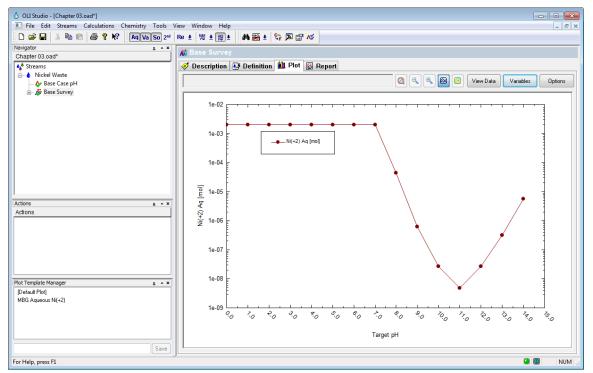


Figure 3-27 Newly added plot template in lower left hand corner

As you can see, if the <u>MBG Aqueous Ni(+2</u> lot is selected (there is a cursor hovering above it) and the graph looks like above. If you click on the option instead of hovering over, this look of the plot gets saved for those conditions, and you will see this template every time you open the case.

Scenario 2: Now, What about the Real Waste?

The real importance of aqueous speciation modeling of this treatment is only really appreciated if we introduce the cyanides, which brings us to the real waste treatment problem.

For this scenario, you will repeat many of the same steps as in the first scenario. We recommend that you create new calculations below the <u>Nickel Waste</u> stream. This will keep the core composition the same without affecting the results of other calculations.

Please follow these steps for this next scenario. Please note: we will only show the screens that are substantially different from those that you have scene.

Step 1: Add a new Single Point calculation

Click on the Nickel Waste stream in the Tree view.

This will display the Actions pane in the bottom left corner of the OLI Studio window.

Click on the <u>Add Single Point</u> icon in the <u>Actions</u> pane.

Change the Name and description:

Name: Waste with CN.

Description: Nickel waste with cyanide added.

Click on the <u>Definition</u> tab.

Add <u>NaCN</u> to the grid and a value of 0.01 moles.

The grid should now look like this:

Variable	Value	4
Stream Parameters		
Stream Amount (mol)	55.5202	
Temperature (°C)	25.0000	
Pressure (atm)	1.00000	
Inflows (mol)		
H2O	55.5082	
Ni(OH)2	2.00000e-3	
NaCN	0.0100000	
_		
		E

Figure 3-28 Adding NaCN

When the Calculate Button light turns green, Click on the button.

Step 2: Getting results of the Single Point Calculation.

Next locate the "Output" mini-tab at the bottom of the definition:

As before, *Right-Click* anywhere on the grid and select <u>Sections</u> and then <u>Additional Stream Parameters</u> from the fly out (see Figure 3-12 on page 44).

The resultant pH should be approximately 11.6.

Variable	Value		
Stream Parameters			
E Stream Amount (mol)	55.5202		
Moles (True) - Aqueous (mol)	55.5262		
Temperature (°C)	25.0000		
Pressure (atm)	1.00000		
Inflows (mol)			
H2O	55.5082		
Ni(OH)2	2.00000e-3		
NaCN	0.0100000	Ξ	
Additional Stream Par	ameters		
Density - Aqueous (g/ml)	0.997132		
Density - Total (g/ml)	0.997132		
lonic Strength (m-based) - Aqueous	0.0120000		
Ionic Strength (x based) Aqueous	2 16114e A		
рН	11.5484		
Standard Liquid Volume - Aqueous	1.00334		
		Ŧ	

Figure 3-29The pH = 11.5484 which is close to 11.6

Step 3: Setup and run the pH survey.

Click on the <u>Nickel Waste</u> stream in the <u>tree view</u> in the left-hand window.

This will display the <u>Actions</u> pane in the bottom left corner of the OLI Studio window.

Click on the <u>Add Survey</u> icon in the <u>Actions</u> pane.

Click on the Description Tab.

Enter a New name: Waste Survey with CN.

Enter a Description: *pH survey with both Nickel and CN*.

Click on the Definition Tab

Add *NaCN* to the grid with a value of *0.01* moles

Click on the <u>Survey By</u> button and select pH.

(HCl and NaOH are the default titrants and are automatically added)

Click on the <u>Calculate</u> button.

Step 4: Reviewing results.

Let's start by using the <u>Plot Template Manager</u>. Select <u>MBG Aqueous Ni(+2</u> that you created previously.

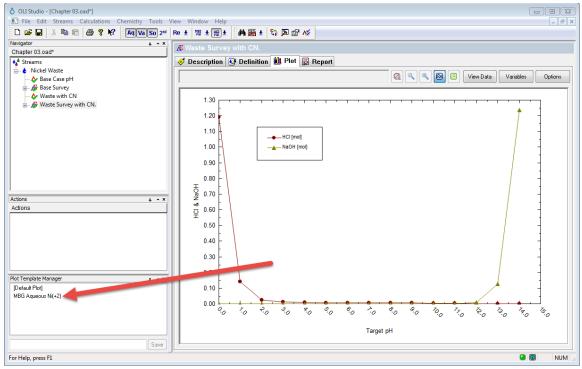


Figure 3-30Select Plot Template

This will display the MBG Totals – Aqueous plot:

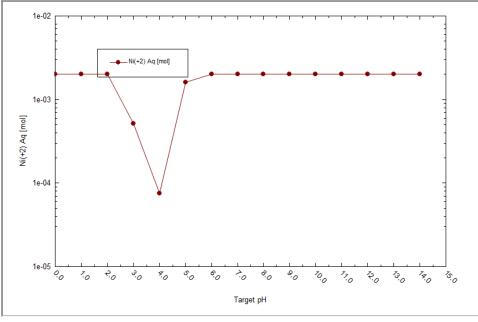


Figure 3-31 The result of the plot template

We can now modify this to display more variables.

Review the steps in **Scenario 1: Step 10** on page 3-47. We wish to plot the following variables in addition to the value already selected from the plot template:

1. Aqueous Species: Ni(CN)4-2

- 2. Aqueous Species: Ni+2
- 3. Aqueous Species: NiOH+1
- 4. Aqueous Species: Ni(OH)3-1
- 5. Aqueous Species Ni(OH)2
- 6. Solid Species: NiNi(CN)4-Solid

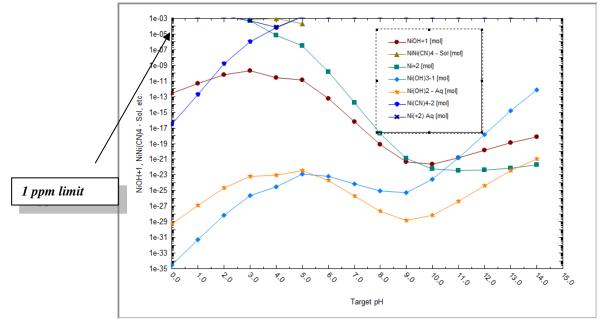


Figure 3-32 Nickel Waste Stream with NaCN added

The results have changed very dramatically. The new optimum pH for Ni removal is around 4.0, rather than 10.0. The lowest total Ni remaining in solution is now on the order of 10^{-4} which is actually well over 1 ppm.

The culprit is the Ni(CN)₄⁻² complex of nickel and cyanide. Basically, the plot of the total Ni in solution and the Ni(CN)₄⁻² complex overlap over the interval pH=5 to 12. This means that virtually all nickel in solution is in the form of this complex.

This complex thus holds the Ni in solution and does not allow the nickel hydroxide to even form. Instead, a much weaker precipitate, the NiNi(CN)₄ salt forms over a narrow range of pH with 4.0 being the optimum.

Scenario 3: Is All Really Lost?

We can now try to influence nature by introducing a source of sulfide. We do this because nearly all metal sulfide salts are highly insoluble.

Create a new single point calculation and survey as you did in the previous two scenarios.

Add 0.01 moles of NaCN

Add 0.01 moles of H2S

As we did in the previous scenario, use the plot template manager to start off with the MBG Totals – Aqueous (Ni+2) and then the following variables when the calculations are complete:

1. Aqueous Species: Ni(CN)4-2

2. Aqueous Species: Ni+2

3. Solid Species: NiS-Solid

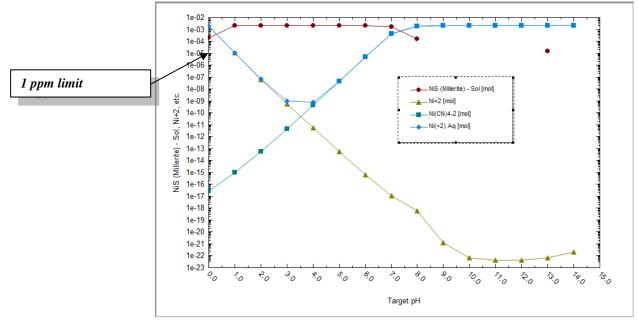


Figure 3-33 Waste Stream pH with both NaCN and H2S added

The results reflect a "power struggle" between the $Ni(CN)^{-2}$ which is holding the nickel in solution and the NiS solid which clearly has a greater tendency to form than the $NiNi(CN)_4$ solid. As a result, our optimum pH is still around 4.0 and we are now around 10^{-5} total nickel in solution which is a bit below 1 ppm.

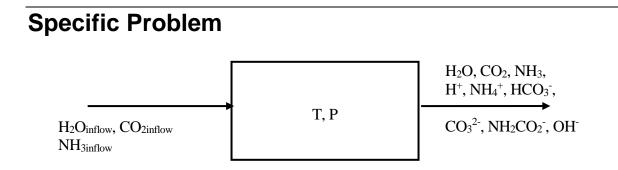
Final Thoughts...

Aqueous speciation modeling can teach us a great deal about complex chemical systems and the interactions of individual species.

The actual removal achieved with sulfide may not be quite enough to satisfy the regulators. This in itself is useful information to have. In addition, with the power of OLI Studio, one could now explore alternative treatment methods such as ion exchange.

Although such a simulation is beyond the scope of the tour, consider how vital it is to know that the dominant species to be exchanged (removed from solution) is an anion $Ni(CN)^{-2}$ and not the cation (Ni^{+2}) as the conventional wisdom might dictate.

Save, Save and then Save again


This would be a good time to save your work. You may use the File/Save As... menu item or use the Save icon on the toolbar.

Click here for a completed OLI Analyzer file for this tour: Chapter 03 Tour

4. The Mathematical Model

Overview

The user should become familiar with the components of the simulator. In addition, the user should have a basic understanding of how the mathematical model is constructed.

For the practical purposes of this section, we will take an actual problem and work it through. The problem is described as:

Given:

Temperature and pressure, represented by T and P respectively, water, carbon dioxide and ammonia, the relative amounts of which are represented by H2OIN, CO2IN, and NH3IN respectively.

Calculate:

The nine unknowns:

The amount of water (*H2O*) The concentration of hydrogen ion $(mH^+)^7$ The concentration of hydroxyl ion (mOH^-) The concentration of molecular carbon dioxide (mCO2)The concentration of molecular ammonia (mNH3)The concentration of bicarbonate ion $(mHCO3^-)$ The concentration of carbonate ion $(mCO2^{-2})$ The concentration of ammonium ion $(mNH4^+)$ The concentration of carbamate ion $(mNH2CO2^-)$

Recipe for Writing the Model

Step 1a: Write an equilibrium mass action for all of the independent aqueous intraphase equilibrium reactions.

⁷ The symbol *m* is used to denote Molality (moles of solute / Kg H₂O) A Guide to Using OLI Studio

$H_2O_{(aq)}$	=	$\mathrm{H^{+}} + \mathrm{OH^{-}}$
$CO_{2(aq)} + H_2O_{(aq)}$	=	$\mathrm{H^{+}} + \mathrm{HCO_{3}^{-}}$
HCO ₃ -	=	$H^{+} + CO_{3}^{-2}$
$NH_{3(aq)} + H_2O_{(aq)}$	=	$NH_4^+ + OH^-$
$NH_2CO_2 + H_2O_{(aq)}$	=	$NH_{3(aq)} + HCO_3^{-1}$

Step 1b: Write an equilibrium K-equation for all of the independent aqueous intraphase equilibrium reactions.

For the example posed, these equations are:

$$\begin{split} K_{H2O} &= (\gamma_{H+}m_{H+})(\gamma_{OH-}m_{OH-})/a^*_{H2O} \\ K_{CO2(AQ)} &= (\gamma_{H+}m_{H+})(\gamma_{HCO3-}m_{HCO3-})/((\gamma_{CO2}m_{co2})a_{H2O}) \\ K_{HCO3-} &= (\gamma_{H+}m_{H+})(\gamma_{CO3-2}m_{CO3-2})/(\gamma_{HCO3-}m_{HCO3-}) \\ K_{NH3aq} &= (\gamma_{NH4+}m_{NH4+})(\gamma_{OH-}m_{OH-})/((\gamma_{NH3aq}m_{NH3})a_{H2O}) \\ K_{NH2CO2-} &= (\gamma_{NH3aq}m_{NH3})(\gamma_{HCO3-}m_{HCO3-})/((\gamma_{NH2CO2-}m_{NH2CO2-})a_{H2O}) \end{split}$$

Note: This gives us the first 5 equations of the required set of 9 equations.

Step 2: Write an electroneutrality equation.

$$mH^{+} + mNH_{4}^{+} = mHCO_{3}^{-} + mNH_{2}CO_{2}^{-} + 2mCO_{3}^{-2} + mOH^{-}$$

This gives us the sixth equation.

We multiply by a factor of 2 because of the divalent charge on the carbonate ion

A Guide to Using OLI Studio

^{*} In aqueous systems, it is more convenient to use the activity of water rather than the concentration. The concentration of water on the molal concentration scale is always 55.508 moles/Kg H2O.

Step 3: Write a sufficient number of material balances to complete the model.

Writing material balances in aqueous systems can be a bit tricky. Remembering the following rules can be quite helpful:

You can only write one of the following three balances:

Hydrogen Oxygen Overall.

For simplicity we will choose the hydrogen balance.

A separate material balance should be written for each remaining element. In this example, we will write material balances for carbon and nitrogen. Some elements may be present in the chemistry model in several oxidation states.

Such an element is sulfur. In our sour water system presented in an earlier chapter, the sulfur was present in the S(-2) oxidation state, also known as sulfide. Sulfur may also be present as the elemental sulfur – S(0), Sulfite – S(+4), and Sulfate S(+6).

By default, the program will not consider changes in oxidation state thus in the case of sulfur, a separate material balance will be written for each oxidation state. The only time that separate balances would not be written would be in a case where there was REDOX. Such cases are beyond the scope of this present treatment.

H⁽⁺¹⁾ Balance:

 $2H_2O_{IN} + 3NH_{3IN} = 2H_2O + W(mH^+ + mOH^- + 3mNH_3 + 4mNH_4^+ + mHCO_3^- + 2mNH_2CO_2^-)$

For each balance, the amount of each species is multiplied by the number of atoms. In this case, for Hydrogen, we multiply by 4 for NH₄+

N⁽⁻³⁾ Balance:

 $NH_{3IN} = W(mNH_3 + mNH_4^+ + mNH_2CO_2^-)$

C⁽⁺⁴⁾ Balance:

 $CO_{2IN} = W(mCO_2 + mHCO_3 + mNH_2CO_3 + mCO_3^2)$

W is a constant, approximately equal to $H_2O/55.508$.

We now have nine equations and nine unknowns.

The Components of the Simulator

For each OLI program, there are several components which we need to discuss.

The Database

The following databases are supplied with the software.⁸

These databases are:

Table 2 OLI Supplied Databanks

AQ Databank Name	MSE Databank Name	Description
Alloys	<none></none>	This contains special solids that are like alloys. Such an example is CuNi alloys. This is an AQ thermodynamic framework only databank. There is no corresponding MSE databank
Ceramics	<none></none>	This contains special solids that are like ceramics. This was to support work done for the ceramics lab at the Rutgers University. This is an AQ thermodynamic framework only databank. There is no corresponding MSE databank
Corrosion	MSE Corrosion	This contains special elements to generate Pourbaix diagrams. Some of the species have had their Gibb's Free Energy of Formation values adjusted to match traditional Pourbaix Diagrams. It is not recommended for use with OLI Flowsheet
Exchange	<none></none>	This contains ion-exchanging resins. This is an AQ thermodynamic framework only databank. There is no corresponding MSE databank
Geochemical	MSE Geochemical	This contains minerals that are primarily found in geothermal applications. These minerals typically do not reform under traditional chemical process conditions.
Low Temperature	<none></none>	This databank contains minerals that form below 0 °C (273.15 K). This is an AQ thermodynamic framework only databank. There is no corresponding MSE databank
Surface Complexation Capacitance Model	<none></none>	This databank contains surface species following Dzombak's model for capacitance. This is an AQ thermodynamic framework only databank. There is no corresponding MSE databank
Surface Complexation Double Layer Model	XSC Databank	This databank contains surface species following Dzombak's model for Double-layers capacitance.
Surface Complexation Non Electrostatic Model	<none></none>	This databank contains surface species following Dzombak's model for non-electrostatic interactions. This is an AQ thermodynamic framework only databank. There is no corresponding MSE databank
Surface Complexation Triple Layer Model	<none></none>	This databank contains surface species following Dzombak's model for Triple-layers. This is an AQ thermodynamic framework only databank. There is no corresponding MSE databank
<none></none>	MSE Urea	This databank contains surface species that support high temperature formation of urea. It is not recommended unless urea is known to form from NH ₃ and CO ₂ . Generally such formations are kinetically limited. This is an MSE thermodynamic framework only databank. There is no corresponding AQ databank

The database(s) contain the thermochemical data required to calculate a fully speciated model. The databases are user-selectable which means chemical models can be tailored to specific situations.

 ⁸ This is only a partial list of databanks, less commonly used databanks are available but will not be discussed here.

 A Guide to Using OLI Studio
 The Mathematical Model • 64

The Chemistry Model

The Chemistry Model contains the equilibria corresponding to the user specified chemistry. This model is automatically created for you by OLI Studio. Normally you will not be required to alter the chemistry.

The thermodynamic data stored in the database is retrieved via the *Generator* for all the specified chemistry and stored in the chemistry model.

The chemistry model does not contain composition data, temperature, pressure or flowrates. It is a general model which can be used in many calculations over a broad range of temperature, pressure and composition.

The Generator

The Generator is a combination of programs which sort and retrieve data from the database based on the user-specified chemistry and place that data into a format which allows subsequent simulation.

The generator creates the framework which the Analyzers use to simulate the conditions specified by the user.

The generator is used every time new chemistry is specified or when the chemistry is modified. Under normal operating conditions, the user will not directly interact with the generator.

The OLI Engine

This is the heart of the program. All the user-specified chemistries and the resultant equilibrium stream simulations are provided for by the OLI Engine.

All the OLI programs use the OLI/Engine in evaluating the specified conditions.

Phase Selection

The basic chemical model generally considers three types of phases:

- i. Vapor
- ii. Aqueous
- iii. Solid

The user may specify to exclude one of these default⁹ phases during the creation of the chemistry model. In addition, a second liquid phase, normally an organic phase, may also be selected.

The phase selection can be found in the Chemistry menu item of OLI Studio.

⁹ Default is defined as the set of choices made by the program in the absence of any user input. **A Guide to Using OLI Studio**The Mathe

OLI Studio - [Document1] ■ File Edit Streams Calculations Chemistry Tools View Window Help □ ☞ ■	- 5 ×
Navigator * * Streams Document1 Bescription Object Map Name: Biteans Date: 11/17/2015 Description The phase selection can be found	·
Actions	• •
Analysis Calculation Automatic Chemistry Model Add Ott Add Cont	*
Save	
	NUM //

Figure 4-1 The Welcome window for OLI Studio

OLI Studio - [Document1]							
E File Edit Streams Calculations	Chemistry Tools View Window Help Select Model Options						
🛛 🗅 🚅 🔛 X 🖻 🛍 🍜 💡 🕅	Pre-built Models						
Navigator	Templates						
Document1	Model Options						
♦♠♦ Streams	ription Object Map						

Figure 4-2 Chemistry Menu Items

Default Chemistry Model Options	? 💌						
Databanks Redox Phases T/P Span							
Databanks							
Thermodynamic Framework							
AQ (H+ ion)							
Available Selected Geochemical Public							
Corrosion Ceramics Low Temperature Alloys	1						
Exchange Surface Complexation C Surface Complexation D	•						
Import Databank Databank search order is from top to bottom. Use the Up and Down arrows to change the search order.							
OK Cancel Apply Help							

Figure 4-3 Model Options

	Stream Chemistry Model Options
	Databanks Redox Phases T/P Span Include Phases Include Solid Phases Ø Aqueous Include Solid Phases Ø Vapor Include H(+1) Ø Solids Include Na(+1) Image: Second Liquid Image: Second Liquid
This is the phase selection dialog. In addition, an organic (non-aqueous liquid) phase can be selected.	Ion Exchange Model Margules Wilson Kinetics Enable
	Calculate Scaling Tendencies for excluded solids OK Cancel Apply Help

Figure 4-4 Selecting phases

In this figure, the Aqueous, vapor and the solid phases are selected. For the electrolyte model, the aqueous phase is always assumed to exist if the chosen thermodynamic framework is Aqueous. OLI currently offers two frameworks; the Aqueous thermodynamic framework and the Mixed-Solvent-Electrolyte (MSE) thermodynamic framework. The check box is used to indicate if a phase is included or not.

The organic liquid phase is a second phase in which water is not the dominant species. Some water must be present in any organic phase.

When the organic liquid phase is selected it may be possible to "Dry Up" the aqueous phase.

It is also possible to select individual solid phases. Your simulation may depend on a solid being excluded since it will not form in the time frame of your calculation. For example, the mineral Dolomite $(CaMg(CO_3)_2)$ thermodynamically stable if calcium, magnesium and carbonates are present in solution yet the solid does not form except under severe conditions of temperature and pressure and with long (geologic) time frames.

5. Solids Precipitation

Overview

Equilibrium based simulators suffer from a potential problem, that the most stable solid will tend to be included over less stable (meta-stable) solids. Such is the case of calcium carbonate. Calcium Carbonate ($CaCO_3$) is found in nature in many forms. Two common forms are the more thermodynamically stable solids, Calcite and the less stable form Aragonite.

It is sometimes desirable to determine the solubility of the less stable solid independently of the more stable solid. In this tour, we will examine the solubility calcium carbonate as calcite in a solution containing magnesium and calcium chloride and carbon dioxide.

In certain instances, the formation of calcite is prohibited kinetically and the less stable form of aragonite will form. Such cases include coral reefs where aragonite is preferred to form via biological action.

In this tour, we will take a solution of 0.1 molal $CaCl_2$, 0.1 molal $MgCl_2$ and 0.01 molal CO_2 at 25 degrees centigrade and 1 atmosphere and determine the solubility of $CaCO_3$ solids.

The Tour

Objectives

In this tour, we wish to accomplish several objectives:

- 1. Learn how to perform a precipitation point calculation.
- 2. View and select an additional databank.
- 3. Modify the chemistry to include and exclude individual solid phases.
- 4. Units manager new look

Let's begin

If you have not done so, please start OLI Studio. After a few moments, the main window will appear. If the Tip-of-the-Day box appears, please close it.

Double-click on the Add Stream icon.

At this point we are assuming that you are familiar with navigating through the software. We will only provide guidance for new items of interest.

Click on the <u>Description</u> Tab.

You may enter a new name for the stream and a description. We recommend *CaCO3 Solubility* as a name for the stream.

Select the **<u>Definition</u>** Tab.

5	The input conditions are:		
ŗ	Femperature	25	°C
]	Pressure	1	Atmosphere
	Water	55.5082	<i>mol</i> (this is the default value)
(CaCl ₂	0.1	mol
]	MgCl ₂	0.1	mol
(CO_2	0.01	mol
(CaCO ₃	0.0	mol

The entry should look the same as in Figure 5-1

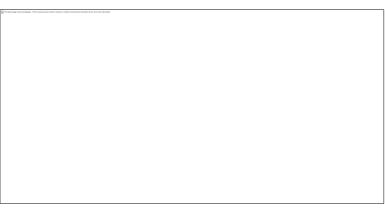


Figure 5-1 Component Inflows

It is frequently difficult to use the display name for the components. For this tour we will change the way the names are displayed.

Select **Tools** from the Menu Bar.

Select Names Manager from the list.

The list of Tools is displayed in Figure 5-2

OLI Studio - [Document1*] File Edit Streams Calculations Chemistry	Tools View Window Help	
🗅 😅 🖬 👗 🗈 🛍 🎒 🦿 🛠 🗛 🗛	Component Search Names Manager	Ma∰a± \$‡ ⊅
Document1* ♦∮ Streams └─∳ CaCO3 Solubility	Units Manager Customize Options Add an Alloy Analyzer Tester	Definition 😡 iable Stream Parame

Figure 5-2 The Tools Menu

Selecting the **<u>Names Manager</u>** from the tools menu will display several options.

Names Manag	jer			? ×
Name Style	Search Criteria	Names Dictio	onary	
Componen	nt Name Style			
Display	y name			
√ Us	se Names Dictior	hary		
Formula	la			
OLI Na	ame (TAG)			
Show	mineral name aft	er solids		
	ted style will be u ables and lists.	ised for display	ving compo	nent
ОК	Cancel	Арр	oly	Help

Figure 5-3 The Names Manager.

There are several items that can be changed. We will discuss each of them in turn.

Name Style Tab

The name of the component can be displayed in several ways.

Display name	This is the name is that is commonly displayed when a species is entered. This is the default display. So the species CO2 is displayed as carbon dioxide.
Formula	This is the chemical formula name. Species such as aluminum nitrate is displayed as Al(NO3)3.
· ·	 G)This is the traditional name for the species stored internally in the OLI software. Users who have used the older ESP software may be more comfortable with this display. mames after solids (Check Box) This check box will allow the stored mineral name (if available) to be displayed next to the formula name or OLI Tag name.

Search Criteria Tab

When a species is entered, the program may search in several ways to find the corresponding data. Such areas that may be searched are Display Name, Formula, OLI name, synonyms, IUPAC names, etc. It is recommended that the default options be left as is.

Names Dictionary

The user may wish to define a species with a name that does not exist in the software. For example, NaOH is frequently referred to as caustic. This can be selected if required.

For this tour, we will use the OLI name.

Click the <u>OLI name (TAG)</u> radio button. Select <u>OK</u> when done.

Your display should have changed to that of Figure 5-4

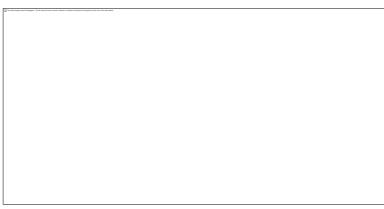


Figure 5-4 The Input in the Traditional OLI names

There is only a small difference in this view. The OLI tag name is in all capital letters.

Selecting the precipitation point calculation

We are now ready to begin the precipitation point calculation.

Click on the <u>Add Calculation</u> button and select <u>Single Point</u>.

If you so desire, you may enter descriptive information about this calculation. It is recommended that you do so since the default naming system will create a large number of calculations with very similar names (for example, single1, single2, single3, etc.)

Click on the **Description Tab** and enter a name. We recommend *Calcite Solubility*.

Click on the Definition Tab.

The default calculation is the **Isothermal** calculation. We need to change this option.

Click on the <u>Type of calculation</u> button.

Select **Precipitation Point**

The input grid now has two new items. We need to have these filled out properly prior to the start of the calculation.

	Variable	Value
<	Stream Parameter	s
	Stream Amount (mol)	55.7182
	Temperature (°C)	25.0000
	Pressure (atm)	1.00000
<	Calculation Paramete	ers
	Adjusted Inflow:	<select></select>
	Precipitant:	<select></select>
<	Inflows (mol)	
	H2O	55.5082
	CACL2	0.100000
	MGCL2	0.100000
	C02	0.0100000
	CAC03	0.0
Г		-
		_

Figure 5-5 The input grid before specifications added.

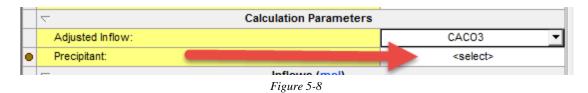
The **Calc Parameters** section on the grid in Figure 5-5 shows that the solid that is to be precipitated (**Precipitant**) is unspecified and that the adjusted variable (**Adjusted Variable**) is also unspecified.

The precipitation point calculation uses the user selected solid as a target. The user either enters an amount of solid that they desire or uses the default value (indicated by a blank box). This value is 1.0×10^{-10} times the stream amount - a really small number.

The inflow amount of the yet unspecified species is then adjusted to match that target value. The adjusted amount is then the solubility of the species. Care should be taken in trying infeasible cases.

Click in the <u>Adjusted Inflow:</u> box.

		ulation Parameters
	Adjusted Inflow:	<select></select>
•	Precipitant:	<select></select>
	~	Inflows (mol)
		Figure 5-6


select CACO3

∇	Calculation Parameter	rs
Adjusted Inflow:		<select></select>
Precipitant:		<select></select>
$\overline{\nabla}$	Inflows (mol)	H2O CACL2
H2O		MGCL2
CACL2		C02
MGCL2		CAC03
002		0.0100000

Next *Click* in the *Precipitant:* box.

A Guide to Using OLI Studio Solids Precipitation • 73

And then select **CACO3 (Calcite)** you may need to scroll down to find it!

	∇	Calculation Parameters	
	Adjusted Inflow:	CAC03	
•	Precipitant:	<select></select>	•
	∇	Inflows (mol) MGCL2.4H20	*
	H2O	MGCL2.6H2O (Bischofite) MGCL2	
	CACL2	MGCLOH	
	MGCL2	MGOH2 (Brucite)	
	CO2	MGO (Periclase) ARAGONITE (Aragonite)	
	CACO3	CACO3 (Calcite)	Ξ
		MGC03.3H2O (Nesquehonite)	
_		MGCO3 (Magnesite)	

We are now ready to start the calculation.

Click on the <u>Calculate</u> button.

When the calculation is completed, the program will return to the same window.

In the **Summary Box** you will see a quick report.

Figure 5-10 Summary of Calcite Solubility

In this case, approximately 0.0042 moles of $CaCO_3$ was added to this solution (in 55.5082 mol of H_2O , which makes this a molal concentration) to precipitate out a very small amount of solid.

Save early and save often...

Now would be a good time to save our work. Any name will suffice. We recommend Chapter 5 Tour.

Expanding the Chemistry

Frequently there is more to the chemistry than what is covered in the PUBLIC database.¹⁰ The following is a partial list of additional databases available from OLI:

Geochemical	This database contains thermodynamic data for species that appear in geological time frames or are available for chemical weathering. We do not normally expect to see these species under industrial conditions.
Corrosion	This database is provided for use with the Corrosion Analyzer component of OLI Studio. It is user selectable if the user is a lessee of the Corrosion Analyzer.

Back to the tour ...

Select <u>Chemistry</u> from the menu.

Select **Model Options...** from the menu list.

💧 OLI Studio - [Chapter 5 Tour.oad]		
I File Edit Streams Calculations	Chemistry Tools View Win	dow Help
🛛 🚅 🖬 X 🖻 🛍 🍜 💡 🕅	Pre-built Models	§ ± 🙀 ± 🐴
Navigator	Templates 🕨	lcite Solubility
Chapter 5 Tour.oad	Model Options	
♦ Streams	Model options	escription 🛛 🕺 🛙
CaCO3 Solubility		Varial

Figure 5-11 The Chemistry Menu

We will now be given a selection of database to choose from. The Public Databank is always selected and must be used.

Select Geochemical Databank and *click* the right arrow. *Click* OK to continue.

¹⁰ The PUBLIC database is the main OLI database, containing nearly 70 percent of the thermodynamic data available from OLI and 100 percent of the supporting information.

Figure 5-12 Selecting the Geochemical databank

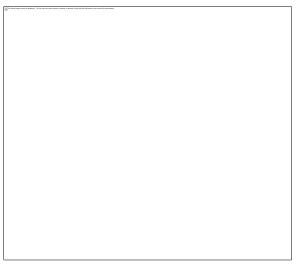


Figure 5-13 Geochemical databank selected

Removing Solids

You may have more or

depending on previous installations and imported databases.

less databanks

After we have selected the Geochemical databank, we now need to change the chemistry. The inclusion of the following species: Ca^{+2} , Mg^{+2} , and CO_2 in the chemical model will allow for many new solids to potentially form. Carbon dioxide, of course, creates the carbonate and bicarbonate ions.

These new solids are:

Calcite	CaCO ₃
Aragonite	CaCO ₃
Dolomite	CaMg(CO ₃) ₂

Calcite is the most thermodynamically stable solid among the two calcium carbonates. In this scenario, we wish to determine the solubility of the less thermodynamically stable solid, aragonite.

A problem with equilibrium based models is that we will always get the most thermodynamically stable solid unless we modify the model.

For this we will go back to the <u>Chemistry Menu</u> and <u>Model Options...</u> (See Figure 5-11 and Figure 5-12). This will bring up a Select Phases dialog.

Select the **Phases** tab.

Calcite Solubility Chemistry Model Options		
Calcite Solubility Chemistry Model Options Image: Calcite Solubility Chemistry Model Options Databanks Redox Phases Include Phases Include Solid Phases Image: Calcite Solid Phases Image: Calcite Solid Phases Image: Calcite Solid		
OK Cancel Apply Help		

Figure 5-14 Removing Calcite (CaCO3) from the chemistry model

The **Include Solid Phases** box lists the solids in the chemistry model. Unchecking these solids will mathematically eliminate the solid from consideration. The Scaling Tendency, however, will still be calculated.

Click on the "+" next to the Ca(+2) box to display all the calcium containing solids

Calcite Solubility Chemistry	Model Options	? 💌
Calcite Solubility Chemistry Databanks Redox Phase Include Phases Q Aqueous V Vapor Solids Second Liquid Ion Exchange Model Margules Wilson Kinetics	·	
Enable	CAOH2 (Portlandite) DISODL (Dis-dolomite) Concentre (Dolomite) Calculate Scaling Tendencies for excluded OK Cancel Apply	solids

Figure 5-15 Expanding Calcium Solids

Scroll down to find <u>CACO3(Calcite)</u> and uncheck this solid. *Click* <u>OK</u> continue.

Repeating the precipitation point calculation

We have now modified the chemistry model to excluded calcite (CaCO₃). We now want to determine the solubility of aragonite (also a CaCO₃ solid).

Repeat the steps to begin a precipitation point calculation.

We will receive an error message in the summary box:

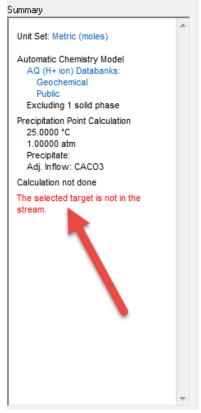
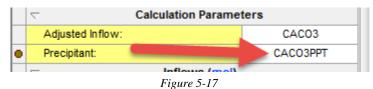



Figure 5-16

Our original target of CACO3(Calcite) is not available (we just removed it) so we need to change to our new desired target ARAGONITE(Aragonite)/

Click in the *Precipitant:* box.

Change selection from CACO3PPT to ARAGONITE (Aragonite) from the solids list.

		on Parameters
	Adjusted Inflow:	CACO3
•	Precipitant:	CACO3PPT
	√ Inflo	ws (mol) ARAGONITE (Aragonite)
	H2O	MGCO3.3H2O (Nesqueho MGCO3 (Magnesite)
	CACL2	CAMG3CO34 (Huntite)
	MGCL2	DISDOL (Dis-dolomite)
	C02	DOLOMITE (Dolomite) HMAGNESITE (Hydromag
	CACO3	MG2OH2CO3.3H2O (Artir
		ORDDOL (Or-dolomite)
-	1	CACO3PPT

CACO3 remains as the Adjusted Inflow.

When ready, click Calculate.

When the calculation finishes, we need to review how much aragonite is soluble in water. It would appear from the summary box that approximately 0.2 moles of Aragonite are soluble in 1 kilogram of water (55.508 moles of water). This is considerably larger than the 0.0044 moles of CaCO3 (calcite) case.

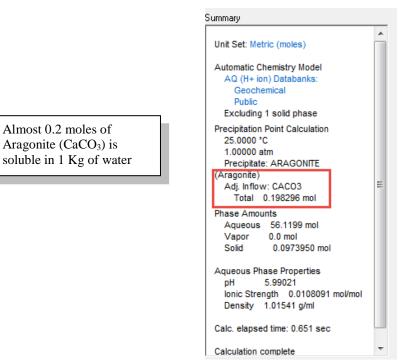


Figure 5-19 Summary of aragonite solubility

In general, when a large change in solubility is observed, we should check to see if other species have precipitated.

Click on the <u>*Output*</u> tab located below the grid.

Using methods described previously add the $\underline{\textbf{Solid}}$ section:

Moles (True) - Aqueous (mol) 56.1200 Moles (True) - Solid (mol) 0.0973949 Temperature (°C) 25.0000 Pressure (atm) 1.00000 Calculation Results (mol) 4.0198265 Inflows (mol) 55.5082 CACL2 0.100000 MGCL2 0.100000 CAC03 0.198265 Solid (mol) 55.5082	Variable	Value
Moles (True) - Aqueous (mol) 56.1200 Moles (True) - Solid (mol) 0.0973949 Temperature (°C) 25.0000 Pressure (atm) 1.00000 C Calculation Results (mol) Adjusted Inflow: CACO3 0.198265 C Inflows (mol) H2O 55.5082 CACL2 0.100000 MGCL2 0.100000 CO2 0.0100000 CACO3 0.198265 C Solid (mol) ARAGONITE (Aragonite) 5.57182e-7	C Stream Parameter	ers
Moles (True) - Solid (mol) 0.0973949 Temperature (°C) 25.0000 Pressure (atm) 1.00000 Calculation Results (mol) Adjusted Inflow: CAC03 Adjusted Inflow: CAC03 0.198265 Inflows (mol) H20 KACL2 0.100000 MGCL2 0.100000 CO2 0.0100000 CAC03 0.198265 Solid (mol) ARAGONITE (Aragonite)	📮 Stream Amount (mol)	55.9165
Temperature (°C) 25.0000 Pressure (atm) 1.00000 Calculation Results (mol) Adjusted Inflow: CAC03 0.198265 Inflows (mol) Inflows (mol) 1.00000 H20 55.5082 0.100000 CACL2 0.100000 0.0100000 CO2 0.0100000 CO2 CAC03 0.198265 0.198265 Solid (mol) ARAGONITE (Aragonite) 5.57182e-7	- Moles (True) - Aqueous (mol)	56.1200
Pressure (atm) 1.00000 Calculation Results (mol) Adjusted Inflow: CAC03 0.198265 Inflows (mol) H20 55.5082 CACL2 0.100000 MGCL2 0.100000 CO2 0.0100000 CAC03 0.198265 Solid (mol) ARAGONITE (Aragonite) 5.57182e-7	Moles (True) - Solid (mol)	0.0973949
Calculation Results (mol) Adjusted Inflow: CACO3 0.198265 Inflows (mol) 198265 Inflows (mol) 198265 Inflows (mol) 198265 CACL2 0.100000 MGCL2 0.100000 CO2 0.0100000 CACO3 0.198265 Solid (mol) 4RAGONITE (Aragonite)	Temperature (°C)	25.0000
Adjusted Inflow: CACO3 0.198265 ▼ Inflows (mol) H2O 55.5082 CACL2 0.100000 MGCL2 0.100000 CO2 0.0100000 CACO3 0.198265 ▼ Solid (mol) ARAGONITE (Aragonite) 5.57182e-7	Pressure (atm)	1.00000
Inflows (mol) H2O 55.5082 CACL2 0.100000 MGCL2 0.100000 CO2 0.0100000 CACO3 0.198265 C Solid (mol) ARAGONITE (Aragonite) 5.57182e-7	Calculation Results	(mol)
H2O 55.5082 CACL2 0.100000 MGCL2 0.100000 CO2 0.0100000 CACO3 0.198265 < Solid (mol)	Adjusted Inflow: CACO3	0.198265
CACL2 0.100000 MGCL2 0.100000 CO2 0.0100000 CACO3 0.198265 <	Inflows (mol)	
MGCL2 0.100000 CO2 0.0100000 CACO3 0.198265 ⊂ Solid (mol) ARAGONITE (Aragonite) 5.57182e-7	H2O	55.5082
CO2 0.0100000 CACO3 0.198265 マ Solid (mol) ARAGONITE (Aragonite) 5.57182e-7	CACL2	0.100000
CACO3 0.198265 C Solid (mol) ARAGONITE (Aragonite) 5.57182e-7	MGCL2	0.100000
C Solid (mol) ARAGONITE (Aragonite) 5.57182e-7	CO2	0.0100000
ARAGONITE (Aragonite) 5.57182e-7	CACO3	0.198265
· · · · · · · · · · · · · · · · · · ·	Solid (mol)	
ORDDOL (Or-dolomite) 0.0973943	ARAGONITE (Aragonite)	5.57182e-7
	ORDDOL (Or-dolomite)	0.0973943

Figure 5-20 The Calculated results, showing that ORDDOL (Ordered Dolomite or CaMg(CO₃)₂) is present

This report shows that approximately 0.097 moles of ordered dolomite $(CaMg(CO_3)_2)$ has also precipitated with the aragonite. The solution must first become saturated with dolomite before aragonite will precipitate. This means that dolomite is more thermodynamically stable, at these conditions, than aragonite.

Removing Dolomite

We will repeat the steps to select phases using the Chemistry Menu and Select Phases.

Select the Chemistry Menu Item.

Select <u>Model Options...</u> from the menu list. Then select the <u>Phases</u> tab. You can expand either the CA(+2) solids or MG(+2) solids since dolomite contains both species.

Scroll down the list to find these three solids (CACO3 should remain excluded) and uncheck them:

DOLOMITE DISDOL ORDDOL

The latter two solids are alternative forms of dolomite.

Click OK to continue.

Repeat the precipitation point calculation with only aragonite and record the solubility point.

Click <u>Calculate</u> when ready.

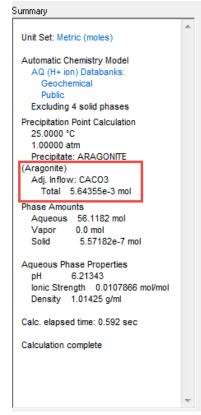


Figure 5-21 Solubility with Dolomite Turned off

The solubility is now 0.0056 moles per kilogram of water. This is more in line with the calcite solubility.

The user should always remember that although a species is more thermodynamically stable, it may not form due to kinetic limitations.

Units manager (alternative Entry)

There are two ways to get to the Units Mmanager. One is through tools-> Units manager. Second is clicking on

this icon at the top toolbar. Both options should lead to the pop up window below.

Units Manager - Calcite Solubility	? - X-
Units Manager	
Metric Moles	• •
Customize	
OK Cancel Apply	Help

This Units manager gives more control at a higher level.

You can set your desired set of units from quick list option below.

Units Manager	Calculate 🧉
	Summary 82
Metric Batch Moles	Quick List Metric, moles
	Metric, mass fraction
Customize	Metric, mole fraction SI, moles / ESP SI
	English, moles / ESP English
OK Cancel Apply Help	Precipitate: ARAGONITE (Aragonite) Adj. Inflow: CACO3

Each combination has its own set of units for phases, inflows and stream parameters. If you want to alter the specific units or create your own set of units, click on customize.

That takes you back to the old inter phase where you could use the dropdowns to set each variable. Once you set that, you first layer of UI looks like the image below; it says custom because now you have altered one of the default variables unit.

Aqueous Composition A Variable Stream Amount In Inflows I Aqueous Composition I Vapor Composition I 2old Composition I 2nd Liquid Composition I		Help Help Flowing Syste Units mol mol
OK Cancel t Units - Calcite Solubility omposition Parameters Corrosion Variable Stream Amount Inflows Aqueous Composition Vapor Composition Solid Composition In Composition In Total Composition	Batch System Basis loles	Plowing Syste
t Units - Calcite Solubility omposition Variable Stream Amount Inflows Aqueous Composition Vapor Composition Solid Composition Cand Liquid Composition I Total Composition I	Batch System Basis loles	Plowing Syste
Variable Stream Amount In Inflows In Aqueous Composition In Vapor Composition In Solid Composition In 2nd Liquid Composition In Total Composition In	Basis	Flowing Syste
Omposition Parameters Corrosion Variable Iteram Amount In Inflows Iteram Amount Iteram Amount Aqueous Composition Iteram Amount Iteram Amount Aqueous Composition Iteram Amount Iteram Amount Aqueous Composition Iteram Amount Iteram Amount Solid Composition Iteram Amount Iteram Amount Total Composition Iteram Amount Iteram Amount	Basis	Flowing Syste
Variable Stream Amount In Inflows In Aqueous Composition In Vapor Composition In Solid Composition In 2nd Liquid Composition In Total Composition In	Basis	Units mol
Variable Stream Amount In Inflows In Aqueous Composition In Vapor Composition In Solid Composition In 2nd Liquid Composition In Total Composition In	loles	mol
Stream Amount I Inflows I Aqueous Composition I Vapor Composition I Solid Composition I 2nd Liquid Composition I Total Composition I	loles	mol
Inflows Inflows Inflows Inflows Inflows Inflows Inflows Inflow In		
Aqueous Composition I Vapor Composition I Solid Composition I 2nd Liquid Composition I Total Composition I	loles	mol
Vapor Composition 1 Solid Composition 1 2nd Liquid Composition 1 Total Composition 1		
Vapor Composition 1 Solid Composition 1 2nd Liquid Composition 1 Total Composition 1		
Solid Composition 1 2nd Liquid Composition 1 Total Composition 1	loles 🚽	mol
2nd Liquid Composition 1 Total Composition 1	loles	mol
Total Composition	loles	mol
	loles	mol
Moles	loles	mol
Moles		
moles		mol
Mass		g
Volume		L
Concentration		mg/L
Molar Concentration		mol/L
Mass Fraction		mass %
Mole Fraction		mole %

Now would be a good time to save your files.

Save, save, save...

Click here for a completed example file: Chapter 05 Tour

6. Aqueous Thermodynamics

Overview

Understanding aqueous thermodynamics can be a daunting task. In this chapter we will describe some of the essential topics in aqueous thermodynamics and present them in a logical, relatively easy to understand manner. We will be using the AQ thermodynamic framework for these examples.

The Equilibrium Constant

The evaluation of the following equation is central to the OLI Software:

$$\Delta_R \overline{G}^o = -RT \ln K$$

Where $\Delta_R \overline{G}^o$ is the partial molal, standard-state Gibbs Free Energy of Reaction, R is the Gas Constant (8.314 J/mole/K), T is the temperature (Kelvin) and K is the equilibrium constant. The subscript **R** refers not to the gas constant but to an equilibrium reaction.

We define $\Delta_R \overline{G}$ as:

$$\Delta_{R}\overline{G} = \sum_{i} v_{i}\Delta_{f}\overline{G}_{i}(PRODUCTS) - \sum_{i} v_{i}\Delta_{f}\overline{G}_{i}(REACTANTS)$$

Where v_i is the Stoichiometric coefficient and $\Delta_f \overline{G}_i$ is the Gibbs Free Energy of Formation for a species.

Question:

Consider the equilibrium:

$$Na_2SO_4 = 2Na^+ + SO_4^{2-}$$

What is the Gibbs Free Energy of Reaction? What is the equilibrium constant at 25 °C (298.15K)¹¹?

The reference state thermodynamic values are readily available:12

¹¹ 25°C (298.15K) is also known as the reference temperature.

¹² NBS Tables of Chemical Thermodynamic Properties - Selected Values for Inorganic and C1-C2 Organic Substances in SI Units, Wagman, D.D., et al, 1982

$$\Delta_{f}\overline{G}^{R}(Na_{2}SO_{4}) = -1270100J / mole^{13}$$
$$\Delta_{f}\overline{G}^{R}(Na^{+}) = -261800J / mole$$
$$\Delta_{f}\overline{G}^{R}(SO_{4}^{2-}) = -744460J / mole$$

For the Gibbs Free Energy of reaction:

$$\Delta_{R}\overline{G}^{R} = \left(2\Delta_{f}\overline{G}^{R}(Na^{+}) + \Delta_{f}\overline{G}^{R}(SO_{4}^{2-})\right) - \Delta_{f}\overline{G}^{R}(Na_{2}SO_{4})$$
$$\Delta_{R}\overline{G}^{R} = \left(2(-261800) + (-744460)\right) - (-1270100) = 2640J / mole$$

By rearranging our equilibrium equation we get:

$$\ln K^{R} = -\frac{\Delta_{R}\overline{G}^{R}}{RT}$$

By now substituting the appropriate numbers we get:

$$\ln K^{R} = -(2640 \text{ J/mole}) /((8.314 \text{ J/mole/K})(298.15\text{K})) = -1.07$$

K^R=0.34

Principal Thermodynamic Properties

Each thermodynamic property is composed of two parts. The first is the standard state part which is only a function of temperature and pressure (denoted by the superscript °).

The second is the excess part which is a function of temperature and pressure as well as concentration (denoted by the superscript E).

Partial Molal Gibbs Free Energy

$$\overline{G}_i = \overline{G}_i^o + \overline{G}_i^E$$

Partial Molal Enthalpy

$$\overline{H}_i = \overline{H}_i^o + \overline{H}_i^E$$

Partial Molal Entropy

¹³ The subscript **f** refers the energy of formation from the elements. The superscript **R** refers to the reference state. This is a special case of the standard state normally denoted with a superscript **o**.

$$\overline{S}_i = \overline{S}_i^{\,o} + \overline{S}_i^{\,E}$$

Partial Molal Heat Capacity

$$\overline{C}p_i = \overline{C}p_i^o + \overline{C}p_i^E$$

Partial Molal Volume

$$\overline{V_i} = \overline{V_i}^o + \overline{V_i}^E$$

Note: Superscript
0
 = Standard State Property
Superscript E = Excess Property

HKF (Helgeson-Kirkham-Flowers) Equation of State^{14,15}

Working since 1968, Helgeson, et. al., have found that the standard-state thermodynamic property of any species in water can be represented by a function with seven terms which have specific values for each species.

These seven terms (a_{1-4} , c_{1-2} , and ω) are integration constants for volume (a), heat capacity (c) and temperature and pressure properties of water (ω). They are independent of the data system used to obtain them.

$$\overline{H_{i}^{o}} = \overline{H_{i}^{R}} + f_{Hi}(a_{1},...,a_{4},c_{1},c_{2},\omega)$$

$$\overline{G_{i}^{o}} = \overline{G_{i}^{R}} - \overline{S_{i}^{R}}(T - T^{R}) + f_{Gi}(a_{1},...,a_{4},c_{1},c_{2},\omega)$$

$$\overline{S_{i}^{o}} = \overline{S_{i}^{R}} + f_{Si}(a_{1},...,a_{4},c_{1},c_{2},\omega)$$

$$\overline{Cp_{i}^{o}} = \overline{Cp_{i}^{R}} + f_{Cpi}(a_{1},...,a_{4},c_{1},c_{2},\omega)$$

$$\overline{V_{i}^{o}} = \overline{V_{i}^{R}} + f_{Vi}(a_{1},...,a_{4},c_{1},c_{2},\omega)$$
Superscript ^{*R*}

$$- \text{Reference State Property (25°C, 1 bar)}$$
Superscript ^{*o*}

$$- \text{Standard State Property}$$

$$a_{I...a_{4}} - \text{Pressure Effects}$$

$$c_{I}, c_{2} - \text{Temperature Effects}$$

$$\omega - \text{Pressure, Temperature Effects}$$

The Helgeson Equation of State Parameters are used to predict equilibrium constants.

 ¹⁴ H.C.Helgeson, D.H.Kirkham, G.C.Flowers. Theoretical Prediction of the Thermodynamic Behavior of Aqueous Electrolytes at High Pressures and Temperatures - Parts I through IV. American Journal of Science 1974, 1976, 1981.
 ¹⁵ J.C.Tanger, IV Doctorial Thesis. "Calculation of the Standard Partial Molal Thermodynamic Properties of Aqueous Ions and Electrolytes at High Pressures and Temperatures" University of California at Berkley, 1986 H.C.Helgeson Advisor.

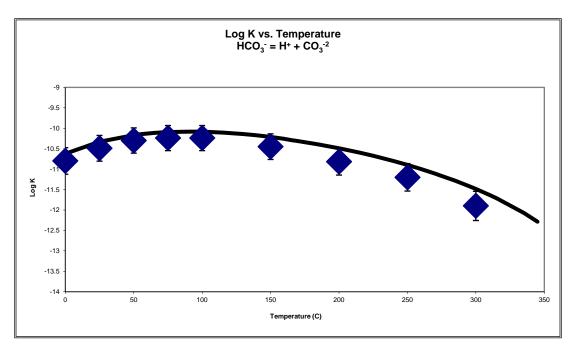


Figure 6-1 The logarithm of the equilibrium constant (LOG K) for the dissociation of the bicarbonate ion as a function of temperature at saturation pressure. The symbols represent the data taken from the references listed in the footnotes ^{16,17,18,19,20} but the line was generated from the equation of state.

The Helgeson Equation of State

Enthalpy

$$\Delta \overline{H_{P,T}^{o}} = \Delta \overline{H_{f}^{o}} + c_{1}(T - T_{r}) - c_{2} \left[\left(\frac{1}{T - \Theta} \right) - \left(\frac{1}{T_{r} - \Theta} \right) \right] + a_{1}(P - P_{r}) + a_{2} \ln \left(\frac{\Psi + P}{\Psi + P_{r}} \right) + \left(a_{3}(P - P_{r}) + a_{4} \ln \left[\frac{\Psi + P}{\Psi + P_{r}} \right] \right) \left[\frac{2T - \Theta}{(T - \Theta)^{2}} \right] + \omega \left(\frac{1}{\varepsilon} - 1 \right) + \omega TY - T \left(\frac{1}{\varepsilon} - 1 \right) \left(\frac{\partial \omega}{\partial T} \right)_{P}$$

¹⁷ R.Nasanen. Zur Einwirkung der Saure und Basenzusatze auf die Fallungskurvevon Bariumcarbonate. *Soumen Kemistilehti* **90**,24 (1946)

¹⁸ F. Cuta and F.Strafelda. The second dissociation constant of carbonic acid between 60 and 90°C. *Chem. Listy* **48**,1308 (1954)

¹⁹ B.N.Ryzhenko. Geochemistry International 1,8 (1963)

²⁰ C.S.Patterson, G.H.Slocum, R.H.Busey and R.E.Mesmer. Carbonate equilibrium in hydrothermal systems: First ionization of carbonic acid in NaCl media to 300°C. *Geoch.Cosmoh.Acta* **46**,1653 (1982)

¹⁶ H.S.Harned and S.R.Scholes. The Ionization Constant of HCO₃ – from 0 to 50°. J.Am. Chem. Soc. 63, 1706 (1941)

$$-\omega_{\mathrm{Pr},Tr}\left(\frac{1}{\varepsilon_{\mathrm{Pr},Tr}}-1\right)-\omega_{\mathrm{Pr},Tr}T_{r}Y_{r}$$

Gibbs Free Energy

$$\begin{split} \Delta \overline{G_{P,T}^{o}} &= \Delta \overline{G_{f}^{o}} - \overline{S_{Pr,Tr}^{o}} \left(T - T_{r}\right) - c_{1} \left[T \ln \left(\frac{T}{T_{r}}\right) - T + T_{r}\right] + a_{1} \left(P - P_{r}\right) + a_{2} \ln \left(\frac{\Psi + P}{\Psi + P_{r}}\right) \left(\frac{\Psi + P}{\Psi + P_{r}}\right) \right] \\ &+ \left[a_{3} \left(P - P_{r}\right) + a_{4} \ln \left(\frac{\Psi + P}{\Psi + P_{r}}\right)\right] \left(\frac{1}{T - \Theta}\right) - c_{2} \left[\left(\left(\frac{1}{T - \Theta}\right) - \left(\frac{1}{T_{r}} - \Theta\right)\right) \left(\frac{\Theta - T}{\Theta}\right) - \frac{T}{\Theta^{2}} \ln \left(\frac{T_{r} \left(T - \Theta\right)}{T \left(T_{r} - \Theta\right)}\right)\right) \right] \\ &+ \omega \left(\frac{1}{\varepsilon} - 1\right) - \omega_{Pr,Tr} \left(\frac{1}{\varepsilon_{Pr,Tr}} - 1\right) + \omega_{Pr,Tr} Y_{Pr,Tr} \left(T - T_{r}\right) \end{split}$$

Volume

$$\overline{V^{o}} = a_1 + a_2 \left(\frac{1}{\Psi + P}\right) + \left[a_3 + a_4 \left(\frac{1}{\Psi + P}\right)\right] \left(\frac{1}{T - \Theta}\right) - \omega Q + \left(\frac{1}{\varepsilon} - 1\right) \left(\frac{\partial \omega}{\partial P}\right)_{T - \Theta} d\theta$$

Heat Capacity at Constant Pressure

$$\overline{Cp^{o}} = c_{1} + c_{2} \left(\frac{1}{T - \Theta}\right)^{2} - \left(\frac{2T}{(T - \Theta)^{3}}\right) \left[a_{3}(P - P_{r}) + a_{4} \ln\left(\frac{\Psi + P}{\Psi + P_{r}}\right)\right] + \omega TX + 2TY \left(\frac{\partial \omega}{\partial T}\right)_{P} - T \left(\frac{1}{\varepsilon} - 1\right) \left(\frac{\partial^{2} \omega}{\partial T^{2}}\right)_{P} + C \left(\frac{\partial \omega}{\partial T}\right)_{P} + C \left(\frac{\partial \omega}{\partial$$

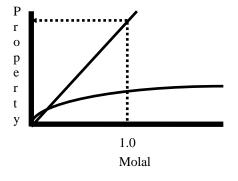
Entropy

$$\begin{split} \overline{S^{o}} &= \overline{S^{o}_{\text{Pr,}Tr}} + c_{1}\ln\frac{T}{T_{r}} - \frac{c_{2}}{\Theta} \left\{ \left(\frac{1}{T - \Theta}\right) - \left(\frac{1}{T_{r} - \Theta}\right) + \frac{1}{\Theta}\ln\left(\frac{T_{r}(T - \Theta)}{T(T_{r} - \Theta)}\right) \right\} + \left(\frac{1}{T - \Theta}\right)^{2} \left[a_{3}(P - P_{r}) + a_{4}\ln\left(\frac{\Psi + P}{\Psi + P_{r}}\right)\right] \\ &+ \omega Y - \left(\frac{1}{\varepsilon} - 1\right) \left(\frac{\partial\omega}{\partial T}\right)_{P} - \omega_{\text{Pr,}Tr}Y_{\text{Pr,}Tr} \end{split}$$

Where,

Н	=	Enthalpy
G	=	Gibbs Free Energy
V	=	Volume
Ср	=	Heat Capacity at constant Pressure
S	=	Entropy
Т	=	Temperature
Р	=	Pressure
Θ	=	228 K
Ψ	=	2600 Bar
ω	=	Temperature and Pressure dependent term for electrostatic nature
of the electrolytes		
Q	=	Pressure functions of the dielectric constant

Aqueous Thermodynamics • 89


= 3	Dielectric constant of water
a1a4=	Pressure dependent terms
c1, c2 =	Temperature dependent terms

What is the standard State?

The standard state refers to a thermodynamic value at a defined state (temperature, pressure and concentration)²¹.

Aqueous:

The hypothetical 1.0 molal solution extrapolated from infinite dilution.

Vapor:

The Ideal Gas Pure Component (mole fraction = 1.0)

Organic Liquid:

The Ideal Gas Pure Component (mole fraction = 1.0)

Solid:

The pure component solid.

Excess Properties

Excess properties are a function of temperature, pressure and composition. It is with the excess properties that we begin to introduce the concept of activities and activity coefficients.

The excess property that we are most concerned with is the excess Gibbs Free Energy.

The activity of a species in solution can be defined as:

$$a_i = \gamma_i m_i$$
$$\overline{G_i} = \overline{G^o} + RT \ln a_i$$

²¹ M. Rafal, J.W. Berthold, N.C. Scrivner and S.L. Grise."Chapter 7:Models for Electrolyte Solutions", <u>Models for</u> <u>Thermodynamic and Phase Equilibria Calculations.</u> Stanley I Sandler, ed. Marcel-Dekker, Inc. New York: 1994. pp. 686.

$$\overline{G_i} = G^o + RT \ln m_i + RT \ln \gamma_i$$
$$\overline{G_i^E} = RT \ln \gamma_i$$

Note: Other excess properties involve various partial derivatives of γ_i with respect to temperature and/or pressure.

$$\overline{H}_i^E = RT^2 \frac{\delta \ln \gamma_i}{\delta T} \bigg|_P$$

Ionic Strength

Ionic Strength is defined by the following equation:

$$I = 1/2 \sum_{i=1}^{nI} (z_i^2 m_i)$$

where,

nI = number of charged species

For Example, a 1.0 molal solution of NaCl has 1.0 moles of Na^{+1} ion and 1.0 moles of Cl^{-1} ion per Kg H₂O.

$$I = \frac{1}{2} \left(\left(Z_{Na^{+1}} \right)^2 \left(m_{Na^{+1}} \right) + \left(Z_{Cl^{-1}} \right)^2 \left(m_{Cl^{+1}} \right) \right) = \frac{1}{2} \left(\left(1 \right)^2 \left(1 \right) + \left(-1 \right)^2 \left(1 \right) \right) = 1$$

Therefore the ionic strength is 1.0 molal.

For Example, a 1.0 molal solution of CaCl₂ has 1.0 moles of Ca⁺² ion and 2.0 moles of Cl⁻¹ ion per Kg of H₂O.

$$I = \frac{1}{2} \left(\left(Z_{Ca^{+2}} \right)^2 \left(m_{Ca^{+2}} \right) + \left(Z_{Cl^{-1}} \right)^2 \left(m_{Cl^{+1}} \right) \right) = \frac{1}{2} \left((2)^2 (1) + (-1)^2 (2) \right) = 3$$

There for the ionic strength is 3.0 molal, or we can say that a 1.0 Molal solution of CaCl₂ behaves similar to a 3.0 molal Solution of NaCl

Definition of Aqueous Activity Coefficients

$$\log \gamma_i = \log range + \text{short range}$$

Long Range:	Highly dilute solutions (e.g., 0.01 m NaCl). The ions are separated sufficiently such that the only interactions are between the ions and the solvent.
Short Range:	Increased concentrations. The ions are now beginning to interact with themselves (oppositely charged species attract, like charged species repel) in addition to the interactions with the solvent.

Long Range Terms

$$\ln \gamma_i = \frac{-z^2 A(T) \sqrt{I}}{1 + \text{\AA} B(T) \sqrt{I}}$$

Where,

Å

ion size parameter

A(T), B(T)	Debye-Huckel parameters related to dielectric constant
	of water.

At 25 °C and 1 Atmosphere²²:

A(T)	=	0.5092	$kg^{1/2}/mole^{1/2}$
B(T)	=	0.3283	kg1/2/mole1/2-cm x10-8

 ²² H.C.Helgeson and D.H.Kirkham. American Journal of Science Vol. 274, 1199 (1974)

 A Guide to Using OLI Studio

Short Range Terms

$$\sum_{j=1}^{n^o} (b_{ij}(T,I)m_j)$$

Where, $n^{o} =$ Number of oppositely charged species.

For example, consider H₂O/CO₂/NH₃

Cations: H⁺, NH₄⁺ Anions: OH⁻, HCO₃⁻¹, CO₃⁻², NH₂CO₂⁻

Short Range Term for NH4+:

 $b_{11}(T,I) * m_{HCO3} + b_{12}(T,I) * m_{CO3} + b_{13}(T,I) * m_{OH} + b_{14}(T,I) * m_{NH2CO2}$

11 = NH4:HCO3 12 = NH4:CO3 13 = NH4:OH 14 = NH4:NH2CO2

Modern Formulations

1. Bromley - Meissner : Semi-Correlative^{23,24}

Can predict and extrapolate excess properties when data is limited or unavailable.

2. Pitzer: Highly Interpolative²⁵

Somewhat model dependent. Considerable caution is required when using the large amount of published data to verify the standard state model employed.

3. Helgeson: Limited in Scope²⁶

4. Mixed Solvent Electrolyte: OLI's New Framework

²³ L.A.Bromley. J.Chem.Thermo.,**4**,669 (1972)

²⁴ H.P.Meissner. AIChE Symp.Ser.No. 173,74,124 (1978)

²⁵ K.S.Pitzer, et.al. J.Soln.Chem, 4,249(1975); J.Phys.Chem., 81,1872(1977); J.Soln.Chem. 7,327(1978);

J.Am.Chem.Soc.96,5701(1974)

²⁶ H.C.Helgeson, D.H.Kirkham and G.C.Flowers. Am.J.Sci. **281**,1249(1981)

Bromley

$$Log \ \gamma_{\pm} = \frac{-A \mid Z_{+}Z_{-} \mid \sqrt{I}}{1 + \sqrt{I}} + \frac{(0.06 + 0.6B) \mid Z_{+}Z_{-} \mid I}{\left(1 + \frac{1.5I}{\mid Z_{+}Z_{-} \mid}\right)^{2}} + BI$$

Where,

A = Debye-Huckel Constant

I = Ionic Strength

- B = Bromley parameter
- γ = Mean activity coefficient
- Z+ = Charge of the cation
- Z- = Charge of the anion

Meissner

$$\Gamma = \gamma_{\pm}^{1/Z_{\pm}Z_{\pm}}$$

$$\Gamma^{o} = (1.0 + B(1.0 + 0.1I)^{q} - B)\Gamma^{*}$$

$$B = 0.75 - 0.065q$$
$$Log\Gamma^* = \frac{-0.5107\sqrt{I}}{1 + C\sqrt{I}}$$

$$C = 1.0 + 0.055q \exp(-0.02312I^3)$$

Where Γ is the reduced activity coefficient, q is the Meissner q value, I is the ionic strength.

The family of q values are:

Reduced Gamma v. I

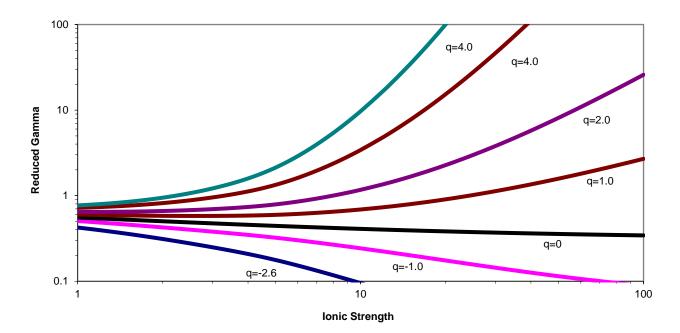


Figure 6-2 The Meissner q lines

Bromley-Zematis

Joseph Zematis, of OLI Systems, Inc., now deceased, extended the work of Bromley in that he added two new terms²⁷. The Bromley-Zematis activity model is:

$$Log \gamma_{\pm} = \frac{-A |Z_{+}Z_{-}| \sqrt{I}}{1 + \sqrt{I}} + \frac{(0.06 + 0.6B) |Z_{+}Z_{-}| I}{\left(1 + \frac{1.5}{|Z_{+}Z_{-}| I}\right)^{2}} + BI + CI^{2} + DI^{3}$$

Where C and D are new terms. Each of the B, C, and D terms have the following temperature functionality.

 $B = B_1 + B_2 T + B_3 T^2$ (Where T is temperature in centigrade)

The other coefficients have the same form:

$$C = C_1 + C_2 T + C_3 T^2$$
$$D = D_1 + D_2 T + D_3 T^2$$

²⁷ Zemaitis, J.F., Jr, Clark, D.M., Rafal, M. and Scrivner, N.C., *Handbook of Aqueous Electrolyte Thermodynamics*, American Institute of Chemical Engineers, New York, 1986.

Pitzer

$$\ln \gamma_{\pm} = |Z_{+}Z_{-}| f^{\gamma} + m \left(\frac{2(\nu_{+}\nu_{-})}{\nu}\right) B_{\pm}^{\gamma} + m^{2} \left(\frac{2(\nu_{+}\nu_{-})^{1.5}}{\nu}\right) C_{\pm}^{\gamma}$$

Where,

f^{γ}	=	The "Debye-Huckel" term. ²⁸
ν_{+}	=	Stoichiometric coefficient for the cation
ν-	=	Stoichiometric coefficient for the anion
ν	=	$\nu_+ + \nu$
m	=	Concentration in molal
B_{\pm}^{γ}	=	Pitzer B term, containing the adjustable parameters
C_{\pm}^{γ}	=	Pitzer C term, containing adjustable parameters

Helgeson

$$Log \ \overline{\gamma_{\pm}} = \frac{-A_{\gamma} |Z_{i}Z_{l}| \sqrt{\overline{I}}}{1 + a_{0}B\gamma\sqrt{\overline{I}}} + \Gamma_{\gamma} + \left(\frac{\omega_{k}}{v_{k}}\sum_{k}b_{k}Y_{k}\overline{I} + \frac{v_{i,k}}{v_{k}}\sum_{l}\frac{b_{il}\overline{Y_{l}}\sqrt{\overline{I}}}{\Psi_{l}} + \frac{v_{l,k}}{v_{k}}\sum_{i}\frac{b_{il}\overline{Y_{i}}\sqrt{\overline{I}}}{\Psi_{i}}\right)$$

Where,

Aγ	=	Debye-Huckel constant according to Helgeson
Zi	=	Charge on the cation
Z_l	=	Charge on the anion
a_0	=	ion size parameter
\mathbf{B}_{γ}	=	Extended Debye-Huckel term according to Helgeson
Ī	=	True ionic strength which includes the effects of complexation
Γγ	=	Conversion of molal activity to mole fraction activity
$\boldsymbol{\omega}_k$	=	Electrostatic effects on the solvent due to the species k
ν_k	=	moles of electrolyte (summation)
$\nu_{i,k}$	=	moles of cation per mole of electrolyte
Vl,k	=	moles of anion per mole of electrolyte
$b_{i,l}$	=	adjustable parameter for the ion-ion interaction.
\overline{Y}_i	=	fraction of ionic strength on a true basis attributed to the cation
\overline{Y}_l	=	fraction of ionic strength on a true basis attributed to the anion
Ψ_{i}	=	¹ / ₂ the cation charge
Ψ_l	=	¹ / ₂ the anion charge
Z_i	=	the cation charge
Z_l	=	the anion charge

Neutral Species

Neutral molecules in water are affected by other species in solution. The salting in and out of a gas is a typical example. When Oxygen is dissolved into pure water, it has a typical solubility. When salt is added, the solubility decreases. This is most-likely due to an interaction between the sodium ions and the neutral oxygen molecule and the interaction between the chloride ions and the neutral oxygen molecule.

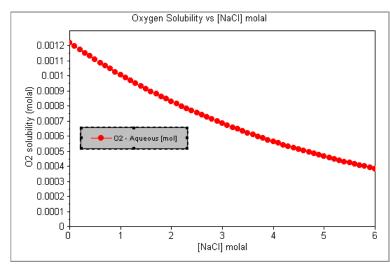


Figure 6-3 The solubility of oxygen in NaCl solutions at 25 C, 1 Atmosphere

1. Setschenow²⁹

This characterizes a phenomena known as salting in/out. The formulation is in terms of the ratio of solubilities in pure water to an aqueous salt solution at a constant temperature.

$$Ln\gamma_{aq} = \frac{S_0}{S_s} = km_s$$

Where,

\mathbf{S}_0	=	Solubility of the gas in pure water
Ss	=	Solubility of the gas in a salt solution
Κ	=	Setschenow coefficient
ms	=	Concentration of the salt.

In this case, the K is approximately equal to -0.0002.

Unfortunately, this approach is limited to a single temperature.

2. Pitzer³⁰

A more rigorous approach than Setschenow. Effects of temperature and composition can be modeled.

$$Ln \gamma_{aq} = 2\beta_{0(m-m)}m_m + 2\beta_{0(m-s)}m_s$$

Where,

β _{0(m-m)}	=	The adjustable parameter for molecule – molecule interactions.
		(a function of temperature)
β _{0(m-s)}	=	The adjustable parameter for molecule – ion interactions.
		(A function of temperature)
ms	=	The concentration of the neutral species.

Multiphase Model

Solid-Aqueous Equilibrium

General Equilibrium Form:

 $S_i = p_1 P_1 + p_2 P_2 + \dots p_p P_p$

Examples:

 $NaCl(cr) = Na^{+} (aq) + Cl^{-}(aq)$ $CaSO4.2H2O(cr) = Ca^{+2}(aq) + SO4^{-2}(aq) + 2H2O$

³⁰ K.S.Pitzer, et.al. J.Soln.Chem, **4**, 249(1975); J.Phys.Chem., **81**, 1872(1977); J.Soln.Chem. **7**, 327(1978); J.Am.Chem.Soc. **96**, 5701(1974)

Solid Phase Thermodynamic Properties

$$\overline{G}_{Si} = \overline{G}_{Si}^{R} + \overline{S}_{Si}^{R} (T - T^{R}) + \int_{T^{R}}^{T} Cp dT + \int_{P^{R}}^{P} V dP$$
typical

(, the
bility of
emains
$$V = b_{1}$$

$$Log_{10}K_{sp}(T,P) = A + B/T_{K} + CT_{K} + DT^{2}_{K} + E + FP + GP^{2}$$

Under the typical simulation conditions, the compressibility of the solid remains constant.

General Thermodynamic Equation:

Vapor-Aqueous

$$\overline{G_{V_i}} = \overline{G_{Aqi}}$$

$$\overline{G_{V_i}^o} + RTln(\phi_{V_i} y_i P) = \overline{G_{Aqi}^o} + RTln(\gamma_i m_i)$$

$$a_{Aqi} = \gamma_i m_i$$

$$f_{V_i} = \phi_{V_i} y_i P$$

$$\overline{G_{V_i}^o} + RTln(f_{V_i}) = \overline{G_{Aqi}^o} + RTln(a_{Aqi})$$

$$K = EXP[\frac{\overline{(G_{Aqi}^o} - \overline{G_{V_i}^o})}{RT}] = \frac{a_{Aqi}}{f_{V_i}}$$

Non-Aqueous Liquid-Aqueous

Aqueous Thermodynamics • 99

The reference state for the vapor is the ideal gas.

$$\overline{G_{Vi}^{o}} + RTln(\phi_{Li} x_{i} P) = \overline{G_{Aqi}^{o}} + RTln(\gamma_{i} m_{i})$$

$$f_{Li} = \phi_{Li} X_{i} P$$

$$\overline{G_{Vi}^{o}} + RTln(f_{Li}) = \overline{G_{Aqi}^{o}} + RTln(a_{Aqi})$$

$$K = EXP[\frac{\overline{(G_{Aqi}^{o} - \overline{G_{Li}^{o}})}}{RT}] = \frac{a_{Aqi}}{f_{Li}}$$

Limitations of the Current OLI Thermodynamic Model³¹

Aqueous Phase

 $-50^{\circ}C < T < 300^{\circ}C$ 0 Atm < P < 1500 Atm 0 < I < 30

Non-aqueous Liquid

Currently no separate activity coefficient Model (i.e., no NRTL, Unifaq/Uniqac)

Non-aqueous and vapor fugacity coefficients are determined from the Enhanced SRK³² Equation of State.

Vapor critical parameters (T_c, P_c, V_c, and ω^{33}) are correlated to find a Fugacity coefficient.

A Guide to Using OLI Studio

 $X_{\rm H2O} > 0.65$

 $\overline{G_{Ii}} = \overline{G_{Aai}}$

Notice that the reference state for the non-aqueous liquid is the ideal gas vapor.

³¹ This refers only to the traditional OLI Aqueous Model and not the MSE model.

³² G.Soave.Chem.Eng.Sci.27,1197(1972)

³³ This is the acentric factor which is not the same as Helgeson's ω term)

Scaling Tendencies

What is a scaling tendency?

It is the ratio of the real-solution solubility product to the thermodynamic limit based on the thermodynamic equilibrium constant.

For Example, Consider this dissolution:

 $NaHCO_{3(s)} = Na^{+} + HCO_{3}^{-}$

The Ion Activity Product (IAP) is defined as the product of specific ions (in this case the ions resulting from the dissociation of a particular solid).

Let's consider a 1.0 molal NaHCO3 solution:

IAP	$= \gamma_{Na}$	m _{Na} YhCe	O3MHCO3	
Assum	ing Idea	l Solution A	ctivities:	
γ_{Na}	=	1.0	$\gamma_{\rm HCO3}$ =	1.0
m _{na}	=	1.0	m _{HCO3} =	1.0

IAP = (1.0)(1.0)(1.0)(1.0)

IAP = 1.0

The Solubility Product (KSP) is the thermodynamic limit of ion availability:

$$KSP = 0.265038^{34}$$

The Scaling Tendency is then the ratio of available ions to the thermodynamic limit.

$$ST = IAP/KSP$$

 $ST = 1.0/0.265038$
 $ST = 3.77$

Was assuming ideal conditions valid??

The actual species concentration and activity coefficients are:

$$\gamma_{Na} = 0.566$$

 $\gamma_{\rm HCO3} = 0.566$

³⁴ Based on the OLI PUBLIC databank version 9.2.6A Guide to Using OLI Studio

 $m_{Na} \quad = \quad 0.764 \qquad m_{HCO3} \, = \quad 0.739$

This results in a different IAP:

The new Scaling Tendency is therefore:

ST = IAP/KspST = 0.181/0.265038ST = 0.682

Why the concentrations were not equal to 1.0? Speciation and chemical equilibria tend to form complexes which provide a "Sink" for carbonate species. In this example:

CO ₂ o	=	0.014 molal	
NaHCO ₃ 0	=	0.233 molal	
CO3 ²⁻	=	0.011 molal	
NaCO3 ⁻	=	0.003 molal	

What does the Scaling Tendency Mean?

If ST < 1, then the solid is under-saturated If ST > 1, then the solid is super-saturated If ST = 1, then the solid is at saturation

Scaling Index =
$$Log(ST)$$

What is the TRANGE?

TRANGE is a nomenclature for solids that have been fit to a polynomial form rather than pure thermodynamics.

The polynomial has this functional form:

$Log K = A + B/T + CT + DT^2$

It is known that polynomials may not extrapolate well. Incorrect predictions of Scaling Tendency may result. Therefore the applicable range is generally limited to data set.

Consider Na2CO3/H2O

There are 4 solids of interest in this system. They are:

Solid	Temperature Range (C)
Na ₂ CO ₃ •10H ₂ O	0-35
Na ₂ CO ₃ •7H ₂ O	35-37
Na ₂ CO ₃ •1H ₂ O	37-109
Na2CO ₃	109-350

Table 6-1 Sodium Carbonate hydrate transition ranges

This table implies that these solids change their form as the temperature increases. Each solid was fit to the above polynomial. There may be problems if the extrapolated values from higher number hydrates extend to the regions where the lower number hydrates are stable.

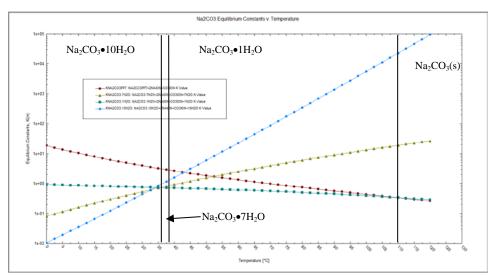


Figure 6-4 Plot of K vs. Temperature. The K's have been extrapolated.

In this plot, the concentration of Na^{+1} ion and CO_3^{2-} ion is held constant. This means that the more stable solid (higher scaling tendency) will be the solid with the smaller K value.

It can be seen that the mono-hydrate species does not extrapolate well to lower temperatures. In the range 35 to 37 $^{\circ}$ C, that the mono-hydrate equilibrium constant is smaller than the hepta-hydrate. If we concern ourselves with 36 $^{\circ}$ C, we can see that if the mono-hydrate solid was allowed to be in the model, the equilibrium based solver will attempt include it over the actual solid which is the hepta-hydrate.

Since the mono-hydrate species is outside its temperature range in this region, it will be mathematically eliminated from the equations.

Pre-scaling Tendencies

What is a Pre-scaling tendency?

OLI Defines a Pre-Scaling tendency is the scaling tendency before any solids have been formed. Many industries, notably the up-stream oil & gas industry, use the pre-scaling tendency to make design decisions about adding anti-scaling and anti-fouling agents or if the asset is as risk.

The normal convergence path for any OLI equilibrium calculation is the following:

- 1. Perform an initial estimate of all variables in the calculation. Our equation set is a series of non-linear equations. These typically need an initial estimate to get things started.
- 2. Take the ion activities at this point and then save them for pre-scale calculations
- 3. Converge the equation set and test to see if there are indications of a phase change (vapor/solid/organic). This could be the addition or removal of a phase
- 4. Adjust the mass of components to account for the change in phase
- 5. Re-converge the equation set and test for phase changes again. If there is a change, repeat the above steps
- 6. If no change in phases, conclude the calculation and make final calculations
 - a. Transport properties (viscosity, electrical conductivity, etc.)
 - b. Final values for post-scaling tendencies
 - c. Additional thermodynamic calculations for heat capacity
- 7. Generate the report.

Estimated Pre-Scales

The procedure described above is for Estimated Pre-scaling tendencies. The reason we consider this estimated is that we have not obtained a final convergence when the values are taken. This is usually ok since the rigorous values are usually very close in value and this method is much faster.

We have an example created in version 9.5.4 which can be found here Pre-scaling example (OAD, v9.5.4)

Let's look at an example.

We have created a simple case in MSE.

Variable	Value	Type of calculation	
C Stream Parameters		Isothermal 🔻 Sp	ecs
Stream Amount (mol)	66.6182		2
Temperature (°C)	150.000	Calc <u>u</u> late 🥝	
Pressure (atm)	100.000	Summary	
H2O	55.5082	Unit Set: Metric (moles)	
C02	0.100000	Automatic Chemistry Model	
CH4	1.00000	MSE (H3O+ ion) Databanks:	
CAC03	0.0100000		
C10H22	10.0000	Second Liquid phase Using Helgeson Direct	
G			
put			

Figure 6-5 An MSE case, example of pre-scaling

While this not representative of a true case in the upstream oil % gas industry, it does show some of the common components.

We now need to activate the Pre-scaling calculation (different OLI programs do this step in different ways, we are using OLI Studio as an example)

Use the Specs button to find the calculation option

agnostics]Enable trace Verbose
s
gorous

Figure 6-6 Calculation Options for a single point case

Check the Pre-Scaling Tendencies box and then the Estimated radio button.

We will run this case and look at the output.

Variable	Value		1	Type of calculation
				Isothermal 💌 Specs
Stream Amount (mol)	66.6182			
 Moles (True) - Liquid-1 (mol) 	55.1999			Calculate 🥝
 Moles (True) - Solid (mol) 	8.97459e-3			Summary
Moles (True) - Liquid-2 (mol)	11.4093			
Temperature (°C)	150.000			Unit Set: Metric (moles)
Pressure (atm)	100.000			Automatic Chemistry Model
Inflows (mol)				MSE (H3O+ ion) Databanks:
H2O	55.5082			MSE (H3O+ ion) Second Liquid phase
C02	0.100000			Using Helgeson Direct
CH4	1.00000			Isothermal Calculation
CAC03	0.0100000			150.000 °C 100.000 atm
C10H22	10.0000	Ε		Phase Amounts
Pre-scaling Tendencies				Aqueous 55.1999 mol Vapor 0.0 mol
CACO3 (Calcite)	160.853			Solid 8.97459e-3 mol
ARAGONITE (Aragonite)	130.392			2nd Liquid 11.4093 mol
H2O	0.283593			Aqueous Phase Properties
CAOH2 (Portlandite)	1.35335e-5			pH 6.08148
CAO (Lime)	3.95562e-12			Ionic Strength 5.46238e-5 mol/mol
Scaling Tendencies				Density 0.914815 g/ml
CACO3 (Calcite)	1.00000			Calc. elapsed time: 0.124 sec
ARAGONITE (Aragonite)	0.810631			
H2O	0.283681			Calculation complete
CAOH2 (Portlandite)	7.94875e-8			
CAO (Lime)	2.32308e-14			
		-		

Figure 6-7 Results with estimated pre-scaling tendencies

Look the pre-scaling tendencies for $CaCO_3(Calcite)$. This value is 160.853 If you look at the Scaling Tendencies (this is also known as the post-scaling tendencies) the value for the same species is 1.0 which means the solid has formed. The calculation time is 0.124 seconds.

Rigorous Pre-Scales

For version 9.5.4 of the OLI Engine (which affects all the OLI software) we have added rigorous pre-scales. We added this feature because in some cases the estimated value was too far off from reality. This is especially true when you have scaling solids which have common ions such as $CaCO_3$ and $MgCO_3$ in the same model or with very soluble species such as Na_2CO_3

The overall calculation path is like the previously described path, but it has one major change:

- 1. Perform an initial estimate of all variables in the calculation. Our equation set is a series of non-linear equations. These typically need an initial estimate to get things started.
- 2. Converge the equation set and test to see if there are indications of a phase change (vapor/solid/organic). This could be the addition or removal of a phase
- 3. Adjust the mass of components to account for the change in phase
- 4. Re-converge the equation set and test for phase changes again. If there is a change, repeat the above steps
- 5. If no change in phases, conclude the calculation and make final calculations
 - a. Transport properties (viscosity, electrical conductivity, etc.)
 - b. Final values for post-scaling tendencies
 - c. Additional thermodynamic calculations for heat capacity
- 6. Mathematically eliminate all solids from the calculation and repeat the convergence steps above
- 7. When converged, store the scaling tendencies as pre-scaling tendencies.

8. Generate the report.

In the past, if you wanted to have rigorous pre-scaling tendencies you had to recreate the chemistry model without any solids and then re-calculate the equation set. This manual step is now automatically done for you internally.

Here is an example, we are using the same input stream, but we are activating the rigorous pre-scaling option. Use the Specs button to select Rigorous

Calculation Options Convergence	e	
General 🐨 Show status dialog	Diagnostics Enable trace Verbose	
Optional Properties		
Diffusivities and Mobilities		
Diffusivities Matrix		
Viscosity		
Electrical Conductivity		
Heat Capacity		
Activity Coefficients and H	<-Values	
Gibbs Free Energy		
Entropy		
Thermal Conductivity		
Surface Tension		
Interfacial Tension		
Pre-scaling Tendencies Method	Rigorous	
Estimated		

Figure 6-8 Calculation options for rigorous pre-scaling tendencies

Run the calculation

Variable	Value			Type of calculation
				Isothermal 🔻 Specs
Stream Amount (mol)	66.6182			
 Moles (True) - Liquid-1 (mol) 	55.1999			Calculate 🥝
 Moles (True) - Solid (mol) 	8.97459e-3			Summary
Moles (True) - Liquid-2 (mol)	11.4093			
Temperature (°C)	150.000			Unit Set: Metric (moles)
Pressure (atm)	100.000			Automatic Chemistry Model
Inflows (mol)				MSE (H3O+ ion) Databanks:
H2O	55.5082			MSE (H3O+ ion) Second Liguid phase
C02	0.100000			Using Helgeson Direct
CH4	1.00000			Isothermal Calculation
CAC03	0.0100000			150.000 °C 100.000 atm
C10H22	10.0000	Ε		Phase Amounts
				Aqueous 55.1999 mol Vapor 0.0 mol
CACO3 (Calcite)	160.959			Solid 8.97459e-3 mol
ARAGONITE (Aragonite)	130.478			2nd Liquid 11.4093 mol
H2O	0.283593			Aqueous Phase Properties
CAOH2 (Portlandite)	1.35578e-5			pH 6.08148
CAO (Lime)	3.96361e-12			Ionic Strength 5.46238e-5 mol/mol
				Density 0.914815 g/ml
CACO3 (Calcite)	1.00000			Calc. elapsed time: 0.196 sec
ARAGONITE (Aragonite)	0.810631			Calculation complete
H20	0.283681			Calculation complete
CAOH2 (Portlandite)	7.94875e-8			
CAO (Lime)	2.32308e-14			
		-	3	

Figure 6-9 Results for rigorous pre-scaling tendencies

Look the pre-scaling tendencies for $CaCO_3$ (Calcite). This value is 160.959 If you look at the Scaling Tendencies (this is also known as the post-scaling tendencies) the value for the same species is 1.0 which means the solid has formed. The calculation time is 0.196 seconds.

Differences

The values for the rigorous pre-scaling tendencies are different. The differences are small in this case but in larger models the differences can be significant.

In this case The Estimated v. Rigorous pre-scaling tendency for $CaCO_3$ is 160.853 v 160.959 which is small difference. The Estimated v. Rigorous calculation time is 0.124 seconds v. 0.196 seconds. While that doesn't seem like much, in a large calculation or flowsheet simulation, that extra 0.07 seconds can add up significantly.

Calculating Osmotic Pressures

OLI is asked frequently how the osmotic pressure calculated in the software. We use a very traditional method of calculating the osmotic pressure.

 $\pi = -RT Ln a_{H20}V_{H20}$

Where

 $\mathbf{\Pi}$ is the osmotic pressure

 \mathbf{R} is the gas constant

T is the temperature

a_{H2O} is the activity of water at temperature T

 V_{H2O} is the partial molal volume of water at temperature T

Summary

We have seen that the evaluation of the equilibrium constant is an important factor in simulating aqueous systems. A rigorous thermodynamic framework has been developed to support the simulation.

7. Single Point Calculations

Objectives

By this point we have learned a great deal about the thermodynamics of the OLI Software and the internal workings of the simulation engine. We have also learned how to enter data and perform useful calculations.

We now wish to explore some of the other calculations in the OLI Studio. In the process of exploring these calculations, we will introduce some additional features.

In this chapter, we will learn about:

- 1. Isothermal Calculations
 - Using Custom Units
- 2. Adiabatic Calculation
 - Using the Names Manager
- 3. Bubble Point Calculations
 - Using new custom units
 - Modifying the report
- 4. Dew Point Calculations
 - Modifying model options
- 5. Vapor Amount/Fraction Calculations
 - Using custom report units

Isothermal

In this example, we will explore an isothermal calculation. We wish to determine the pH of a 10-weight percent acetic acid solution. The temperature and pressure will be 75 °C and 1 atmosphere.

We have already entered stream and calculation data in previous examples so we will not dwell on them here. If you have not done so, please start the OLI Studio.

- 1. Select the Add Stream icon.
- 2. Select the **Description** tab.
- 3. Replace *Stream1* with *Acetic Acid Solutions*.
- 4. Select **<u>Definition</u>**. The following grid list should be displayed.

Variable	Value 🔺	Add Calculation 🔻
Stream Paramete	rs	Special Conditions
Stream Amount (mol)	55.5082	
Temperature (°C)	25.0000	Solids Only
Pressure (atm)	1.00000	Summary
Inflows (mol)		
H2O	55.5082	Unit Set: Default
ut	T	Automatic Chemistry Model Aqueous (H+ ion) Databanks: Public

Figure 7-1 Stream Definition Input Grid

Since we wish to determine the pH of a 10-weight percent solution (a fraction type of unit) we should change our input units.

5. From the **Tools** menu item, select **Units Manager.**

OLI Studio - [Document1*]		
I File Edit Streams Calculations Chemistry	Tools View Window Help	
🗅 🛎 🖬 👗 🛍 🚳 🖇 🛠 🗛 🛛	a Component Search	🗛 🎬 🛃 💱 🎘 😭 🌾
Navigator	Names Manager	
Document1*	11.5.14	tions
▲ Streams	Units Manager	Definition 🔯 Report
Acetic Acid Solutions	Customize	
	Options	iable Val
		Stream Parameters
	Add an Allov	

Figure 7-2 Menu Item/Tools/Units Manager

We can now modify the default set of units. The window, displayed in the following figure, shows that the **<u>Standard</u>** set of units are selected. We need to change these units.

Metric	▼ Batch ▼	Moles
Customize		
Costoniectin		

Figure 7-3 Units Manager Dialog

6. *Click* on the <u>Customize</u> radio button.

omposition	Parameters				
	Varia		Basi	s Units	
			flow variables		
Stream Ar	nount		Moles	mol	
Inflows			Moles	mol	
		(Itput variables		
	Composition		Moles	mol	
Vapor Cor			Moles	mol	
Solid Com			Moles	mol	
-	Composition		Moles	mol	
Total Com	position		Moles	mol	
Moles			Basis choice	mol	
Mass					
Mass g					
Concentra	tion			mg/L	
Molar Con				moVL	
Mass Frac				mass %	
Mole Fract				mole %	

Figure 7-4

7. Locate the **Inflows** line currently displaying *Moles*. Click in the cell and change it to <u>Mass Fraction</u>.

Variable	Basis	Units		
Inflow variables				
Stream Amount	Moles	mol		
Inflows	Moles 📃	mol		
Output var				
Aqueous Composition	Moles	mol		
Vapor Composition	Concentration	mol		
Solid Composition	Molar Concentration	mol		
2nd Liquid Composition	Mass Fraction Mole Fraction	mol		
Total Composition	Moles	mol		

Figure 7-5 Selecting Mass Fraction

Composition Parameters Corrosion		
Variable	Basis	Units
	flow variables	
Stream Amount	Moles	mol
Inflows	Mass Fraction	mass %
	utput variables	
Aqueous Composition	Moles	mol
Vapor Composition	Moles	mol
Solid Composition	Moles	mol
2nd Liquid Composition	Moles	mol
Total Composition	Moles	mol
	Basis choice	
Moles		mol
Mass		g
Volume		L
Concentration		mg/L
Molar Concentration		mol/L
Mass Fraction		mass %
Mole Fraction		mole %
Use these units for all new objects crea	tod in this day mont	

Figure 7-6

- 8. *Click* <u>OK</u> to close the <u>Units Manager</u> until you are back at the <u>Definition</u> tab.
- 9. We are now ready to enter the conditions. When using mass-fraction units, it is assumed that the amount of water will be the difference of the components entered. In this case, the value field is highlighted in yellow to inform you that the value will be determined from the values of the other components.

Enter a value of 10 % for acetic acid, 75 °C, 1 atmosphere pressure.

Variable	Value
Stream Param	neters
Stream Amount (mol)	55.5082
Temperature (°C)	75.0000
Pressure (atm)	1.00000
Inflows (mas)	ss %)
H2O	90.0000
ACETACID	10.0000

Figure 7-7 the filled out grid for 10 % Acetic Acid

- 10. Click on the Add Calculation button and select Single Point.
- 11. Select the default calculation type Isothermal.
- 12. *Right-click* the new object in the tree-view (usually with a name similar to SinglePoint1).

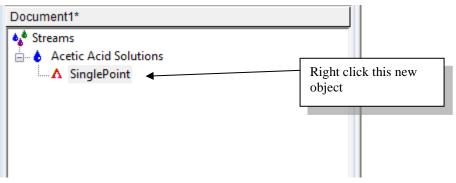


Figure 7-8 Right-click the new object

This will display a menu.

Document1*		
	Acid Solutions	
∧ Sing	Arrange	•
	Cut	
	Сору	
	Paste	
	Delete	
	Rename	
	Add As Stream	
	Clear Results	
	Clear Status	
Actions	Calculation Options	
Actions		* -

Figure 7-9 Right-click menu choices for the tree-view

Select **<u>Rename</u>** from the list. (Double click on the object name works too)

Document1*	
🍓 Streams	
🛓 💧 Acetic Acid Solutions	
▲ SinglePoint	
E: 710 B : 1 1:	

Figure 7-10 Renaming the object

The original text is now high-lighted so you can edit this field. Rename the value to pH.

Document1*	
• Streams	
Acetic Acid Solutions	
Figure 7-11 The renamed obje	ect

- 13. *Click* on the <u>Calculate</u> button to start the calculation.
- 14. After the calculation is complete you may:
 - a. *Click* on the *Output* mini-tab display <u>Calculated</u> values.
 - b. *Right-click* on the grid to display <u>Sections> Additional Stream</u> <u>Parameters</u>

Stream Parameters Stream Amount (mol) 55.5082 Moles (True) - Aqueous (mol) 55.5133 Temperature (°C) 25.0000 Pressure (alm) 1.00000 C Inflows (mass %) H2O 90.0000 ACETACID 10.0000 C Additional Stream Parameters
Moles (True) - Aqueous (mol) 55 5135 Temperature (°C) 25,0000 Pressure (atm) 1.00000 C Inflows (mass %) H2O 90,0000 ACETACID 10,0000 C Additional Stream Parameters
Temperature (°C) 25 0000 Pressure (atm) 1.00000 • Inflows (mass %) 90 0000 H2O 90 0000 ACETACID 10.0000 • Additional Stream Parameters 90 0000
Pressure (atm) 1.00000 Inflows (mass %) 100000 H2O 90.0000 ACETACID 10.0000 Additional Stream Parameters 10.0000
Inflows (mass %) H2O 90.0000 ACETACID 10.0000 Additional Stream Parameters 10.0000
H2O 90.0000 ACETACID 10.0000 Additional Stream Parameters
ACETACID 10.0000
Additional Stream Parameters
Density - Aqueous (g/ml) 0.787784
Density - Total (g/ml) 0.787784
lonic Strength (m-based) - Aqueous 5.88213e-3
Ionic Strength (x-based) - Aqueous 1.02540e-4
pH 2.26593
Standard Liquid Volume - Aqueous 1.07368

Figure 7-12 Results, the pH is approximately 2.3

The resultant pH is approximately 2.3.

Mix Calculations

In this example, we are going to mix two streams of different compositions. In doing so we will determine the temperature rise of a 10-weight percent solution of calcium hydroxide mixed with pure 10 weight percent HCl. To do this, we will need to create both streams separately. Along the way, we will rename a species to a more useful name.

If you have not already done so, please start the OLI Studio. We will be adding a 10 weight-percent calcium hydroxide slurry. By now you should be familiar with adding these components.

- 1. Create a stream named *Lime Slurry*.
- 2. *Click* on the <u>Definition</u> Tab.

OLI Studio - [Document1*]				• •
File Edit Streams Calculations Chemistry Tools Vie	ew Window Help			- 8 ×
🗅 😅 🖬 🐰 🖻 🛍 🥔 🍞 🎀 🛛 Aq Va So 2 nd F	ke 🛨 👹 🛨 🍘 🛨 🛛 👫 🎬 🛨 💱 🔊	₽ /#		
Navigator # * *				
Document1*	Lime Slurry			
Streams	ダ Description 🔮 Definition <u>[5</u>]	Report		
🚊 👌 Acetic Acid Solutions			0	
	Variable	Value	Add Calculation 🔻	
Lime Slurry	Stream Amount (mol)	55,5082	Special Conditions	
	Temperature (*C)	25.0000	Colids Only	
	Pressure (atm)	1.00000		
	C Inflows (mol)		Summary	
	H2O	55.5082	Unit Set: Metric (moles)	^
	·			
			Automatic Chemistry Model AQ (H+ ion) Databanks:	
			Public	
1		=		
Actions		=		
Actions			>	
Add Stream Add Mixer Add Single Add Survey Point				
Plot Template Manager				
		•		
	Input			
	Advanced Search Add as Stre	eam Export		-
Save		- updit		
For Help, press F1	,		2 🗐	NUM

Figure 7-13 Standard Stream Definition

3. *Click* on the <u>Tools/Names Manager</u> menu item (see next figure).

OLI Studio - [Document1*]			
I File Edit Streams Calculations Chemistry	Tools View Window Help		
🗅 🚅 🖬 🕺 🖻 💼 🏐 🍞 🙌 🗛 Va	Component Search	🗚 🎬 🛨 💱 🔊 🛛	S 16
Navigator	Names Manager		
Document1*	Units Manager Customize	Definition <u> </u> R	eport
→ PH	Options	able Stream Parameter	Valu
Lime surry	Add an Alloy	nol)	

Figure 7-14 Menu Item/Tools/Names Manager

4. *Click* on the <u>Names Dictionary</u> tab.

We can now enter a name of a species already defined in the software. This will be entered in the <u>Component</u> column. We can then rename the species in the <u>User Name</u> column.

- 5. Scroll down to find an empty cell.
- 6. Enter *Ca*(*OH*)₂ in the <u>Component</u> column. *Left-click* on the <u>User Name</u> column and enter *LimeSlurry*. (Note: Do not use spaces or special characters)

Names Manager			? 💌
Name Style Sea	arch Criteria Na	mes Dictionary	1
	nponent		Name
Ca(OH)2	•	LimeSlurry	
		_	
		Im	port Dictionary
Type the OLI (e.g., CH4 and the Display N	Component name d C1). Names wil ame option.	then the Custo appear when a	om Name using
ОК	Cancel	Apply	Help

Figure 7-15 Defining Calcium Hydroxide as "Lime Slurry"

- 7. *Click* on <u>Apply</u> and then <u>OK</u>.
- 8. As you did in the previous example for the "Isothermal" calculation. Select *Mass-Fraction* units from the Units Manager for <u>inflows</u> and *Mass* for <u>Stream</u> <u>Amount</u>.
- 9. Enter the following conditions:

•	Temperature	=	25 °C
•	Pressure	=	1 atmosphere

- Stream Amount = 1000 g
- LimeSlurry = 10 mass %

	Variable	Value
∇	Stream Paramet	ers
Stream A	Amount (g)	1000.00
Tempera	ture (°C)	25.0000
Pressure	e (atm)	1.00000
$\overline{\nabla}$	Inflows (mass	%)
H2O		90.0000
CAOH2		10.0000

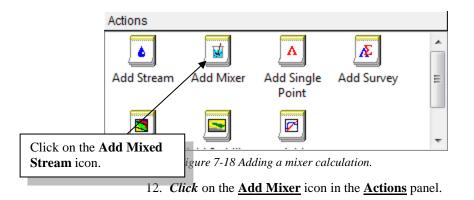
Figure 7-16 Lime Slurry Stream Definition (using display name from Names Manager Tool)

The entered name will revert to the standard name.

We will now repeat these steps but using a 10-weight percent Hydrochloric acid solution. The input for this step is shown in the following figure.

10. Create a new Stream named Acid.

11. Enter the following conditions:


٠	Temperature	=	25 °C
---	-------------	---	-------

- Pressure = 1 atmosphere
- Stream Amount = 1000 g
- HCl = 10 mass %

1	/ariable	Value
$\overline{\nabla}$	Stream Paramete	ers
Stream Amour	nt (g)	1000.00
Temperature (°C)	25.0000
Pressure (atm)	1.00000
	Inflows (mass ?	6)
H2O		90.0000
HCL		10.0000

Figure 7-17 Standard stream definition for 10 wt % HCl

We will now have to add a mix calculation to determine the temperature raise.

This will display all possible streams for the mix calculation. There is no limit to the number of streams to be mixed. We will only select two streams.

E File Edit Streams Calculations Chemistry Tools View Window Help	_ 8 ×
🗅 🖆 🖬 👃 🖓 💼 💼 🥔 🎖 🎀 🗍 🖓 🕼 🕼 🛛 🛛 🖓 👭 🖀 🖢 🦓 🖓 👘 🖉	
Navigator # * X Mixer	
Documenti	
🖸 Streams 🖉 🖉 Description 🔯 Definition 🏙 Plot 🔯 Report 🚘 File Viewer	
Acetic Acid Solutions Available Streams Selected Mixing Method	
A cetic Acid Solutions - (ADI)	Specs
Acid Acid Acid Acid Acid Type of calculation	
Alto (Add)	
Bubble/Dew Point	
(in the second sec	5
Variable Value Autiplier Calculate	
Stream Parameters Summary	_
Total Inflow	<u>^</u>
Temperature (°C) 25.0000	
Actions a. • x Pressure (atm) 1.00000 Need at least 1 input stream.	
Actions	
Plot Template Manager a A X	
Input	
Advanced Search Add as Stream Export	-
Save Save	

Figure 7-19 The input for the mix calculations.

- *13.* Select the <u>Lime Slurry</u> stream from the available list and *click* on the <u>>></u> button.
- 14. Select the <u>Acid</u> *stream* and *click* on the <u>>></u> button. The display should look like this:

Available Streams		Selected	ł	
Acetic Acid Solution pH - [AQ]		> Lime Sh Acid	urry	
Variable	Value	Lime Slurry	Acid	
Variable Multiplier	Value	Lime Slurry 1.00000	Acid 1.00000	
		1.00000		
Multiplier		1.00000 Parameters	1.00000	

Figure 7-20 Selecting streams. You may have a different list.

The default calculation is to hold a single point calculation at isothermal conditions. We want to see if a temperature rise will occur. An adiabatic calculation is required to see this effect.

15. *Click* on the second <u>Type of Calculation</u> button.

	Type of calculation Single Point Mix 👻 Specs
C	Type of calculation
	Bubble/Dew Point Temperature Pressure
	Calc <u>u</u> late 🥥
Sum	mary

Figure 7-21 Changing the type of calculation

1	Description	🥺 Definition	🛍 Plot 📓	Report					
Av	ailable Streams		Selected]	Mixing) Method	
	etic Acid Solution	s	Lime Slu	irry				Single Point Mix 🔷 🔻	Specs
рH	pH · [AQ]						Туре	of calculation	
								Isothermal	
								isotrierinar	
			-				•	Adiabatic	
			-			Su			
	Variable	Value	Lime Slurry		<u>^</u>	Su		Adiabatic	~
	Variable Multiplier	Value	Lime Slurry 1.00000	Acid 1.00000	Î.	Su		Adiabatic Heat Duty Bubble Point	^
					Î	Su		Adiabatic Heat Duty Bubble Point Dew Point	A
			1.00000		•	Su		Adiabatic Heat Duty Bubble Point	*
	Multiplier		1.00000 Parameters	1.00000	Î	Su		Adiabatic Heat Duty Bubble Point Dew Point	*

Figure 7-22 Selecting the mix calculation type.

Select Adiabatic.

Dia Setti Acid Solutions Actions Margater Manager + ** Point Templater Manager + ** Point Templater Manager + ** Point Templater Manager + ** Save	OLI Studio - [Document1*]								
Navgeter 1 1 Document** Mixer Image Streams Actic Acid Solutions Actions Actions Actions Image Streams Actions Image Stream Parameters Image Stream Parameters Image Stream Parameters	🗉 File Edit Streams Calculations Chemistry Tools View Window Help								
Document** Image: Contract Acid Solutions Image: Contract Acid Acid Solutions Image: Contrest Acid Acid Solutions									
Documentaria Image: Streams Actic Actic Solutions Actic Actic Actic Solutions Actic Actic Actic Solutions Actic Actic Actic Solutions Actions Actions Actions Actions Plot Template Manager Involution Super Point Mix Actions Involution Actions Actions Involution Actions Involution Actions Invol Actions <td colspan="9"></td>									
Actic Acid Solutions Actic Acid Solutions A Actic Acid Solutions Selected Actic Acid Solutions Line Starry Acid Acid B Aff Mixer Acid Solutions Acid Acid B Aff Mixer Variable Streams Acid Stream Parameters Imput Mutpleer 1.00000 Total Inflow 1000000 Pot Template Manager + * x Input Addaes Stream Input Addaes Stream Advanced Search									
Acido Source Acido Acido Acido Solutions Acido Acido Acido Solutions Ines Starty Acido Acido Acido Solutions Ines Starty Acido Acido Acido Solutions Ines Starty Acido Mixeer Acido Acido Acido Acido Solutions Variable Value Lime Starty Mutpier 1.00000 Total Inflow 100000 O Temperature (*C) 25.0000 25.0000 25.0000 Pressure (atm) 1.00000 Pressure (atm) 0.0 min Actions 0.0 min Input 4.127 *C Singe Point Mix Calculation O at min 4.127 *C Singe Point Mix Calculation O at min 4.127 *C Singe Point Mix Calculation <		🤣 Description 🔮 D	efinition M. Plot (😥 Report 🛃 File	Viewer				
Lime Sturry Acid Acid Single Point Mix Single Point Mix Specs Acid Single Point Mix Single Point Mix Specs Variable Lime Sturry Acid Mutpler Nutpler 1.0000 Total Inflow 1000.00 g Total Inflow 1000.00 g Temperature (°C) 25.0000 25.0000 25.0000 Single Point Mix Supmany Unit Set: Metric (moles) Automatic Chemistry Model Actions + ** Plot Template Manager + ** input Input Add as Stream Egoot		Available Streams		Selected		ſ	Mixing Method		
Acid Type of galculation Image: Mixee Image: Mixee Actions Image: Mixee Persure (atm) 1.00000 Image: Mixee Image: Mixee Pot Template Manager Image: Mixee Image: Mixee Acd as Stream Save Save							Single Point Mix Specs		
Box Age Mixee: Variable Variable Lime Slurry Acid Actions Actions 100000 100000 Summary Plot Template Manager + • • × Nutple 1.00000 1.00000 Und Set: Metric (moles) Implate Manager + • • × Note: Implate Manager + • • × Save Save Save Egont		pH · [AQ]	>	Acid			Tupe of calculation		
Actions • • * Imput: • • * Actions • • * Actions • • * Piot Template Manager • • * Imput: • • • * Advanced Search Add as Stream Save * • • • *	🗈 🕂 Mixer		<	<					
Actions							Adiabatic		
Actions 4.*x Actions 4.*x Actions 9 Pressure (atm) 1.00000 1.00000 Pressure (atm) 1.00000 1.00000 1.00000 Pot Template Manager + ** Not Save									
Actions 4 * X Actions 6 * X Piol Template Manager 4 * X Input Advanced Seach Advanced Seach Add as Stream Sove Seach Add as Stream									
Actions • • • × Plot Template Manager • • × Imput Imput Advanced Search Add as Stream Egoott						_1	Pressure		
Actions			Value			<u> </u>	Calculate 🤷		
Actions 4 * X Actions 4 * X Actions 1.00000 Pressure (alm) 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 Actions * * X Point Template Manager 4 * X Input Advanced Save Search		Multiplier	Cána ann		1.00000	-			
Actions A. ** Actions A. ** Actions Impact (sim) Plot Template Manager A. ** Plot Template Manager A. ** Imput Add as Stream Add as Stream Egoot		Total Inflow	stream		1000.00.0		Summary		
Actions Actions Actions Actions Actions Perssure (atm) 1.0000 1.0000 1.0000 Actionate Action Actions Point Template Manager +			25.0000	-					
Actions Actions Actions Actions Actions Actions A									
Adduitis Public Public Public Image: The second	Actions + • ×	(unit)	1.00000		1.00000				
Plot Template Manager A • X Input Input Advanced Search Add as Stream Export Deschart 1/8/24.4.tm Export Export Export Export Export Export Export Export	Actions								
Plot Template Manager + • × Plot Template Manager + • × Input Advanced Search Add as Stream Egoott							Isenthalpic Calculation		
Plot. Template Manager 4 • X X Input Advanced Search Add as Stream Export									
Plot Template Manager + * X Plot Template Manager + * X Imput Aqueous Plase Properties pH 1.73070 Save									
Plot Template Manager + * × Plot Template Manager + * × Input Aqueous Plase Transmitter Advanced Search Add as Stream Export Calculation Results: Temperature 48.120 ° C Heat Duty -261246 cal Phase Amounts Aqueous 106.750 mol Vagor 0.0 mol Sold 0.0 mol Aqueous Phase Properties pH 1.73070 Init: Save							Single Point Mix		
Plot Template Manager + + + Plot Template Manager - + + + Input Aqueous Phase Properties pH 1.73070 mol Vagor 0.0 mol Sold 0.0 mol Aqueous Phase Properties pH 1.73070 mol Vagor 0.0 mol Sold 0.0 mo									
Plot Template Manager + • × Heal Duty - 2.61224e-4 cal Heal Duty - 2.6124e-4 cal Heal Duty - 2.6124e-4 cal Heal Duty - 2.6124e-4 cal Heal									
Aqueous 106.750 mol Vagor 0.0 mol Sold 0.0 mol Aqueous Phase Properties 1 13070 Ionic Strength 0.038347 mol/mol Dencetur 1 (#7-24 .ntml	Plot Template Manager # * ×								
Save Vagor 0.0 mol Save Advanced Search Add as Stream									
Save Save Export Save Save Save Save Save Save Save Save									
Input Aqueous Phase Properties 1.73070 Save Advanced Seatch Add as Stream Export									
Save Find a stream Export pH 1.73070 ionic Strength 0.0383347 mol/mol Save Save Save Find a stream Export Find a stream						Ψ.			
Save Search Add as Stream Egoott Desstream 105244 n/mi		Input							
	Save	Advanced Search	Add as Stream	Export			Ionic Strength 0.0383347 mol/mol		
	For Help, press F1	L							

16. Click on the <u>Calculate</u> button.

Figure 7-23 The results of the mix.

The <u>Summary Box</u> shows the results of the calculation. You can see that the temperature increased from 25 degrees centigrade to approximately 48.1 degrees centigrade. There was a considerable heat of reaction.

Bubble Point

Bubble points calculations are a calculation where the temperature or pressure of the system is adjusted such that a very small amount of vapor will form. This is another way of saying that the bubble point calculation is a determination of the boiling point.

Normally we determine the temperature at which a solution will boil. If the pressure is set to 1 atmosphere, then we are calculating the Normal Boiling Point. If we hold the temperature constant then we can determine the bubble point pressure.

Bubble point calculations are useful for determining the saturation pressure or temperature of a system. Many systems will have a vapor phase when we least expect it. Calculating the saturation pressure or temperature will allow us to set our conditions appropriately.

In this example, we are using a 1 molar Acetone solution in water. Remember the molal concentration scale has moles of solute per kilogram of water. So, we have 1.0 moles of Acetone and 1 liter of solution.

We are going to let you set up this calculation primarily on your own. The following is a set of steps to help you along.

- 1. Define a new stream and call it *Bubble*.
- 2. *Click* on the **Definition** tab.
- 3. Create a new set of units (see the Isothermal example for more details).
- 4. Select **Tools/Units Manager** from the **Tools** menu item.
- 5. Select the **Customize** button.

Composition	Parameters	Corrosion					
	Varia	able	Basis	Units			
		I	low variables	ables			
Stream Ar	nount		Volume	L			
Inflows			Molar Concentration	mol/L			
		(tput variables				
Aqueous	Composition		Moles	mol			
Vapor Cor	mposition		Moles	mol			
Solid Com	position		Moles	mol			
2nd Liquid	Composition		Moles	mol			
Total Com	position		Moles	mol			
			asis choice	oice			
Moles				mol			
Mass				g			
Volume				L			
Concentra	ition			mg/L			
Molar Con	centration			mol/L			
Mass Frac	Mass Fraction			mass %			
Mole Fract	tion			mole %			

(1. T. A.

Figure 7-24

- 7. Click on Apply, OK or Close as appropriate.
- 8. Enter the following conditions:

•	Stream Amount	=	1 L
•	Temperature	=	25 C
•	Pressure	=	1 Atmosphere
٠	Water	=	(adjusted)
•	Acetone	=	1.0 molarity

9. Add a **Single Point** calculation. 10. From the **Type of Calculation** button, select **Bubble Point.**

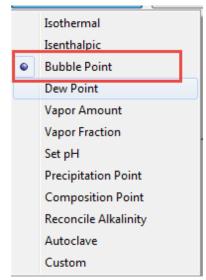


Figure 7-25 Selecting Bubble point calculations

11. A new section appears in the grid. You can now select either a bubble point pressure or temperature by changing the value in the box:

	Variable	Value						
		Stream Parameters						
	Stream Amount (L)	1.00000						
0	Temperature (°C)	25.0000						
•	Pressure (atm)	1.00000						
	Calculation Paramet	ers						
	Calculate	Temperature						
	√ Inflows (mol/L)							
	H2O							
	ACETONE	1.00000						
	_							

If you click in the box you can change the calculation from temperature to pressure:

	Variable	Value						
	Stream Parameters							
	Stream Amount (L)	1.00000						
0	Temperature (°C)	25.0000						
•	Pressure (atm)	1.00000						
		eters						
	Calculate	Temperature 💌						
	√ Inflows (mol/l) Temperature						
	H2O	Pressure						
	ACETONE	1.00000						

For this calculation select *Temperature*.

Notice the presence of a "Free Dot" next to **<u>Temperature</u>** to indicate that value will be adjusted.

	Variable Value			Type of calculation		
					Bubble Point 👻 Specs	
	Stream Amount (L)	Stream Amount (L) 1.00000				
С	Temperature (°C)	25.0000			Calc <u>u</u> late 🥝	
•	Pressure (atm)	1.00000			Summary	
	Calculation Parameters				A	
	Calculate	Temperature 💌			Unit Set: <custom></custom>	
	Inflows (mol/L)				Automatic Chemistry Model	
	H2O				AQ (H+ ion) Databanks:	
	ACETONE	1.00000	00000 Public		Public	
]		Bubble Point Calculation 1.00000 atm	

Figure 7-28 Bubble point temperatures are selected

- 12. *Click* on the <u>Calculate</u> button.
- 13. *Click* on the <u>**Report**</u> tab to see the results. The temperature is 89.4 C.
- 14. Scroll down to see more information.

Bubble Point Calculatio 1.00000 atm	in		
89.4429 °C			
Stream Inflows			
Row Filter Applied: Only Non 2	Zero Values		
Species		mol/L	
H2O		50.0277	
ACETONE	(0.999990	
Stream Parameters			
Row Filter Applied: Only Non 2	Zero Values		
column Filter Applied: Only No	on Zero Values		
Mixture Properties			
Stream Amount		1,00001	
Temperature		89.4429	°C
Pressure		1.00000	atm
Aqueous Properties			
рН		6.21659	
lonic Strength (x-base	ed)	1.07377e-8	mol/mol
Ionic Strength (m-base	ed)	6.07942e-7	mol/kg
Specific Electrical Cor	nductivity	5.56343e-5	mho/m
			Ar. 1

Figure 7-29 The bubble point is 89.4 C

There is a lot of information that is displayed just for this relatively simple case. The user does have the option to limit the display of data. Remember that the data is not lost, merely not displayed.

- 15. Click on the Customize button.
- By default, all the options are selected. Clear all the <u>Check Boxes</u> leaving only <u>Calculation Summary</u>, <u>Stream Inflows</u> and <u>Stream Parameters</u> selected.

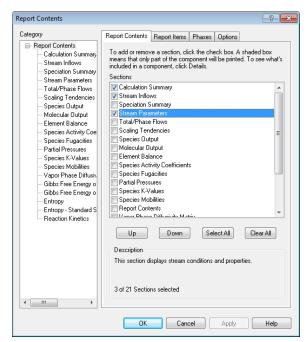


Figure 7-30 Customizing information displayed in a Report

17. *Click* the <u>OK</u> *button*. Scroll down to see that some of the information has been suppressed.

Dew Point

It is frequently useful to determine the temperature or pressure at which a gas will condense. In this example, we have a simple hydrocarbon laden gas. We wish to determine the condensation temperature otherwise known as the dew point temperature.

In this example, we have the following conditions:

guess)

In previous examples you have entered data for the stream. We will not repeat them here. The following figure is the set up for the Dew Point calculation. Please enter the data.

Click on the Calculate button when ready.

	Variable	Value		Type of calculation	
Stream Parameters			Dew Point 🔻 Sr		
	Stream Amount (mol)	100.000			
Þ	Temperature (°C)	25.0000		Calc <u>u</u> late 🥝	
	Pressure (atm)	1.00000		Summary	
	Calculation Param	eters			
	Calculate	Temperature		Unit Set: Metric (moles)	
	Inflows (mol)		Automatic Chemistry Model	
	H2O	1.00000		AQ (H+ ion) Databanks:	
	C02	1.00000		Public	
	CH4	95.0000		Dew Point Calculation	
	H2S	3.00000		1.00000 atm	
				Calculation not done	

Figure 7-31 Bubble Point Temperature Stream Definition

After the calculation is complete, the resultant temperature is approximately 7.01483 C.

Summary
Unit Set: Metric (moles)
Automatic Chemistry Model AQ (H+ ion) Databanks: Public
Dew Point Calculation 1.00000 atm 7.01483 °C
Phase Amounts Aqueous 1.00000e-4 mol Vapor 99.9999 mol Solid 0.0 mol
Aqueous Phase Properties pH 4.66258 lonic Strength 3.93826e-7 mol/mol Density 1.00058 g/ml
Calc. elapsed time: 0.453 sec
Calculation complete

Figure 7-32 Results with standard model options

Vapor Amounts/Fractions

In this example, we have a brine in which we want to evaporate to concentrate the brine. To do this we will adjust the temperature (or pressure) to create a specified amount of vapor (or vapor fraction).

In this case we want to adjust the temperature such that our system is 95 percent vapor (on a mole basis). Please enter the following conditions into a stream definition:

Temperature	=	25	°C
Pressure	=	1	Atmosphere
NaCl	=	9.0	mass %
$CaSO_4$	=	1.0	mass %
Vapor Fraction	=	95.0	mole %

The component compositions are grams of species per 100 grams of solution (a weight fraction). The vapor fraction is in moles of vapor per mole of solution and is a mole fraction.

You must change the units for this example. You already have done this previously.

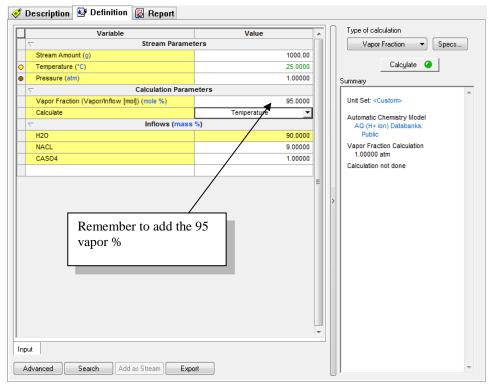


Figure 7-33 Vapor Fraction Stream Definition

Click on <u>Calculate</u> to start.

After the program finishes the calculation, the temperature is approximately 109 °C. At this temperature, 95 percent of the system will be vapor.

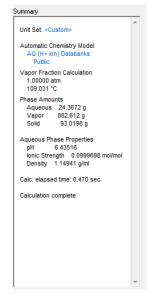


Figure 7-34 Summary of Vapor Fraction

Desalinating brines often create solids known as scales. These scales are often detrimental to the operation of the desalination unit. We should review the reports to see how much solid has been produced.

ኛ Description 🔯 Definit	tion 🚳 Benort		
o Description of Denning			
Jump to: Calculation Summary			Export
			<u>^</u>
Calculation Summary			
SinglePoint-2 Calculation			=
Unit Set: Custom			
Automatic Chemistry Model			
AQ (H+ ion) Databanks:			
Public			
Vapor Fraction Calculation			
1.00000 atm			
109.031 °C			
Stream Inflows			
Row Filter Applied: Only Non Zero	√alues		
Species	mass %		
H2O	90.0000		
NACL	9.00000		
CASO4	1.00000		
Charles Described			
Stream Parameters Row Filter Applied: Only Non Zero	(alues		
column Filter Applied: Only Non Zer			
pine only the co			
Mixture Properties			
Stream Amount	1000.00	a	Ψ.

Click on the <u>**Report**</u> tab.

Figure 7-35

Use the drop-down box indicated in Figure 7-35 to find the Species Output section.

🎻 Desc	ription 🔯 Definition 📓 Report	
Jump to:	Calculation Summary -	[
Single	Stream Inflows Stream Parameters Total and Phase Flows (Amounts) Scaling Tendencies Species Output (True Species) Element Balance et Custom	
	Figure	7-36

The following figure shows that both solid sodium chloride (halite) and calcium sulfate (anhydrite) have scaled out. The operator may wish to divide the desalination unit into smaller units to prevent scaling.

mp to: Species Output (True Species)	•		0	Custon	nize Export
Species Output (True Species) Row Filter Applied: Only Non Zero Values column Filter Applied: Only Non Zero Values					
	Total	Aqueous	Vapor	Solid	
	mol	mol	mol	mol	
1120	40.0574	0.965126	40.9923	0.0	
NACL (Halite)	1.42192	0.0	0.0	1.42192	
NAION	0.118044	0.118044	0.0	0.0	
CLION	0 117932	0 117932	0.0	0.0	
CASO4 (Anhydrite)	0.0728596	4.24159e-6	0.0	0.0728554	
SO4ION	5.93329e-4	5.93329e-4	0.0	0.0	
CAION	4.8122e-4	4.8122e-4	0.0	0.0	
CACLION	1.1207e-4	1.1207e-4	0.0	0.0	
HCL	7.02879e-8	5.54615e-13	7.02873e-8	0.0	-
CAOHION	4.10702e-8	4.10702e-8	0.0	0.0	
OHION	3.51233e-8	3.51233e-8	0.0	0.0	
HION	3.32073e-9	3.32073e-9	0.0	0.0	
HSO4ION	2.58491e-9	2.58491e-9	0.0	0.0	l
CACL2 (Hydrophilite)	7.34269e-12	7.34269e-12	0.0	0.0	
H2SO4	1.30796e-24	7.08036e-27	1.30087e-24	0.0	
SO3	1.28227e-29	7.33473e-30	5.488e-30	0.0	
NA SO4ION	1.63917e-31	1.63917e-31	0.0	0.0	
Total (by phase)	51.6894	1,20229	48,9923	1,49477	

Figure 7-37 Vapor Fraction results

Click here for a completed working file for this chapter: Chapter 07 Tour

8. Multiple Point Calculations

Objectives

We now continue to explore some of the other calculations in the OLI Studio. In this chapter, we'll explore multiple point calculations. As in chapter 7, we will introduce some additional features.

- 1. Temperature
 - Additional Specifications
- 2. Pressure
- 3. Composition
- 4. pH
- 5. Secondary Surveys
- 6. Mixer Surveys
- 7. Cascading Mixers

Temperature

Many thermodynamic properties are strong functions of temperature. It is useful to plot our systems as a function of temperature. In this example, we will determine the solubility of benzoic acid in the temperature range of 0 to 100 degrees centigrade.

As we do this, the aqueous composition of the solution will change as some of the benzoic acid in the solid phase will dissolve into the aqueous phase.

By now you should be very familiar with entering data into the grids. For this example, enter the following:

=	55.5082 mol (Default)
=	25.0 C
=	1.0 Atm
=	55.5082 mol
=	0.0 mol
	= = = =

Select **<u>Survey</u>** for the calculation type.

The **<u>Definition</u>** should look like the figure below.

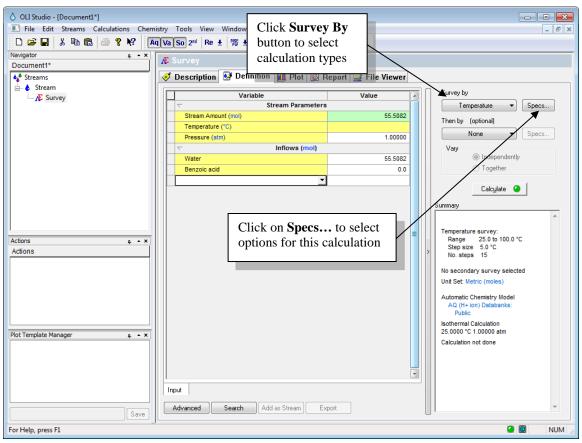


Figure 8-1 Stream Definition for Temperature survey

The temperature survey is the default. Now click on the <u>Specs</u> button to display this figure. We will be using a temperature range of 0 to 100 C.

```
A Guide to Using OLI Studio
```

Survey Options		? 💌
Category 	Survey Range Temperature Range Selected Range 0.0 to 100.0 in 20 steps of 5.0	Unit: *C
	Linear Log Poi End Points Start 0.0 End 100.000 Step Size Increment 5.00000 0 Number Steps 20 0	nt List Select one, the other is calculated
	OK Cancel	Apply Help

Figure 8-2 Spec Options - Range

Make sure the **Increment** is set to 5 degrees C.

Now *Click* on <u>Calculation Type</u>

We will now set up a secondary calculation to determine the amount of benzoic acid necessary to saturate the solution (See Chapter 7 – Precipitation Point calculation)

Survey Options	Transform (1)	8	X
Survey Options Category Var. 1 - Temperature Calculation Type Calculation Options	Calculation Type Type of Calculation Isothermal Use Single Titrant Hide Related Inflows	New Inflow	
	OK Cancel Apply	Help	

Figure 8-3 the default calculation type dialog.

The list of calculations is like ones found in the single point calculations chapter (see chapter 7).

Survey Options		? 💌
Category Var. 1 - Temperature Calculation Type Calculation Options	Calculation Type Type of Calculation	Temperature Specs Pressure ated Inflows New Inflow Adjusted Inflow Benzoic acid Water
	ОКС	Cancel Apply Help

Figure 8-4 Specifying calculation type.

Select Precipitation Point.

You will now be given a choice of which solid to "FIX". In this case, there is only one possible choice, *Benzoic Acid* – *Sol*. You will also be given a choice of an inflow to adjust. The inflow species is adjusted such that the scaling tendency of the selected solid is exactly 1.0. It is generally a good idea to pick an inflow with the same materials as the selected solid.

Survey Options		? X
Category Var. 1 - Temperature Calculation Type Calculation Options	Calculation Type Type of Calculation Precipitation Point Use Single Titrant Solid Precipitate Benzoic acid - Sol	Temperature Pressure elated Inflow Adjusted Inflow Benzoic acid Water
	OK Can	icel Apply Help

Figure 8-5 Selecting benzoic acid solid

Select *Benzoic acid* – *Sol* and *Benzoic acid* as the components.

Click on the \underline{OK} button when you are ready.

The calculation is now set up correctly. Click on the <u>Calculate</u> button to start the calculation. This will now take more time than in the single point calculations since we are calculating many points.

When the program is finished, click on the **Plot** Tab.

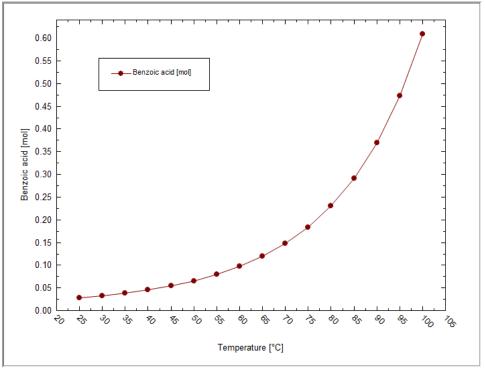


Figure 8-6 The Default Plot

This is the default plot. The program tries to intelligently plot what you calculated.

This plot shows the amount of benzoic acid required to saturate the solution as a function of temperature. The plot has many defaults which you may want to change.

Ch	tek the <u>options</u> button.	
Customize Plot		? X
Category Legend - X Axis - Y Axis - Curves	General Title Allow Layout Changes Break lines between invalid data points Number of Dominant Species S Background Color Frame Color Frame Color Frame Weight 1 pt	
	OK Cancel Apply	Help

Click the **Options** button.

Figure 8-7 Plot Options

For example, you can *Click* on the <u>Y-Axis</u> category.

Category	Scale Format Title	
General Legend		
	Auto	
-Y Axis	Minimum 0.0	
Curves		
	Maximum 0.63	
	✓ Major Unit 5.0	
	Minor Unit 0	
	Minor Unit 0	
	C Logarithmic scale	

Figure 8-8 Y-axis options

To change the scale on the Y-axis.

Click on the <u>Title</u> tab.

Customize Plot		? X
Category - General - Legend - X Axis - Y Axis - Curves	Scale Format Title	
	Preview: Benzoic acid [mol]	
	OK Cancel Apply	Help

Figure 8-9 Y-Axis title

Enter the text in the below box. Click on \underline{OK} when ready.

iustomize Plot Category		S X
General Legend X Axis Y Axis Curves	Scale Format Title Visible Auto Font Benzoic Acid Solubility (mole/Kg H2O) Preview: Benzoic Acid Solubility (mole/Kg H2O)	
	OK Cancel Apply	Help

Figure 8-10 Entering a new Y-axis title.

You can see that the Preview box automatically updates with the new text and the <u>Auto</u> check box is automatically turned off.

The Y Axis title has changed. You can also change the font, scaling and grid lines as you require.

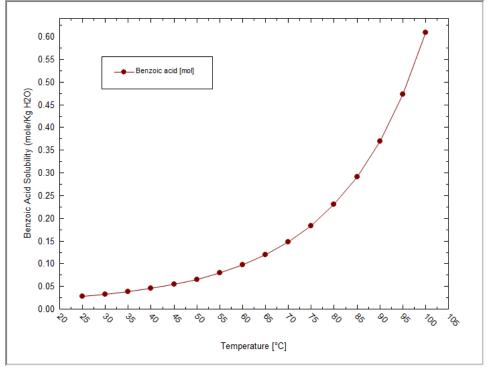


Figure 8-11 Revised Plot

You can directly change the axis properties by right-clicking the axis. For example, if you wanted to change the Y-axis to logarithmic right-click anywhere on the Y-axis:

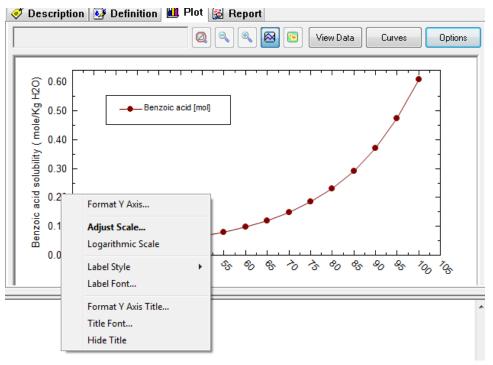
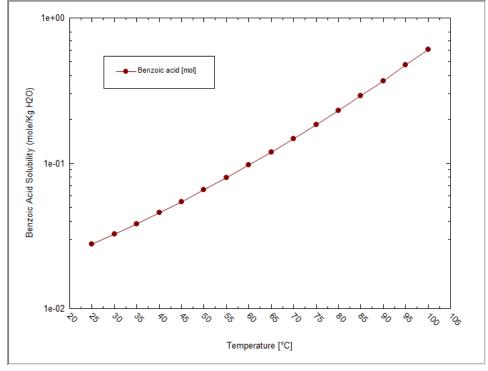
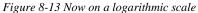
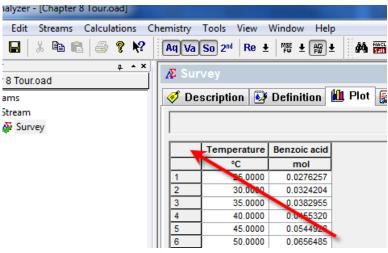




Figure 8-12Right-Click on axis and select Logarithmic

You can also display the data in table form. Click the **View Data** button:



			Q Q Q Q View Plot	Optior
	Temperature	Benzoic acid		
	°C	mol		
	25.0000	0.0276265		
	30.0000	0.0324213		
	35.0000	0.0382964		
	40.0000	0.0455329		
	45.0000	0.0544938		
	50.0000	0.0656496		
	55.0000	0.0796141		
	60.0000	0.0971911		
	65.0000	0.119439		
	70.0000	0.147758		
	75.0000	0.184010		
2	80.0000	0.230683		
	85.0000	0.291121		
ł I	90.0000	0.369837		
i	95.0000	0.472958		
;	100.000	0.608845		

Figure 8-15 Table format

This table view has the same units as displayed in the plot. The data can be copied to the clipboard and pasted into other programs such as Microsoft's Excel.

To copy all the data, click the empty box in the upper left-hand corner:

Next use the Menu and select **Edit > Copy** to copy the data:

🖳 File 🛛 Eo	dit Streams Calo	ulations	Chemistry Tools View Window Help
🗅 🗃 🗕	Cut	Ctrl+X	💶 🗛 Va So 2 nd Re 🛨 🏁 🛨 🏘 🎬 🛨 🛟
lavigator	Сору	Ctrl+C	
Docume	Paste	Ctrl+V	
Strea	Delete		🧭 Description 🥸 Definition 🛍 Plot 🛐 Re
	Clear Results		
	Clear Status		Temperature Benzoic acid
-			
			1 25.0000 0.0276265
			2 30.0000 0.0324213
			3 35.0000 0.0382964
			4 40.0000 0.0455329
			5 45.0000 0.0544938
			6 50.0000 0.0656496
			7 55.0000 0.0796141
			8 60.0000 0.0971911
			9 65.0000 0.119439
			10 70.0000 0.147758

Now paste this data into the program of your choice.

Please save your file now!

Pressure

Many thermodynamic properties are less dependent on pressure than they are temperature. In this case, vapor-liquid equilibrium is more affected by pressure. In this example, a large amount of carbon dioxide will be placed under pressure. This simulates the charging of a pressure vessel.

Enter this	Definition:
------------	-------------

Temperature	=	25	°C
Pressure	=	1	Atm.
H2O	=	55.508	mole
CO2	=	2.0	mole

Stream-1			
ኛ Description 🔯 Definition 📓 Report			
Variable	Value		Add <u>C</u> alculation 🔻
C Stream Parameters			Special Conditions
Stream Amount (mol)	57.5082		Solids Only
Temperature (°C)	25.0000		
Pressure (atm)	1.00000		Summary
Water	55.5082		
Carbon dioxide	2.00000		Unit Set: Metric (moles)
	2.00000		Automatic Chemistry Model
			Aqueous (H+ ion) Databanks: Public
Input Advanced Search Add as Stream Export		4 III	>

Figure 8-18 Stream Definition for Pressure Survey

Click the Add Calculation button. Then Click on the Survey by button and then select Pressure.

The <u>Summary</u> box will display the current calculation options and status. The default range is from 1 to 10 atmospheres with increment of 1 atmosphere. We need to change the range to 100 atmospheres with an increment of 5 atmospheres.

Click on the <u>Specs</u> button.

Survey Options				? 💌		
Category	Survey Range					
	Pressure Range Selected Range		Unit: atm	Unit: atm		
	1.0 to 100.0 in 20 steps of 5.0					
	Iinear End Points	🔘 Log	Point List			
	Start	1.00000]			
	End	100.000				
	Step Size					
	Increment Number Steps	20	Select one calculated	, the other is		
		ок	Cancel Apply	Help		

Figure 8-19 Changing the range

Change the increment from 1 to 5 as shown in the above figure. Change the end value to 100.

Click the \underline{OK} button if you are ready. The calculation is now ready. Click the $\underline{Calculate}$ button to start the calculations. When the program stops, click on the <u>Plot</u> tab to display the default plot.

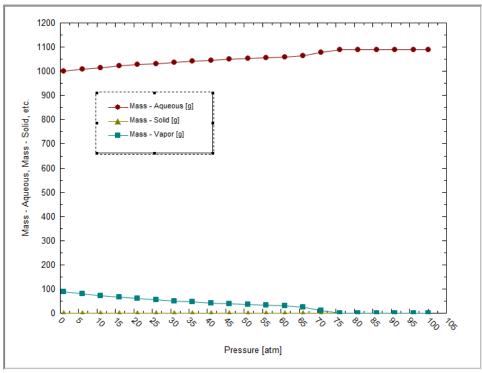


Figure 8-20 Default Dominant Aqueous species

The default plot of this type of calculation is a mass phase flow display. We can see that the mass of the aqueous phase is increasing until approximately 70 atmospheres where it becomes constant. At this point we will also notice that the mass of the vapor phase has become zero. This is the pressure where the vapor phase has collapsed and is no longer present.

There are other properties to view besides the mass phase flow. *Click* on the *Variables* button.

We no longer need to view the Mass Flow Variables. Select all of them and then *click* the left double arrow.

Scroll up/down to find Additional Stream Parameters.

Select Data To Plot	? 💌
Curves	
Stream Parameters Calculation Results	X Axis >> Pressure
Inflows Additional Stream Parameters	Y1 Axis
Phase Flow Properties Thermodynamic Properties Scaling Tendencies	»
Pre-scaling Tendencies Aqueous	<<
Vapor Solid Molecular Totals	Y2 Axis
Molecular Totals MBG Totals - Totals MBG Totals - Aqueous	>>
■ MBG Totals - Vapor ■ MBG Totals - Second Liquid	<
MBG Totals - Solid Activity Coefficients - Aqueous (x Activity Coefficients - Aqueous (r	7 Axis
	- Select -
Hide zero species	
Plot data which is only within temperature rang	e.
ОК	Cancel Apply Help

Figure 8-21 Classes of variables, select Additional Stream Parameters

From the new list, select **pH**

Stream Parameters	*
Calculation Parameters	
🗄 Inflows	
Additional Stream Parameters	
···· Density - Aqueous	=
···· Density - Total	-
···· Density - Vapor	
Ionic Strength (m-based) - Aqueous	
Ionic Strength (x-based) - Aqueous	
<mark>pH</mark>	
···· Standard Liquid Volume - Vapor	
Phase Flow Properties	
• Thermodynamic Properties	
Scaling Tendencies	
Pre-scaling Tendencies	
Aqueous	
• Vapor	-
	-
۰ III ۰	

Figure 8-22 Locate and select pH

Then click on the **<u>Right double-arrow</u>** or *double click* the entry.

Select Data To Plot Curves		2 S
 Stream Parameters Calculation Parameters Inflows Additional Stream Parameters Density - Aqueous Density - Total Density - Vapor Ionic Strength (m-based) - Aqueous Standard Liquid Volume - Aqueous Standard Liquid Volume - Vapor Vapor Fraction (Vapor/Inflow [mol]) Phase Row Properties Scaling Tendencies Aqueous Vapor Solid Material Text 	* E	X Axis Pressure Y1 Axis PH Y2 Axis X Axis Z Axis
Hide zero species Plot data which is only within temperature r	ang	- Select - v
ОК		Cancel Apply Help

Figure 8-23 Final Variables selection

Click on the <u>OK</u> button to display pH as a function of pressure.

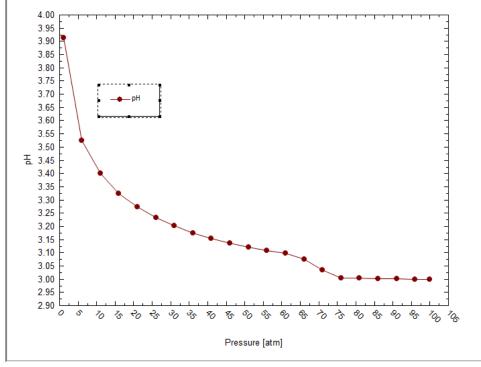


Figure 8-24 Final Plot

The pH decreases with pressure because of the increased solubility of carbon dioxide. Carbon dioxide is an acid gas. The pertinent equilibria are:

$$CO_{2(vap)} = CO_{2(aq)}$$

A Guide to Using OLI Studio

$CO_{2(aq)} + H_2O = H^+ + HCO_3^ HCO_3^- = H^+ + CO_3^{2-}$

Thus, as the amount of carbon dioxide in the aqueous phase increases, more of it can dissociate producing hydrogen ions.

Please save your work now!

Composition

Often is in necessary to determine the effect of adding a species to a solution. One such case is the solubility of calcite $(CaCO_3)$ as carbon dioxide is added to solution. Calcite is a scale that forms very easily in the production of oil. Carbon Dioxide is also produced in the production of oil. The addition of carbon dioxide frequently makes the formation of calcite scale unlikely.

In this example, we will add carbon dioxide at high pressure to a saturated calcium carbonate solution. Please enter the following:

Stream Amount ³⁵	=	55.558	moles
Temperature	=	25	С
Pressure	=	75.0	Atm
H2O	=	55.508	mole
CaCO3 (Calcite)	=	0.05	mole
CO2	=	0	mole

The following figure is filled out for this example.

Variable	Value
	ters
Stream Amount (mol)	55.5582
Temperature (°C)	25.0000
Pressure (atm)	75.0000
√ Inflows (mo)
H2O	55.5082
CaCO3	0.0500000
C02	0.0

Figure 8-25 Composition Survey Definition

Add a Survey and then *Click* on the <u>Survey by</u> button and select <u>Composition</u>.

Next *click* on the <u>Specs</u> button and select the <u>Component tab</u>.

A Guide to Using OLI Studio

³⁵ The stream amount will be automatically calculated from the sum of the component inflows. To indicate that the summation has occurred, the grid will highlight the stream amount cell in green.

Survey Options	Transfer of the local division of the local	? X
Category Var. 1 - Composition - Calculation Type - Calculation Options	Component Survey Range Component Inflows Image: Component Inflows Image: CaC03 Image: CaC03 Image: CaC03 Image: CaC03 <	New Inflow
	OK Cancel Apply	Help

Figure 8-26 Selecting the component CO2

Select *Carbon dioxide*, *CO*² from this list. Next, *click* on the <u>Survey Range</u> tab.

We only want to see a narrow range of compositions for *carbon dioxide*. Enter an increment of *0.05*, and an ending value of *1.0*.

Survey Options	8 2
Category	Component Survey Range
Var. 1 - Composition Calculation Type Calculation Options	Composition Range Unit: mol Selected Range 0.0 to 1.0 in 20 steps of 0.05 New Delete
	 ● Linear ● Log ● Point List End Points Start 0.0 End 1.00000 Step Size Increment 0.0500000 ● Select one, the other is calculated
	OK Cancel Apply Help

Figure 8-27 Narrowing the range of the calculation

Click OK when ready.

Click the <u>Calculate</u> button when ready.

Click on the <u>Plot</u> tab. The default plot is not what we need to see. Click on the <u>Variables</u> button.

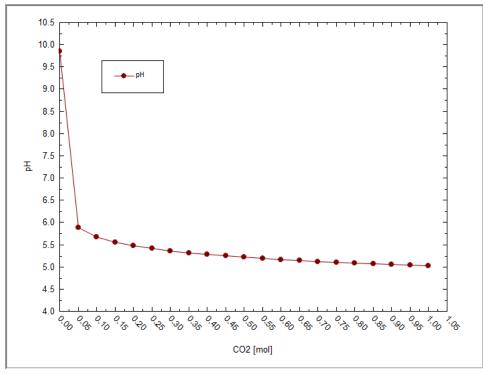
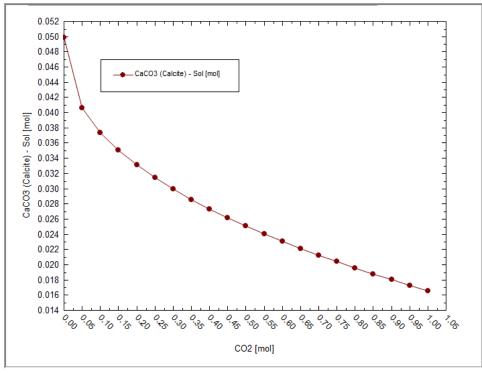


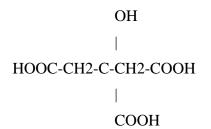
Figure 8-28 The default composition survey plot

Remove the existing entry. Scroll up or down to find and select **Solid**. Select **CaCO3** (**Calcite**) from the list. Click on **OK** when ready.

Select Data To Plot Curves		
		X Axis
Calculation Results		>> CO2
inflows		
Additional Stream Parameters		Y1 Axis
Phase Flow Properties		
Thermodynamic Properties	=	>>
Scaling Tendencies		
Pre-scaling Tendencies		
i vapor Solid	_	
Dominant Solid		Y2 Axis
CaCO3 (Calcite)		12 743
Molecular Totals		>>>
MBG Totals - Totals		
MBG Totals - Aqueous		<<
MBG Totals - Vapor		
MBG Totals - Second Liquid		
MBG Totals - Solid	-	Z Axis
A	-	- Select -
, , , , , , , , , , , , , , , , , , , ,		
✓ Hide zero species		
Plot data which is only within temperature	rang	nge.
0	<u> </u>	Cancel Apply Help
	`	Caricei Appiy Heip

Figure 8-29 Removing default variable and replacing it with the solid CaCO3




Figure 8-30 Our desired plot.

The amount of calcium carbonate decreases with increasing carbon dioxide. In an oil production setting, when there is a pressure drop (see previous tour) carbon dioxide will be lost. This will decrease the solubility of calcium carbonate and increase the likelihood of scale formation.

Please save this file now. We will be using the file in a later tour.

pH (Mixer)

We have already covered the pH survey in earlier chapter. In this example, we wish to discuss the dissociation of a triprotic acid, citric acid. Citric Acid has the structure:

There are three acid hydrogen atoms and hence three pKa's.

We will use the **MIX** calculation to perform an actual titration curve.

We need to create two new streams. You have already done this many times. Create the following two streams.

Stream Name	=	Citric Acid
Temperature	=	25 °C
Pressure	=	1 Atmosphere
H2O	=	55.5082 moles (default)
Citric Acid	=	0.1 moles
Stream Name	=	NaOH
Stream Name Temperature	=	NaOH 25 °C
	_	
Temperature	=	25 °C

Choose Add Mixer from the Action area.

Mixer Description 🕑 Definition <u>()</u> F	Plot 📓 Report 🚂 File Viewer	r
Stream-2 - [AQ]	> Selected	Mixing Method Single Point Mix Specs Type of calculation Isothermal Bubble/Dew Point © Temperature Pressure
Variable	Value	
Multiplier		Calc <u>u</u> late 🥝
Stream	Parameters	Summary
Total Inflow		
Temperature (°C)	25.000	
Pressure (atm)	1.0000	0 Need at least 1 input stream.
nput Advanced Search Add as Stre	am Export	

Figure 8-31 The Mixed Stream Input

We now have many streams from which to select³⁶. Select the newly created *Citric Acid* and *NaOH* streams. Highlight the stream and use the double-arrow (>>) to select them.

³⁶ You can only add streams or calculation that share the same thermodynamic framework. Thus only AQ framework species are viewable since that is the framework selected. MSE framework objects are not displayed.

(Va	ailable Streams		Selected			1	Mixing Method
	am		Citric Acid				Single Point Mix 🔻 Specs
	am-1 am-2	>	NaOH				Type of calculation
			<				Isothermal 👻
							Bubble/Dew Point
Γ	Variable	Value	Citric Acid	NaOH	-		
	Multiplier		1.00000	1.00000			Calculate 🥥
		Stream	Parameters				Summary
	Total Inflow		55.5182 mol	55.6082 mol			
	Temperature (°C)	25.0000	25.0000	25.0000			Unit Set: Metric (moles)
	Pressure (atm)	1.00000	1.00000	1.00000			Automatic Chemistry Model
						>	AQ (I++ion) Databanks: Public Isothermal Calculation 25.0000 °C 1.00000 atm Single Point Mix Calculation not done

Figure 8-32 Selected Streams

The two streams (and more than two may be selected) are summarized in the grid below the selector box. We now want to vary the amount of the *NaOH* stream to simulate adding a base titrant to our acid system. Each solution is approximately 1 liter. We will add up to 2 liters of the *NaOH* stream.

Click the Mixing Method Button

	Mixing Method Single Point Mix 💌	Specs
	l ype of calculation	
	Isothermal 🔻	
	Bubble/Dew Point	
F	igure 8-33	

Then select Multiplier.

This will add the varied stream in a specific amount. Now select the Specs... button.

Multiplier Survey Options		? X
Multiplier Survey Options Category Variable - Multiplier Calculation Options	Select Stream Survey Range Select stream whose amount or proportion is to be varied Citric Acid NaDH	
	OK Cancel Apply	Help

Figure 8-34 Selecting the NaOH stream.

Select the *NaOH* stream. This will tell the program we will adjust the multiplier of the two streams by adjusting the *NaOH* stream.

Now *click* on the <u>Survey Range</u> Tab.

Category	Select Stream Survey Range	
Variable - Multiplier Calculation Options	Multiplier Range Unit: Selected Range	
		ew
	Iinear OLog OPoint List End Points	
	Start 0.0	
	End 2.00000 Step Size	
	Increment 0.100000 Image: Constraint of the other in	s
	OK Cancel Apply	Help

Figure 8-35 Setting the range of the ratio variable.

We will set the ratio range from **0** to **2** in **0.1** increments.

What this means is that we will start off with the 1 liter of the *citric acid solution* and 0 liters of the *NaOH* stream. We will continue to increase the amount of *NaOH* stream until we have 2 volumes of the *NaOH* stream to 1 volume of the citric acid stream.

Click the <u>OK</u> button.

Click the <u>Calculate</u> button. When the calculation has completed, *click* on the <u>Plot</u> tab.

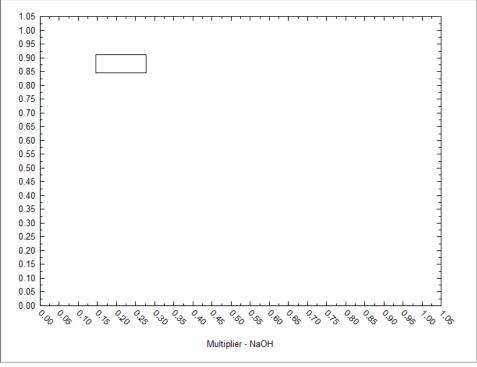


Figure 8-36 The default plot.

Occasionally our intelligent plot display cannot determine what to plot. We will have to make the selection ourselves. Click the **Variables** button and select **pH** as the variable to display.

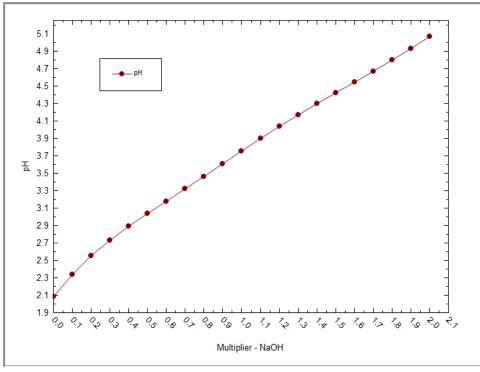


Figure 8-37 pH v. NaOH

The pH increases with adding NaOH. Now we want to select the following ions to see the changes in the citrate ion.³⁷ Use the Variables button and select the following Aqueous Species. Remove pH.

Citric acid - Aq
Citrate ion(-3)
Dihydrogen citrate ion(-1)
Hydrogen citrate ion(-2)

Figure 8-38 species to select

³⁷ You may find it easier to locate the ion names if you switch the Names Manager to Display Name. A Guide to Using OLI Studio

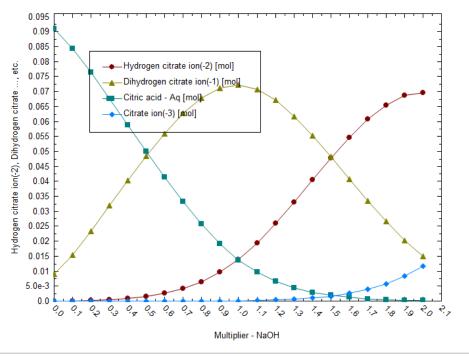


Figure 8-39 Citric Acid species v. NaOH

This plot shows that as the amount of NaOH is titrated the dominant citric acid species changes.

The resulting plot shows the various ions of citric acid changing form. The pH where each ion changes dominance is the pKa of that acid dissociation. For example, the change from H_2 Citrate⁻¹ to H citrate⁻²⁻ occurs slightly above a ratio of 0.5. Another interpretation is that this is the amount of the NaOH stream necessary to make this change ~ 500 mL or 0.5 L.

Cascading Mixers

In this example, we will mix two streams, one basic and one acidic, and mix them together under adiabatic conditions. The output of this mixer will then be used as the input to a second mixer where a new caustic stream is added. The schematic in Figure 8-40 below illustrates the layout.

Figure 8-40 Schematic of cascading mixers

For this example, we need to create three streams. You have already done this in other examples so we will only give you the input data (for all streams, we will use the AQ – default – thermodynamic framework)

Stream: Base Waste		
Temperature	25.0	°C
Pressure	1.0	Atmospheres
H2O	55.5082	moles (default value)
CO2	0.1	moles
NH3	0.01	moles
SO2	0.01	moles
Stream: Acid Waste		
Temperature	25.0	°C
Pressure	1.0	Atmospheres
H2O	55.5082	moles (default value)
HCL	0.1	moles
H2SO4	1.0	moles
Stream: Caustic		
Temperature	25.0	°C
Pressure	1.0	Atmospheres
H2O	55.5082	moles (default value)
NaOH	1.0	moles

To test that our streams are representing their respective names, perform a single point isothermal flash on each stream. When you are done you should have a window that looks like Figure 8-41 below:

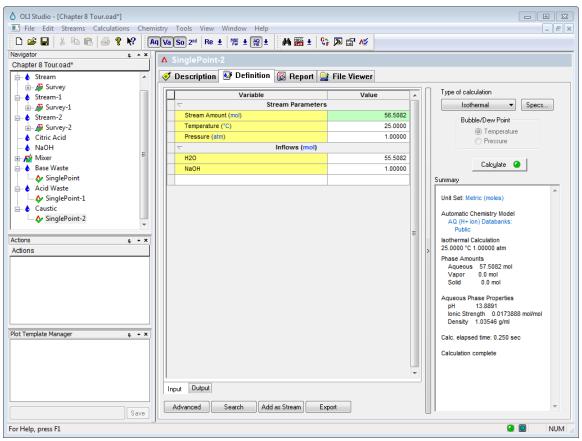


Figure 8-41 completed inputs for cascading mixer

Now we are ready to begin. Click on the "Streams" at the top of the tree-view in the left-hand window and then select Add Mixer from the actions panel.

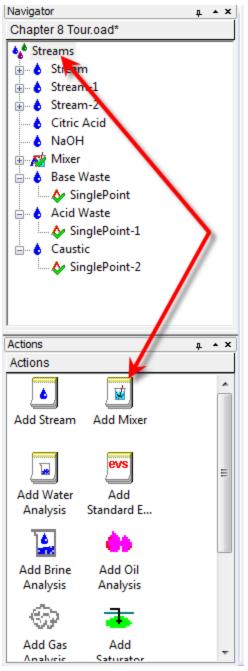


Figure 8-42 Adding a mixer

We can now add the "Base Waste" and "Acid Waste" stream as we have done in previous examples. The only difference here is that we are selecting an **Adiabatic** calculation instead of the default isothermal calculation.

🕈 Description 🕑	Definition 🛍 Plot	📓 Report 🚊 File Viewer	
Available Streams		Selected	Mixing Method
Stream Stream-1 Stream-2 Ditric Acid NaOH Daustic		Base Waste Acid Waste	Single Point Mix Specs Type of calculation Adiabatic
fixer - [AQ] inglePoint - [AQ]			Bubble/Dew Point
inglePoint-1 - [AQ]	T		Pressure

Figure 8-43 Selecting the Base and Acid waste stream

Let's calculate this mixer. Click the Calculate button. If everything is set up correctly the resultant mixed pH should be approximately 0.3^{38}

In the stream tree-view panel, locate your mixer and click the "+" sign.

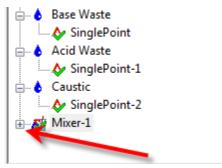


Figure 8-44 Click the "+" sign to expand the tree

Click the "+" sign to expand the tree.

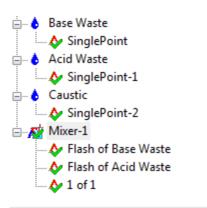


Figure 8-45 Expanded tree view

You can see that the program has performed an equilibrium calculation on each of our input streams as well as calculated the mixer. The results of the mixer are stored in the object "1 of 1".

We will now add a second mixer from the actions panel.

Navigator	μ ▲ Χ	ant Million 0
Chapter 8 Tour.oad*		A Mixer-2
Citric Acid Citric Acid Acid MaOH SinglePoint Acid Waste Acid Waste Caustic SinglePoint-1 Caustic SinglePoint-2	* E	Available Streams Selected Available Streams Selected NaOH - [AQ] >> Base Waste - [AQ] >> Caustic - [AQ] < SinglePoint - [AQ] < SinglePoint - [AQ] Mixer - [AQ]
■ Mixer-1 ↓ Flash of Base Waste		Variable Value /
Flash of Acid Waste 1 of 1		Stream Parameters
Mixer-2	-	Temperature (°C) 25.0000 Pressure (atm) 1.00000
Actions Actions	д ▲ Х	

Figure 8-46 Adding the second mixer

When we add a subsequent mixer we will see all of our previous objects still displayed. It is possible to reuse a stream that we already used (this is not possible in OLI's other simulators such as ESP or OLI Flowsheet.) We want to connect the output from our first mixer (Mixer1) to the inlet of the Caustic Reagent stream. Click the object **Mixer-1-(AQ)** as highlighted in Figure 8-46 above.

Then add the Caustic Reagent. Select the type of calculation as Isothermal.

🖬 Mixer-2				
ኛ Description 📑 [Definition <u> </u> P	lot <u> </u> Report	🚉 File Viewer	
Available Streams Stream-1 Stream-2 Citric Acid NaOH Base Waste Acid Waste Mixer - [AQ] SinglePoint - [AQ]				Mixing Method Single Point Mix Specs Type of galculation Isothermal Bubble/Dew Point Temperature Pressure
Variable	Value	Mixer-1	Caustic	
Multiplier		1.00000	1.00000	Calc <u>u</u> late 🥝
	Stream	Parameters		Summary
Total Inflow		113.236 mol	56.5082 mol	
Temperature (°C)	25.0000	25.0000	25.0000	Unit Set: Metric (moles)
Pressure (atm)	1.00000	1.00000	1.00000	Automotic Chamister Hadel
				Automatic Chemistry Model

Figure 8-47 connecting the output of mixer 1 to the new mixer

We are now ready to calculate the second mixer. Press the calculate button.

The resultant pH should be approximately 0.95. We want to increase this value. Change the <u>Multiplier</u> value for Caustic Stream from 1.0 to 2.4

Variable	Value	Mixer-1	Caustic
Multiplier		1.00000	2.40000
	Stream	Parameters	7
Total Inflow		113.236 mol	56.5082 mol
Temperature (°C)	25.0000	25.0000	25.0000
Pressure (atm)	1.00000	1.00000	1.00000

Figure 8-48 Changing the multiplier value

Click the calculate button again. The new pH should be approximately 12.1.

The real value of the cascading mixer is the quick ability to re-calculate the objects if we want to change something. Let's add some diethanolamine to the series of calculations. Click the **Acid Waste** stream (not the single point calculation below it) and add the component DEXH³⁹ to the grid with a value of 10.0 moles.

🛓 🕹 Stream		
🗊 💧 Stream-1	Variable	Value
🚛 💧 Stream-2	Stream Parameters	i (
Citric Acid	Stream Amount (mol)	66.6082
NaOH	Temperature (°C)	25.0000
	Pressure (atm)	1.00000
🖶 👌 Base Waste	Inflows (mol)	
🧄 🎸 SinglePoint	Water	55.5082
🚊 👍 Acid Waste	Hydrogen chloride	0.100000
▲ SinglePoint-1	Sulfuric(VI) acid	1.00000
🖶 👌 Caustic	DEXH	10.0000
SinglePoint-2		

Figure 8-49 Adding diethanolamine, note that the Acid Waste Stream is highlighted.

Return to the last mixer you created (Mixer-2 in our example) and then reduce the *Caustic Multiplier back to 1.0*

To recalculate all the objects at once, press the control-F9 keys and all objects will be calculated. Now if you look at the summary of Mixer2 you will see that the pH has changed to approximately 10.

Available Streams Stream Stream 2 Stre		Description	🥸 Definitior	🛍 Plot 员	Report			
Variable Value Mixer-1 Caustic Multiplier 1.0000 1.0000 Stream Parameters	Stri Stri Citr Na Ba: Aci Mix	eam eam-1 eam-2 ic Acid OH se Waste id Waste ker - [AQ]		> Mixer-1 Caustic	I			Single Point Mix Specs Type of calculation Isothermal Calculate
Multipler 1.00000 1.00000 Stream Parameters Total Inflow 123.236 mol 56.5082 mol Temperature 25.0000 25.0000 25.0000 Pressure (at 1.00000 1.00000 1.00000 Single Point Mix Calculation Results: Temperature 25.0000 °C + Heat Duty - 11867.3 cal Phase Amounts Aqueous 179.430 mol Vapor 0.0 mol Aqueous Phase Properties pH 10.0788 Ionic Strength 0.0158132 mol/mol	Т	Variable	Value	Mixer-1	Caustic			A
Total Inflow 123.236 mol 56.5082 mol Temperature 25.0000 25.0000 25.0000 Pressure (at 1.00000 1.00000 1.00000 Single Point Mix Calculation 25.0000 °C 1.00000 atm Single Point Mix Calculation Results: Temperature 25.0000 °C Heat Duty -11867.3 cal Phase Amounts Aqueous Phase Properties pH 10.0788 Ionic Strength 0.0158132 mol/mol Density		Multiplier		1.00000	1.00000			Unit Set: Metric (moles)
Temperature 25.0000 25.000 20.000 20.000 20.000			Stream	Parameters				Automatic Chemistry Model
Temperature 25.0000 25.0000 25.0000 Isothermal Calculation 25.0000 °C 1.00000 atm Single Point Mix Single Point Mix Calculation Results: Temperature 25.0000 °C Heat Duty -11867.3 cal Feature 25.0000 °C Heat Duty -11867.3 cal Feature 25.0000 °C Heat Duty -11867.3 cal Feature 10.000 mol Solid O.0 mol Aqueous Phase Properties pH 10.0788 Ionic Strength 0.0158132 mol/mol Density 1.05177 g/ml Feature 10.0178 g/ml		Total Inflow		123.236 mol	56.5082 mol			
Pressure (at 1.00000 1.00000 1.00000 Single Point Mix Single Point Mix Calculation Results: Temperature 25.0000 °C Heat Duty -11867.3 cal E Phase Amounts Aqueous 179.430 mol Vapor 0.0 mol Sold 0.0 mol Aqueous Phase Properties pH 10.0788 Ionic Strength 0.0158132 mol/mol		Temperature	25.0000	25.0000	25.0000			
Single Point Mix Calculation Results: Temperature 25.0000 *C Heat Duty -11867.3 cal Phase Amounts Aqueous 179.430 mol Vapor 0.0 mol Solid 0.0 mol Aqueous Phase Properties pH 10.0788 Ionic Strength 0.0158132 mol/mol Density 1.05177 g/ml		Pressure (at	1.00000	1.00000	1.00000			
							>	Calculation Results: Temperature 25.0000 °C Heat Duty -11867.3 cal Phase Amounts Aqueous 179.430 mol Vapor 0.0 mol Solid 0.0 mol Aqueous Phase Properties pH 10.0788 Ionic Strength 0.0158132 mol/mol Density 1.05177 g/ml
						Ŧ		Calc. elapsed time: 0.582 sec
Input Calculation complete	Inp	ut				Ŧ		Calculation complete

Figure 8-50

 ³⁹ This is the OLI Tag name for diethanolamine, which is easier to type if you know the name.
 A Guide to Using OLI Studio
 Multiple Point

Secondary Surveys

On many occasions, we wish to study a system that varies two independent variables at the same time. This can be accomplished via the secondary survey. In this example, we will re-use the **composition** survey entered earlier.

We are not only interested in the solubility of calcium carbonate as a function of carbon dioxide; we also are interested in the temperature effects.

If you re-open this file, you can skip down to the section "Starting from a saved case" below.

As a review, enter the **<u>Definition</u>** below.

Description 🥸 Definition 🚻 Plot 🔯 I	Report 🚊 File Viewer	
Variable	Value	Survey by
	rs	Composition - Spec
Stream Amount (mol)	55.5582	Then by (optional)
Temperature (°C)	25.0000	
Pressure (atm)	75.0000	None Spec
√ Inflows (mol)		Vary
Water	55.5082	Independently
Calcium carbonate (calcite)	0.0500000	C Together
Carbon dioxide		

Figure 8-51 Composition survey definition

Select Composition from the Survey by button. Select the Specs button and then select CO2.

Select the **Range** tab and adjust the increment to 0.05, the ending value is 1.0.

Starting from a saved case

Click on the <u>Definition</u> tab for the survey.

Now select the **<u>Then by</u>** button.

Surve	у Бу
	Composition
Then	by (optional)
$(\square$	None - Specs
Vary	
v diy	Independently
	Together
	Calc <u>u</u> late 🥝
Summaru	
Figure 8-5.	2
	None
	Temperature
	Pressure

Figure 8-53 Selecting the Secondary Survey

Select Temperature.

We are making no changes to the default range.

Click the Calculate button when ready.

This will now launch a very large series of calculations. Essentially, we multiple the range of the composition survey by the range of the temperature survey to get the number of calculations. The following figure shows the large number of points being calculated

When the calculation completes, click on the <u>Plot</u> tab. The plot options should be the same if you opened the file that was previously saved. If not click the <u>Variables</u> button and select the plot variables as shown below.

Select Data To Plot	? ×
Curves	
Stream Parameters Calculation Parameters Calculation Parameters Calculational Stream Parameters Aqueous Vapor Solid Molecular Totals	X Axis Carbon dioxide Y1 Axis Calcium carbonate (calcite) - Sol
Scaling Tendencies Pre-scaling Tendencies Gibbs Free Energy Gibbs Free Energy Standard State Entropy Entropy Standard State (x-based) MBG Aqueous Totals MBG Vapor Totals	Y2 Avis
MBG Solid Totals MBG Second Liquid Totals MBG Totals MBG Totals ME Totals	Z Axis Temperature
V Hide Zero Species	Cancel Apply Help

Figure 8-54 Setting the plot variables

Click on <u>**OK**</u> to return to the plot. The plot now has points from 0 to 100 °C. Unfortunately, the legend is covering a large part of the graph.

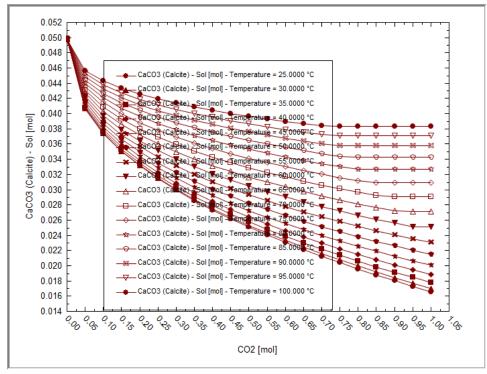


Figure 8-55 A family of Curves, the legend is in the way.

<u>**Right-clicking**</u> anywhere on the plot brings up the following menu:

Plot Options
Select Data
Allow Layout Changes Hide Legend
Zoom 🕨
Load Default Plot
Сору
Export CSV
Copy Scaled Image Save Image As

Figure 8-56 Right-Click on the plot to pop this up.

You may toggle the axes between linear and logarithmic, suppress the legend, allow changes to placement of titles (Allow Layout Changes) and save the design.

For now, *click* on <u>Hide Legend</u> to turn off the legend.

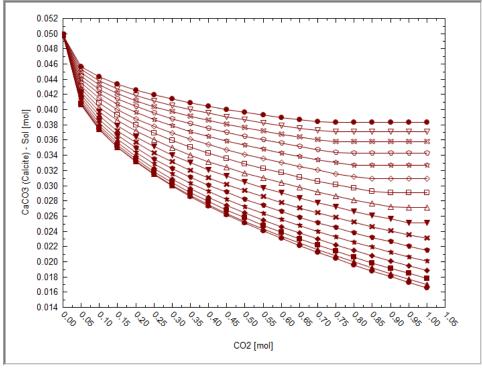
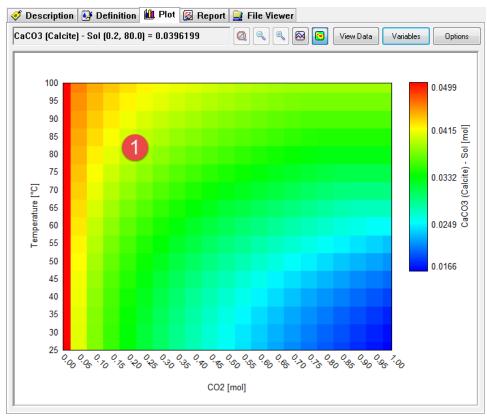


Figure 8-57 The uncluttered view.

The solubility of calcium carbonate increases with temperature. The lower temperatures are the bottom curves.

When the mouse-pointer is positioned over a point on one of the curves, the message box at the top of the plot indicates the variable and the coordinates of that point.

Please save the file now (you may want to use a different name since this is different from the previous composition survey).


Contour Plots

If you have created a dual survey, you can then create a contour plot. To do this you simply should click the contour plot button:

🛍 Plot	😼 Report	🚊 File Viewer			
			🛛 💽 🛛 View Data	Variables	Options

Figure 8-58 the contour plot button

This dramatically changes the display.

Figure 8-59 the contour plot

The plot shows a lot of information at once. The position of the mouse pointer is shown in the information bar at the top. (This is represented by the Number 1 in the figure) In this case the x,y coordinate of 0.2 moles of CO_2 and a temperature of 80 °C reports 0.0396 moles of CaCO₃ solid forming. The colors are indication of minimum (blue) and maximum (red) values on the plot.

Unlike the standard plot, we have limited some of the variables that can be plotted at once. For example, you can only plot a single variable and the axis variables cannot be changed. If you click the **Variables** button

You will see the following dialog:

Select Contour Variable	? 💌
Contour	
Stream Parameters XAx Calculation Results Inflows Additional Stream Parameters Phase Flow Properties Thermodynamic Properties Scaling Tendencies Cont	
OK Cancel	Apply Help

Figure 8-60 Contour variables

Only a single variable can be selected. If you expand some categories such as "Aqueous" you will find that the "Dominant" species is not present since that will attempt to plot more than a single variable.

To change back to the standard plot you need click the plot button:

🛍 Plot 📓 Repor	t 🚊 File Viewer 🛛 🔒			
		View Data	Variables	Options
		-		

Figure 8-61 The standard plot button

Please save your file.

Click here for a worked copy of this chapter's tour: Chapter 08 Tour

9. Water Analysis in OLI Studio: An Overview

Overview:

Due to the nature of water analysis, most, if not all, samples entered in the OLI Studio are incomplete and/or are inaccurate in some manner. Thus, most samples will not be electrically neutral. This requires the OLI Studio to reconcile the sample for electroneutrality.

Many samples also have a measured pH. The sample that has been reconciled for electroneutrality will probably not have the same calculated pH as the measured pH. Normally this is a result of the incomplete or inaccurate description of the sample. The Water Analysis Tool will adjust the pH of the calculated sample to match the measured pH.

An Example:

We have been given a sample of ground water with the following composition:

Temperatu	ire	25.0	D C		
Pressure		1.0	0 Atm.		
pH (meası	ired)	6.7	2		
Cation	mg/L	Anion	Mg/L	Dissolved	mg/L
Ba+2	0.46	CI-	3896.00	Gas	
Ca+2	773.00	B(OH)4-	2.60	CH4	15.50
Fe+2	62.10	SO3-2	6.30	CO2	150.00
K+	50.00	SO4-2	54.00	Benzene	1.40
Mg+2	177.00			NH3	4.60
Mn+2	2.80				
Na+1	1060.00				
Al+3	0.74				
Sr+2	0.18				

Table 9-1Ground Water Concentrations

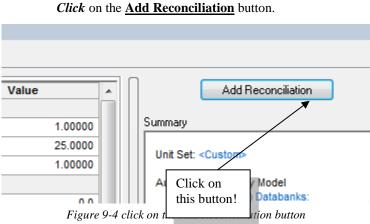
Let's use OLI Studio to examine this sample. First, we double-click the icon on the desktop or use the Start menu to start the program.

🖒 OLI Studio - [Document1]	- • •
I File Edit Streams Calculations Chemistry Tools View Window Help	_ & ×
🗅 😂 🖬 🐰 🗈 🏙 🥝 🎗 🕅 Aq Va So 2 nd Ree ± 🦷 ± 僧 ± 👹 軸 🎬 ± 💱 ဩ 🖆 🤞	
Document1	
♦ Streams Description Object Map	
Name: Streams Date: 12/ 8 /2015	
Description	
	<u> </u>
Actions 4 - x	
Actions	
Add Stream Add Mixer	
	-
	•
Add Water Add EVS Summary	
	*
Automatic Chemistry Model	
Add Brine Add Oil AQ (H+ ion) Databanks:	
Ada brine Ada Uli Public Public	
Plot Template Manager a. + x	
(or complete a single ϕ) and (
	Ŧ
Save	
For Help, press F1	II NUM //

Figure 9-1 The main window.

As with the other Analyzer calculations, we start by define the conditions.

💧 OLI Studio - [Document1*]			
📃 File Edit Streams Calculat	ions Chemistry Tools View Window Help		_ <i>8</i> ×
🗅 🚅 🖬 👗 🖻 🛍 🍜 1	🕅 💦 🛛 🗛 Va So 2 nd Re ± 👫 ± ∰ ±	💱 🔊 😭 🖉	
Navigator # *	🖬 WaterAnalysis		
Document1*			
Streams	< Description 🤮 Analysis 🙀 Report		
WaterAnalysis	Variable	Value	Add Reconciliation
	C Analysis Parameters		
	Stream Amount (L)	1.00000	Summary
	Temperature (°C)	25.0000	Unit Set: Metric (mass concentration)
	Pressure (atm)	1.00000	Automatic Chemistry Model
	Recorded Properties		AQ (H+ ion) Databanks:
	Total Dissolved Solids (mg/L)	0.0	Public
J	Measured pH	0.0	
Actions + • ×	Measured Alkalinity (mg HCO3/L) Density (g/ml)	0.0	
Actions	Specific Electrical Conductivity (mho/m)	0.0	
	Specific Liberied conductivy (minimi)	0.0	
	H2O		
Add Add Water Reconciliat Analysis	_	:	
Reconciliat Analysis	Cations		
	Anions		
Plot Template Manager # * *			
		-	
	Measured		
	measured		
Save	Advanced		
			0
For Help, press F1			Image:


Figure 9-2 The icons available for the analysis

We will enter the concentrations listed on the previous page.

Variable	Value
Analysis Paramete	
Stream Amount (L)	1.00000
Temperature (°C)	25.0000
Pressure (atm)	1.00000
Recorded Properti	es
Total Dissolved Solids (mg/L)	0.0
Measured pH	6.70000
Measured Alkalinity (mg HCO3/L)	0.0
Density (g/ml)	0.0
Specific Electrical Conductivity (µm	0.0
Neutrals (mg/L)	
H2O	
CH4	15.5000
CO2	150.000
C6H6	1.40000
NH3 🔽	4.60000
Cations (mg/L)	
Ba+2	0.460000
Ca+2	773.000
Fe+2	62.1000
K+1	50.0000
Mg+2	177.000
Mn+2	2.80000
Na+1	1060.00
AI+3	0.740000
Sr+2	0.180000
Anions (mg/L)	
CI-1	3896.00
B(OH)4-1	2.60000
S03-2	6.30000
S04-2	54.0000
301-2	34.0000
N	

Figure 9-3 A list of the conditions, cations, anions and neutrals

Enter the concentrations from the table above. Enter the cations in the <u>Cations</u> section; the anions in the <u>Anions</u> section. Enter the dissolved gases in the inflow section. You will have to use the scroll bar to move the grid.

This will automatically update the tree view on the left and place you in the description tab for the reconciliation.

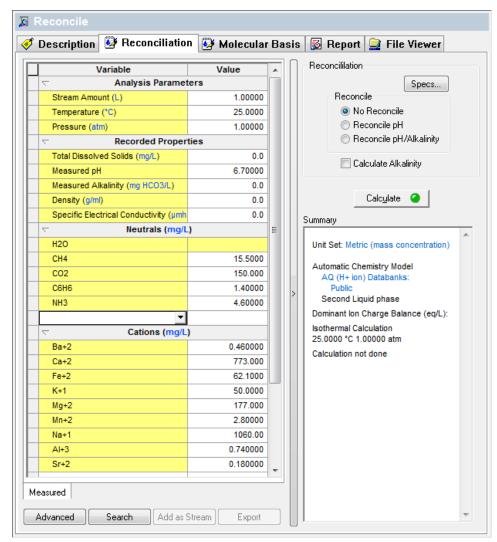


Figure 9-5 The reconciliation panel.

It is highly unlikely that this sample is electrically neutral. We need to make sure that there is no net charge to this sample. The Program will automatically balance the Electroneutrality. To view how this is done, click the *Specs...* button.

econciliation Data	5 X
Balance Calculation Options Converg	jence
Type of balance Dominant Ion	New Inflow
Cations	Anions
AI+3	B(OH)4-1
Ba+2 Ca+2	Cl-1 SO3-2
Fe+2	S04-2
K+1	
Mg+2 Mn+2	
Na+1	
Sr+2	
'	Needed to balance:
	189.944 mg/L of Na+1
Charges on the Cations and Anions	is needed to balance.
must be evenly balanced	
Cation charge: 0.102945 eq/L	
Anion charge: -0.111207 eq/L	
Imbalance: -8.26205e-3	
ОКС	Cancel Apply Help

Figure 9-6 The Reconciliation Data dialog.

This window dialog has a great deal of information. The available cations are listed in the <u>**Cations**</u> list box and the anions are listed in the <u>**Anions**</u> list box. The current Cation charge is 0.102945 equivalents/L (or eq/L). The current Anion charge is -0.111207 eq/L. There is too much anion charge by -0.008262 eq/L.

There are several methods of reconciling the Electroneutrality. The default method is the **Dominant Ion** method. In this method, the imbalance in charge is determined. In this example there is an excess of negative charge.

	ded to				
	9.944 m needed				
131	leeueu	1000	ance.		

Figure 9-7 The largest concentration of cation to be entered.

We will now change the type of balance to Na/Cl.

Balance	Calculati	on Op	tions	Conv	ergenc	e	
Type of	pe of balance Na/Cl						_
Cation	s		Don	ninant	Ion		-
AI+3			Pror	ate			
Ba+2			Pror	ate Ca	ations		
Ca+2 Fe+2			Pror	ate Ar	nions		
K+1		\checkmark	Na/	CI			
Mg+2			Mak	e-up l	lon		
Mn+2 Na+1	-		Use	Choi	ce		
Sr+2			-				

Figure 9-8 Na/Cl reconciliation method

This reconciliation is the same as the dominant ion method since sodium is the largest concentration of cation (the counter charge). The conversion of equivalents to milligrams occurred as follows:

$$\left(0.007138\frac{eq}{L}\right)\left(\frac{1moleNa^{+}}{1eq}\right)\left(\frac{22.99\,gramsNa^{+}}{moleNa^{+}}\right)\left(\frac{10^{3}\,mgNa^{+}}{gramsNa^{+}}\right) = 189.944\frac{mgNa^{+}}{L}$$

There are other options for reconciliation. Click on the **Type of Balance** button to see the list.

Electroneutrality

Dominant Ion

The largest species concentration of the deficient charge is added.

In this case Na⁺ ion was added since there is an excess of negative charge.

Proration

An equal percentage of all deficient species is added.

Na/Cl

Sodium is added when there is an excess of negative charge, chloride is added when there is an excess of positive charge.

User Specification

The user specifies the cation or anion required to balance the sample.

Reconciliation Data	? ×
Balance Calculation Options Converg	ence
Type of balance User Choice	▼ New Inflow
Cations	Anions
Al+3 Ba+2 Ca+2 Fe+2 K+1 Mg+2 Mn+2 Na+1 Sr+2 Select a cation to balance this solution	B(OH)4-1 Cl-1 SO3-2 SO4-2
Charges on the Cations and Anions	Needed to balance: 165.563 mg/L of Ca+2 is needed to balance.
must be evenly balanced Cation charge: 0.102945 eq/L	
Anion charge: -0.111207 eq/L Imbalance: -8.26205e-3	
ОКС	Cancel Apply Help

Figure 9-9 User choice option

Since there is an excess of negative charge, only the cations are available for selection with this option. 165.563 mg/L of Ca^{+2} is needed to balance the sample.

Make Up Ion

The specified ion is either added or subtracted to balance the charge.

Reconciliation Data	? ×
Balance Calculation Options Converge	ence
Type of balance Make-up Ion	New Inflow
Cations	Anions
AI+3	B(OH)4-1
Ba+2	CI-1
Ca+2	S03-2
Fe+2	SO4-2
K+1	
Mg+2 Mn+2	
Na+1	
Sr+2	
Select a cation or an anion to balance t	this solution.
	Needed to balance:
	-292.914 mg/L of Cl-1
Charges on the Cations and Anions must be evenly balanced	is needed to balance.
Cation charge: 0.102945 eq/L	
Anion charge: -0.111207 eq/L	
Imbalance: -8.26205e-3	
ОКС	iancel Apply Help

Figure 9-10 Make Up Ion Option

With the make-up ion option, either a cation or anion can be used to adjust the Electroneutrality. Since in this example, there is an excess of negative charge, selecting a cation has the same result as the *User Choice* option. In the figure above, chloride ion has been selected. Since there is an excess of negative charge, 292.914 mg of Cl⁻ must be removed.

Make sure the <u>**Type of Balance**</u> button is set to <u>**Na/Cl**</u> and then *click* on the <u>**OK**</u> button.

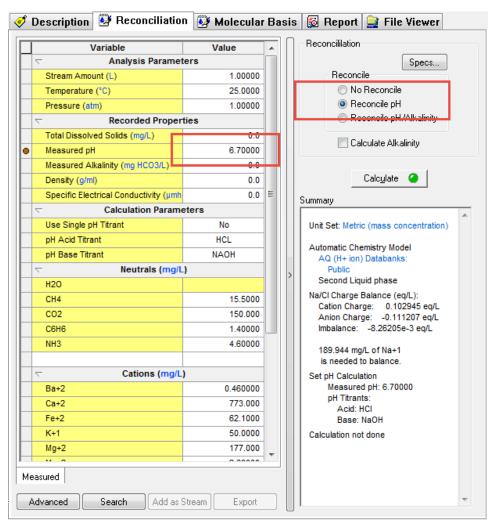
The **<u>Summary</u>** box is now updated with the current Electroneutrality.

Variable	Value	*	Reconciliation
Analysis Parameters			Specs
Stream Amount (L)	1.00000		Reconcile
Temperature (°C)	25.0000		No Reconcile
Pressure (atm)	1.00000		Reconcile pH
Recorded Properties			Reconcile pH/Alkalinity
Total Dissolved Solids (mg/L)	0.0		Calculate Alkalinity
Measured pH	0.0		
Measured Alkalinity (mg HCO3/L)	0.0		
Density (g/ml)	0.0		Calc <u>u</u> late 🥝
Specific Electrical Conductivity (mho/m)	0.0	≡	Summary
Neutrals (mg/L)			
H2O			Unit Set: Metric (mass concentration) Automatic Chemistry Model AQ (H+ ion) Databanks: Public
CH4	15.5000	>	
C02	150.000		
C6H6	1.40000		
NH3	4.60000		Na/CI Charge Balance (eq/L):
			Cation Charge: 0.102945 eq/L Anion Charge: -0.111207 eq/L
Cations (mg/L)			Imbalance: -8.26205e-3 eq/L
Ba+2	0.460000		189.944 mg/L of Na+1 is needed to balance. Isothermal Calculation 25.0000 °C 1.00000 atm Calculation not done
Ca+2	773.000		
Fe+2	62.1000		
K+1	50.0000		
Mg+2	177.000		
Mn+2	2.80000		
Na+1	1060.00	-	
Al+3	0.740000		

Figure 9-11 The updated summary box.

We can now either automatically reconcile the pH of the sample or first calculate the natural pH.

Click the <u>No pH Reconcile</u> radio button in the <u>Reconcile pH</u> options box.


Now *click* the <u>Calculate</u> button.

When the calculation has finished, scroll down the text in the **<u>Summary</u>** box to find pH.

```
Aqueous Phase Properties
pH 5.11838
lonic Strength 2.51153e-3 mol/mol
Density 1.00172 g/ml
```

Figure 9-12 The pH is approximately 5.1

This pH is much less than the reported pH of 6.7. What is the reason for this value? That will be explained in a moment. Right now, we wish to adjust the pH back to the reported value of 6.7.

Click on the <u>Reconcile pH</u> radio button.

Figure 9-13 Choosing the Reconcile pH option.

The default acid/base titrants are HCl and NaOH (see the red box in the above figure). We will be using these titrants but they can be changed if you manually enter different acid and bases.

You should double-check that the <u>Measured pH</u> value is the value you want. On occasion, you may want to reconcile the pH to a value other than the recorded pH.

For this example, the initial pH is 5.1 and will be increased to 6.7 using NaOH. Click the Calculate button.

When the calculation is complete, scroll the **<u>Summary</u>** box down to find the amount of titrant required.

Set pH Calculation 25.0000 °C 1.00000 atm pH - Aqueous 6.70000 Acid Titrant: HCL Total: 0.0 mg/L Base Titrant: NAOH Total: 133.998 mg/L Added: 133.998 mg/L

Figure 9-14 The amount of NaOH added.

Most OLI programs cannot use ionic inflows. This sample must be converted into a "Neutral" stream. In other words, a neutral molecular representation is required.

Fortunately, OLI Studio does the conversion automatically. The molecular stream displayed below was converted from the preceding sample after electroneutrality and pH have been reconciled. To find these values, click on the <u>Molecular</u> <u>Basis</u> tab.

Variable		Value
~	Analysis Parameters	· ·
Stream Amount (L)		1.00002
 Volume - Aqueous (L) 		1.00000
Volume - Solid (cm3)		0.0232926
Temperature (°C)		25.0000
Pressure (atm)		1.00000
~	Calculation Results (mol)
pH titrant added: NaOH		3.35015e-3
~	Molecular Totals (mg/L)	
AICI3		8.73767e-4
AI(OH)3		2.13878
B2O3		1.14792
BaCl2		0.532656
BaSO4		0.184748
C6H6		1.39997
CaCl2		2138.77
CaSO3.2H2O		2.48768
CH4		15.4996
C02		117.920
FeCl2		48.5578
FeCO3		84.4419
H2O		9.95281e
ксі		95.3361
MgCl2		546.193
MgO		62.2954
MnCl2		6.41368
NaCl		3373.21
NH3		4.59985

Click the <u>Add as</u> <u>Stream</u> button to save as a molecular (neutral) stream.

Figure 9-15 Molecular basis. The grid has been scrolled down to see some values

The molecular view can be saved as a new stream for use in another OLI program. Click the <u>Add as Stream</u> button.

Save Selec	ted Result	Streams	8 22
Export			
Name:	Molecular	Export of Reconcile	2
Include	e the followir	ng phases in the str	ream(s)
🔽 Aqı	ueous	Vapor	
🔽 Sec	cond Liquid	V Solids	
Optiona Phases separa	s that are no	t included may be e	exported
Aq	ueous		
🗌 Vap	oor		
Sec	cond Liquid		
Sol	id		
		ОК	Cancel

Figure 9-16 Save As Stream dialog

Click the **OK** button to save all the phases in this stream.

The program automatically adds a new stream. Click on the new stream and then select the **Definition** tab.

♦ OLI Studio - [Document1*] I File Edit Streams Calculations Chemistry C C IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	Tools View Window Help Son 2™ Re ± 11% ± 11% ± 144 1855 ± 544	> *	
Navigator # * *			
Document1*	Molecular Export of Reconcile, Export	rted	
♦▲ Streams	🦪 Description 🤡 Definition 📓 Report		
🖥 🖫 WaterAnalysis			
	Variable	Value 🔺	Add <u>C</u> alculation 👻
Molecular Export of Reconcile, Exported	Stream Parameters		Special Conditions
	Stream Amount (L)	1.00002	Solids Only
	Temperature (°C)	25.0000	
	Pressure (atm)	1.00000	Summary
	□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □		
	H2O		Unit Set: Metric (mass concentration)
	CH4	15.4997	Automatic Chemistry Model
Actions	C02	117.922	AQ (H+ ion) Databanks:
Actions	С6Н6	1.39997	Public
	NH3	4.59990	
Δ 🖌	NaOH	0.0	
Add Stream Add Mixer Add Single	AICI3	8.73778e-4	
Point	B2O3	1.14792	
	BaCl2	0.532621	
	CaCl2	2138.78	>
Add Survey Add Add Stability	FeCl2	48.5624	
Chemic Diagram	KCI	95.3362	
	MgCl2	546.186	
	MgO	62.2989	
Add	MnCl2	6.41369	
Corrosi	NaCl	3373.22	
	S02	4.02042	
Plot Template Manager # * *	S03	44.9419	
	SrCl2	0.325657	
	FeCO3	84.4379	
	AI(OH)3	2.13878 +	
	Input		
	Advanced Search Add as Stream	Export	
Save	Auraneed Sealer Auras Stiedin	Coport	,
For Help, press F1			

Figure 9-17 The molecular stream

Summary

OLI Studio provides for alternative feed stream definition based upon a "Raw" Laboratory Analysis:

Flagging of Inconsistencies

- Determines the amount of imbalance with respect to electroneutrality
- Calculates pH based upon sample information

Reconciliation of Inconsistencies

- Adds or subtracts mass to balance electroneutrality
- Adds and acid or base to adjust pH

Simulation Options

- Surveys
- Single Point Calculations
- Conversion to Molecular streams

OLI Studio's Water Analysis module is an invaluable tool to correct deficiencies in laboratory analyses. Water Analysis is also essential for converting ionic flows to neutral.

Click here for a worked example of this chapter: Chapter 09 Introduction to Water Analysis

10. Water Analysis in OLI Studio: A Tour

Reconciling a Brine from an Oil Field

The Application

This application involves reconciliation of a water sample from an oil well. Reconciliation is done for both electroneutrality and pH.

In this application, we will take brine from an oil well that is producing water along with the oil. We will not consider the oil phase in this example.

It is quite common when reviewing laboratory analysis of water samples for the positive ions in solution (cations) and the negatively charged ions (anions) not to balance each other. This may be due to the precision limits of the various experimental procedures used to measure the ions and/or since some ions may not have been analyzed. These solutions must have a neutral charge. **OLI Studio will reconcile the charges to make a solution that is neutral.**

The pH of the solution is frequently measured. However, since the analysis is experimental and subject to errors, the pH that is calculated by the Water Analysis tool may be different from what is measured experimentally. OLI Studio can reconcile this difference.

Finally, the reconciled sample can be converted into a molecular representation which can be used in other simulators. We will use OLI Studio to perform a simple calculation on our reconciled sample.

The power of the OLI Studio becomes apparent as we consider different reconciling options and pH considerations.

Tour Conventions

In this tour, we will use the following conventions:

Type Face	User Action
Bold and Italic	The user is required to enter this information
Bold and Underlined	The user is directed to look for this feature in the program windows
Click	Left-mouse button
Right-Click	Right-mouse button

The tour Starts here!

We have been given the produced water sample from an oil well in Thailand. The sample is listed below:

Cations	Concentration (mg/L)	Anions	Concentration (mg/L)
Ba ⁺²	0.07	Cl ⁻¹	39137
Ca ⁺²	3700	HCO ₃ ⁻¹	561
Fe ⁺²	2.89	HS ⁻¹	0.09
K ⁺¹	402	SO_4^{-2}	2200
Mg ⁺²	262.8		
NH_4^{+1}	104	pН	6.1
Na ⁺¹	20400		

Table 10-1 Thailand Brine Sample data

Start the OLI Studio program by *double-clicking* the OLI Studio icon on the desktop or by using the Start menu.

The main window for the OLI Studio will display after the splash screen. The main window is similar to other OLI Studio products. There is a <u>**Tree-view**</u> or <u>**Navigator**</u> displayed on the left-hand side of the window. This shows all the objects currently in the document. Currently the display shows no objects. The bottom-left panel is the <u>**Actions**</u> or the <u>**Explorer**</u> view and shows the icons of the objects.

OLI Studio - [Document2] File Edit Streams Calculations Chemistry		
□ 🗃 🖬 🕺 🖻 💼 🚭 🎖 <table-cell> Aq Va Navigator + - × [</table-cell>	B 2 2 ^{dd} Re ± 幣 ± 偿 ± 👫 🎬 ± 💱 🔉 🖆 /答	
Document2	Streams	
🍓 Streams	Description Object Map	
	Name: Streams Date: 12/ 8 /2015 💌	
	Description	
Actions		
Actions		
Add Stream Add Mixer Add Water Analysis		
Add EVS Add Brine Add Oil		
Calculation Analysis Analysis	Summary	*
I 🌚 📥 🖃 📗	Automatic Chemistry Model	
Add Gas Add Add Scale Analysis Saturator Scenario 🔻	AQ (H+ ion) Databanks: Public	
Plot Template Manager + * X		
		~
Save		
For Help, press F1	9	

Figure 10-1 the OLI/LabAnalyzer main window.

To set up this tour, we need to change some settings. Please locate and *click* on the *Tools* menu in the menu bar.

This will display a drop-down menu. We will not dwell on each of the items in this tour. Please select **<u>Names Manager</u>** by *Clicking* on the item.

udio2j		
Calculations Chemistry	Tools View Window Help	
🎒 🤋 💦 🛛 Aq Va	Component Search	Ma 🖬 💱 🔊
д - ×	Names Manager	
	Units Manager Customize Options	
	Add an Alloy	

Figure 10-2 The Tools menu items.

There are several methods of displaying component names. For the moment we wish to use the formula names for our ions. *Click* the <u>Formula</u> radio button. *Click* the <u>OK</u> button when done.

Names Manager 🔹 💽 💌					
Name Style Search Criteria Names Dictionary					
Component Name Style					
Display name					
✓ Use Names Dictionary					
Formula					
OLI Name (TAG)					
Show mineral name after solids					
The selected style will be used for displaying component names in tables and lists.					
OK Cancel Apply Help					

Figure 10-3 The Names Manager

When you return to the main window, locate the <u>Add Water Analysis</u> icon in the explorer view and *double-click* on the icon.

A "Water Analysis" object will be added to the Tree View. The **Explorer** view will now shows three new icons. You should now be on the **Analysis** tab, if not, please click it.

For this tour, we want you to rename the default analysis to the name *Thailand*.

Right-click the new object in the tree-view and select <u>Rename</u>. Enter the name *Thailand*.

OLI Studio - [Document2*]						
File Edit Streams Calculations Chemistry						_ & ×
🗋 🗅 🚔 🖬 🕺 🖻 💼 🥌 💡 🌾 🛛 🗛 🗸	aS	60	2nd Re 🛨 🎬 🛨 🎬 🛨 👫 🎬 🛨 💱	A 🔁 🖉		
Navigator # * X	5	1	Thailand			
Document2*						
Streams		Í	Description 🥹 Analysis 📓 Report			
I 🙀 Thailand		Г	Variable	Value		Add Reconciliation
			Analysis Parameter	rs		Summary
			Stream Amount (L)	1.00000		ounnuty
			Temperature (°C)	25.0000		Unit Set: Metric (mass concentration)
			Pressure (atm)	1.00000		Automatia Chemistry Madel
			Recorded Properties	es		Automatic Chemistry Model AQ (H+ ion) Databanks:
			Total Dissolved Solids (mg/L)	0.0		Public
		•		0.0		
Actions			Measured Alkalinity (mg HCO3/L)	0.0		
Actions			Density (g/ml)	0.0		
			Specific Electrical Conductivity (mho/m)	0.0		
Add Add Water		L	H2O			
Reconciliat Analysis		L		E		
-		L				
		L				
		L				
Plot Template Manager # * *						
				-		
		м	Aeasured		-1	
Save		A	Advanced			-
For Help, press F1]					

Figure 10-4 The Water Analysis Definition.

This window has several parts. The main part is the input grid in the center of the window. Here the user will enter the species concentrations as well as reportable items such as density. The field is scrollable and is divided into several sections:

Analysis Parameters

This section has the total stream amount, the temperature and pressure of the sample. The default values are 1 liter, 25 °C and 1 Atmosphere.

Recorded Properties

These are values reported from the lab. The pH of the solution, density, total dissolved solids and electrical conductivity may be entered.

Inflows

These are the molecular (neutral) species in solution. Water is entered by default but the user may not alter this value. Other neutrals such as dissolved gases (e.g., methane) may be entered in this section.

Cations

These are the positively charged species in solution.

Anions

These are the negatively charged species in solution.

Enter the cations listed in the table. The grid will scroll down to accept more entries.

Variable	Value	
Analysis Parameters		
Stream Amount (L)	1.00000	
Temperature (°C)	25.0000	
Pressure (atm)	1.00000	
Recorded Properties		
Total Dissolved Solids (mg/L)	0.0	
Measured pH	0.0	
Measured Alkalinity (mg HCO3/L)	0.0	
Density (g/ml)	0.0	Begin to enter the
Specific Electrical Conductivity (mho/m)	0.0	cations in this grid
H20		
		111-11-11-11-11-11-11-11-11-11-11-11-11
		•
Measured		

Figure 10-5 Entering the cations

Scroll down the grid and enter the anions:

Variable	Value			
Analysis P	arameters		1	
Stream Amount (L)	1.00000			
Temperature (°C)	25.0000			
Pressure (atm)	1.00000			
Recorded	Properties			
Total Dissolved Solids (mg/L) 0.0			
Measured pH	6.10000			r
Measured Alkalinity (mg HCC	0.0 0.0			Enter the anions
Density (g/ml)	0.0			here!
Specific Electrical Conductiv	ity (µm 0.0			
Neutral:	s (mg/L)			
H2O				
	/			
	; (mg/L)			
Ba+2	0.0700000			
Ca+2	3700.00			
Fe+2	2.89000			
K+1	402.000			
Mg+2	262.800			
NH4+1	104.000			
Anions	(mg/L)			
CI-1	39137.0			
HCO3-1	561.000			
HS-1	0.0900000			
S04-2	2200.00	-		

Figure 10-6 Entering the anions

We are now ready to perform some reconciliation calculations for this sample.

s 髮 Report		
	Value	Add Reconciliation
Analysis Parameter	s	
	1.00000	Summary
	25.0000	Unit Set: <custom></custom>
	1.00000	Unit Set: «Custom»
Recorded Propertie	s	Automatic Chemistry Model
.)	0.0	Aqueous (H+ ion) Databanks: Public
	7.10000	Public
	0.0	
un (mho/m)	0.0	

Figure 10-7 Finished data entry

Click on the <u>Add Reconciliation</u> Button.

This will display more tabs for entering data about the reconciliation. A new object will appear under the **Thailand** object in the tree view. This is an indication that the new object, in this case a reconciliation, is related to the parent object.

There are several items on this display. The entered analysis is displayed in the input grid. It is important to note that this is a copy of what you originally input. The values may be changed without altering the values in the parent analysis.

OLI Studio - [Document3*]	lew V	Vindow Help			- 8 x
□ 🖆 🖬 👗 🛍 🛍 🖂 🦓 🎌 🛛 Aq Va So 2 nd	Re ±	- I ()			
Navigator 4 * *	_			_	
Document3*	A R	econcile			
🍓 Streams	🦪 C	Description 🔮 Reconciliation 🔯 Mole	cular Basis 髮 Rep	ort	
🖶 🐷 Thailand		Variable	Value		Reconciliation
Reconcile		Analysis Parameters	Value		Specs
		Stream Amount (L)	1.00000		Reconcile
		Temperature (°C)	25.0000		No Reconcile
		Pressure (atm)	1.00000		Reconcile pH
		Recorded Properties			Reconcile pH/Alkalinity
		Total Dissolved Solids (mg/L)	0.0		Calculate Alkalinity
	•	Measured pH Measured Alkalinity (mg HCO3/L)	6.10000		
		Density (g/ml)	0.0		Calculate 🥥
		Specific Electrical Conductivity (mho/m)	0.0		
		Neutrais (mg/L)			Summary
		H2O		=	Unit Set: Metric (mass concentration)
		•			Automatic Chamistry Madel
Actions		Cations (mg/L)			Automatic Chemistry Model AQ (H+ ion) Databanks:
Actions		Ba+2	0.0700000		Public
		Ca+2	3700.00		Dominant Ion Charge Balance (eq/L):
		Fe+2	2.89000		Isothermal Calculation 25.0000 °C 1.00000 atm
		K+1	402.000 262.800		Calculation not done
		Mg+2 NH4+1	104.000		
		Nii4+1	20400.0		
			20400.0		
Plot Template Manager		Anions (mg/L)			
		CI-1	39137.0	-	
		HC03-1	561.000		
		HS-1	0.0900000	Ŧ	
	Me	asured			
Save	A	dvanced Search Add as Stream E	xport		
For Help, press F1					Image: Contract of the second seco

Figure 10-8 Starting the reconciliation.

In addition to the input grid, there is a **<u>Reconciliation</u>** box and a <u>**Summary**</u> box.

Reconciliation

This box sets up both the electroneutrality reconciliation and the pH reconciliation. The user may allow the program to pick the species to adjust for reconciliation or they may manually choose the adjustment.

The pH of the solution may be adjusted (automatically by adding either hydrochloric acid or sodium hydroxide) or the user may adjust these acids and bases.

The pH and alkalinity can also be calculated from this box or if the *Calculate Alkalinity* check box is selected then just the alkalinity is reported.

Summary

This box will display a quick list of what was performed in this section. Please *click* on the **Specs...** button. We will now review the options for electroneutrality.

Reconciliation Data	? 💌
Balance Calculation Options Converg	ence
Type of balance	New Inflow
Cations	Anions
Ba+2	CI-1
Ca+2 Fe+2	HCO3-1 HS-1
K+1	SO4-2
Mg+2 Na+1	
NH4+1	
	Needed to balance:
Charges on the Cations and Anions	1129.995 mg/L of Na+1 is needed to balance.
must be evenly balanced	
Cation charge: 1.10976 eq/L	
Anion charge: -1.15891 eq/L	
Imbalance: -0.0491517 eq/L	
ОК С	ancel Apply Help

Figure 10-9 choosing electroneutrality

The default option for reconciling electroneutrality is the **Dominant Ion** method. This method determines the amount of imbalance in charge then uses the counter ion with the largest concentration on an equivalent basis. This sample currently has too much negative charge (approximately 0.049 equivalents). The largest counter charge will be added. In this case the value is 1129.995 mg/L of Na⁺¹.

There are other options that may be used:

To see all options for balancing charge *Click* the <u>**Type of balance**</u> button. The options are:

Dominant Ion

This is the default method. The largest counter ion is used to adjust the electroneutrality, as was noted.

Prorate Ion

In our example, there is too much positive charge. The Prorate Ion method, if employed, would keep the relative amounts of all the negatively charged species the same and add a percentage multiplier to all such species until the electroneutrality was achieved.

Na/Cl

This method chooses either sodium ion or chloride ion as the adjusting species (depending on imbalance) regardless of the largest species concentration.

A Guide to Using OLI Studio	Water Analysis in OLI

Make-up Ion

This option allows for a single ion species to be adjusted. In this example, there is too much positive charge. If the Magnesium ion was chosen, then it would be reduced in concentration to make the sample electrically neutral.

User Choice

The user may pick the cation/anion pair to use for adjusting. Unlike the Make-up ion method, this method always adds material since both a cation and an anion are provided.

For this tour, we will use the default method of **Dominant Ion**.

Click the <u>OK</u> button to continue.

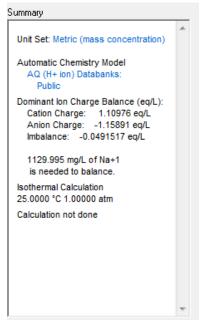


Figure 10-10 the summary box

The summary box will update to show our selection.

We now want to reconcile for pH. We know that the measured pH is 6.1. We want to ensure that the solution pH is 6.1 when we are done. This will involve adding either an acid or a base to adjust the pH.

We need to add the pH value to two locations in the grid. The first is the target pH and this is required for the calculation. The second location is the reported pH. The reported pH may differ from the target pH. The user may want to see the effects on the solution at some other condition than the reported pH, hence the need for two locations.

In the **<u>Reconcile pH</u>** box *Click* on the <u>**Reconcile pH**</u> radio button. The titrants HCl and NaOH are the default titrants and we will use them in this tour.

Enter a pH value of 6.1 in the **<u>Recorded Properties pH - Aqueous</u>** section.

Variable	Value		
Analysis Parameters			
Stream Amount (L)	1.00000		
Temperature (°C)	25.0000		
Pressure (atm)	1.00000		
Recorded Prope	rties		
Total Dissolved Solids (mg/L)	0.0		
Measured pH	6.10000		
Measured Alkalinity (mg HCO3/L)	0.0		
Density (g/ml)	0.0		
Specific Electrical Conductivity (µm	n 0.0		
Calculation Param	neters		
Use Single pH Titrant	No		
pH Acid Titrant	HCL		
pH Base Titrant	NAOH		
Neutrals (mg/	L)		
H2O			
Cations (mg/	L)		
Ba+2	0.0700000		
Ca+2	3700.00		
Fe+2	2.89000		
K+1	402.000		
Mg+2	262.800		
NH4+1	104.000		
Na+1	20400.0		

Figure 10-11 Entering pH information

Click on the <u>Calculate</u> button to start the calculation.

When the calculation has finished, scroll down the <u>Summary</u> box to see that NaOH was added. Also, click on the <u>Calculated</u> tab to see the results of the calculation.

Click on the <u>**Report**</u> tab.

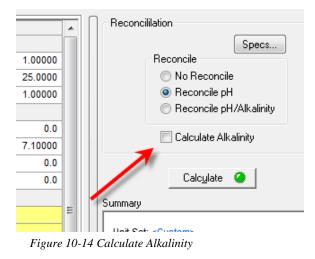
Notice that the Calculated pH is now 6.1. You can scroll down to see additional information for the sample

You may want to highlight the report area with your mouse in order to refresh the page. Even though the report is calculated, sometimes it is not visible immediately.

Description 🧕 🕺 R	econciliation 🤒 Mo	lecular Basis	髮 Report 📄	File Viewer
mp to: Reconciliation S	ummary 🔻		🔍 🔍 Cust	tomize Export
Reconciliation Sur	nmarv			-
Specification	<u>·</u>			
Charge Balance Metl	hod Dominant Ion			-
pH Reconciliation Ty	pe Reconcile pH			
		Measured	Calculated	
Temperature, °C		25.0000	Culculated	
Pressure, atm		1.00000		
pH		6.10000	6,10000	
pH Titrant Acid: HCI,	ma/l *	0.0	703.682	
pH Titrant Base: NaC	-	0.0		
Density, g/ml			1.04482	
Water, mg/L			9.76990e5	
* Calculated value inc	licates added or removed	l amount.		
Stream Inflows				
Row Filter Applied: Only No	n Zero Values			
	Input	Output		
	mg/L	mg/L		
Species	1.00000e6	9.76637e5		
Species H2O	1.00000e8			
	0.0700000			

Figure 10-12 The Report tab

Click on the <u>Molecular Basis</u> tab.


This will display the sample in terms of molecular (neutral species). You can scroll down to see additional information.

	Value
Variable	Analysis Parameters
Stream Amount (L)	1.0000
- Volume - Aqueous (L)	1.0000
Volume - Solid (cm3)	0.031802
Temperature (°C)	25.000
Pressure (atm)	1.0000
~	Calculation Results (mol)
pH titrant added: HCI	1.73128e
~	Molecular Totals (mg/L)
BaCl2	0.10613
CaCl2	8810.0
CaCO3	86.183
CaO	677.12
CO2	366.72
FeCl2	6.2141
FeS	8.72255e
H2O	9.770636
КСІ	766.49
FeS	0.2304
MgO	435.78
NaCl	54729
NH3	98.185
S03	1833.5

Figure 10-13 The molecular view.

Calculating Alkalinity

Let us now determine the alkalinity of this pH reconciled sample. On the **<u>Reconciliation Tab</u>** locate the *Calculate Alkalinity* check box.

Check the box

The input grid updates with a new set of parameters in the Calc Parameters section.

		ties			
	Total Dissolved Solids (mg/L)	0.0			
•	Measured pH	6.10000			
	Measured Alkalinity (mg HCO3/L)	0.0			
	Density (g/ml)	0.0			
	Specific Electrical Conductivity (µmh	0.0			
	Calculation Parameters				
	Alkalinity pH Titrant	H2SO4			
	Alkalinity End Point pH	4.50000			
	Use Single pH Titrant	No			
	pH Acid Titrant	HCL			
	pH Base Titrant	NAOH			

Figure 10-15 Added the Alkalinity titrant H2SO4

The OLI Analyzer will perform a pH titration for total Alkalinity. This means the sample will be titrated down to a pH of 4.5 and the amount of acid used is converted into Alkalinity. The box is a drop-down box and several other titrants are available:

Alkalinity pH Titrant	H2SO4			
Alkalinity End Point pH	H2SO4			
pH Acid Titrant	HCL HNO3			
pH Base Titrant	NAOH			
- Neutr	ale (mail.)			

Figure 10-16 Additional Alkalinity Titrants

The Alkalinity Titrant is defaulted to H2SO4 and it is recommended that you use this value.

It is important to note that although a real equilibrium calculation is being performed, no species (such as the added H2SO4) is being added to the stream.

Click the Calculate button.

Δ	Guide	to	Usina	Studio
~	Guiac	ιv	osing	oluaio

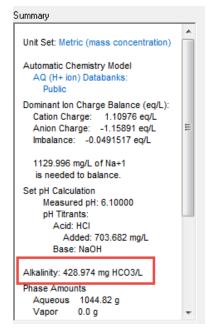


Figure 10-17 Calculated Alkalinity

From the summary box we can see that the solution's calculated alkalinity is approximately 429 mg/L as HCO3.

וווינ 🔜	I IIC AICWCI
	Reconcililation
	Specs
	No Reconcile
	🔘 Reconcile pH
	Reconcile pH/Alkalinity
	Calculate Alkalinity
	Calc <u>u</u> late 🥝
	Summary

Figure 10-18 reconciling both pH and alkalinity

Total Dissolved Solids (mg/L)	0.0			
Measured pH	6.10000			
Measured Alkalinity (mg HCO3/L)	425.000			
Density (g/ml)	0.0			
Specific Electrical Conductivity (µmh	0.0			
Calculation Parameters				
Alkalinity Titrant	CO2			
Alkalinity pH Titrant	H2SO4			
Alkalinity End Point pH	4.50000			
Use Single pH Titrant	No			
pH Acid Titrant	HCL			
pH Base Titrant	NAOH			
	Total Dissolved Solids (mg/L) Measured pH Measured Alkalinity (mg HCO3/L) Density (g/ml) Specific Electrical Conductivity (µmh ⊂ Calculation Parame Alkalinity Titrant Alkalinity pH Titrant Alkalinity End Point pH Use Single pH Titrant pH Acid Titrant			

Figure 10-19 User entered values note that the original pH of 6.1 is still used

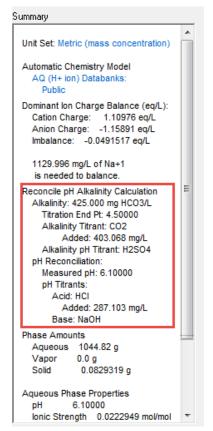


Figure 10-20 The red box shows the alkalinity values

Creating a stream from the sample

We now need to convert this sample to a molecular stream. Click the Add as Stream button.

The program will allocate the ion concentrations into molecules. The combination of these species is usually not unique, but however allocated; the elemental material balances will be preserved.

A Guide to Using OLI Studio

You have the option of separating phases during this step. Each phase can be removed from the created stream as well as saved as a new stream. This step, in effect, becomes a phase splitter.

Save Selected Result S	treams	? ×
Export Name: Molecular B		
Include the following	y phases in the stre	am(s)
📝 Second Liquid	V Solids	
Optional Phases that are not separately.	included may be ex	kported
Aqueous		
Vapor		
Second Liquid		
Solid		
	ОК	Cancel

Figure 10-21 Save As Stream dialog, default options selected

Click the **OK** button to save all the phases as a new stream.

The tree-view will be updated to display a new stream.

avigator # * *	Molecular Export of Reconcile		
Document3*	I Description 🔮 Definition 🔯 Report		
in Thailand	Coscipation Streport		
- 🐼 Reconcile	Variable	Value 🔺	Add <u>C</u> alculation 👻
Molecular Export of Reconcile	Stream Parameter		Special Conditions
	Stream Amount (L)	1.00003	Solids Only
	Temperature (*C)	25.0000	E Solids only
	Pressure (atm)	1.00000	Summary
	Inflows (mg/L)		
	H2O		Unit Set: Metric (mass concentration)
	HCI	0.0	Automatic Chemistry Model
	C02	371.120	AQ (H+ ion) Databanks:
	BaCl2	0.106139	Public
	CaCl2	8813.19	
	CaO	679.930	
	FeCI2	6.21419	
tions a **	KCI	766.498 =	
tions + - ^	FeS	0.230489	
	MgO	435.782	
δ 🖬 Λ 🧟 🄶	NaCl	54730.0	
dd Stream Add Mixer Add Single Add Survey	NH3	98.1858	
dd Stream Add Mixer Add Single Add Survey Point	S03	1833.54	
	CaCO3	78.3643	
	FeS	8.73052e-3	
· · · · · · · · · · · · · · · · · · ·	·		
t Template Manager # * *			
		*	
	Inst		
	Input		
Save	Advanced Search Add as Stream	Export	

Figure 10-22 A new stream object is displayed.

Click here for a worked example for this chapter: Chapter 10 - Water Analysis Tour

[This page intentionally left blank]

11. Autoclaves⁴⁰

Overview

An autoclave is a high pressure, high temperature hydrometallurgy unit with carefully controlled conditions. In this chapter, we will simulate an autoclave using two different approaches. Some use a manual approach where the *Mixer* pressure or gas inflows is adjusted manually to match final volume. Others use the Custom calculation where pressure and total volume are linked, and lastly, some applications use the automatic *Autoclave* Calculation in which the partial pressures are fixed and the inflow composition is computed.

Basic Autoclave #1 – Ideal Gas Law, Inert Gas

In this section, we will add 1 kg water to a 2L autoclave then fill the void with N₂. The conditions are ambient, 25C and 1 atm. The amount of N₂ added is a combination of the dissolved N₂ (N₂ aqueous) and N₂ vapor filling the 1L void. N₂ has a low solubility in water, so nearly all the N₂ will remain in the vapor phase. H₂O will also evaporate to its vapor pressure, so the entire void will not contain N₂ alone. Since we know all the input parameters, we can use the Ideal Gas Law to estimate the amount of N₂ needed:

$$P * V = n * R * T$$

$$1 atm * 1 L = n * 0.082057 \xrightarrow{L-atm} * 298.15$$

$$K$$

$$K-mol$$

$$n = 0.04087 moles$$

Getting Started

Before adding a stream, some clients may have to enable the Autoclave feature. The steps below also require us to restart the software, so please save any open work.

⁴⁰ This chapter is authored by Anthony Gerbino of AQSim. Used with permission **A Guide to Using OLI Studio**

- ✓ Start a new file and give it a name such as *Chapter 9 Autoclaves*
- ✓ Create a new stream and rename it *Basic Autoclave Inert Gas*
- ✓ Change the framework to MSE
- ✓ Make sure the units are set to Metric-Batch-Moles
- ✓ Add N2 as an inflow
- ✓ Add a Single Point Calculation then select Autoclave as the calculation type. Click the Specs button

OLI Studio - [Basic Autors ons Chemistry Tools View W? Aq Va So 2nd Re ± 155 ± 163 ± 164 mm §2		
▲ SinglePoint ✓ Description ✓ Definition Report		
Variable	Value	Type of calculation
Stream Parameters		Autoclave
Stream Amount (mol)	55.5082	Bubble/Dew Point
Ambient: Temperature (°C)	25.0000	Temperature
Ambient: Pressure (atm)		O Pressure
Calculation Parameter	rs	
Vessel Volume (L)	0.0	Calc <u>u</u> late 🥝
Final Temperature (°C)	0.0	Summary
Final Pressure (atm)		
Compute results at which condition	Final	Unit Set: Metric (moles)
Inflows (mol)		Automatic Chemistry Model
H2O	55.5082	MSE (H3O+ ion) Databanks:
N2	0.0	MSE (H3O+ ion) Using Helgeson Direct

- ✓ Click the Specs button
- ✓ Highlight N2 in the gas field then press OK

Auto	clave	
T	arget Gas(es) (5 Max)	
	H20 - Vap	
	H2O - Vap N2 - Vap	

- \checkmark Change the Vessel volume to 2L
- ✓ Change the final temperature to 25C and Final Pressure to 1 atm
- \checkmark Confirm that the values in the grid match the information in the table below
- \checkmark

Basic Autoclave - Inert Gas Setup							
S	Setup	Stream Pa	rameters	Calculat Paramet		Inflov	vs (mol)
Stream Name	Basic Autoclave –	Stream	Calculated	Vessel Vol	2 L	H2O	55.508
	Inert Gas	Amt					
Unit Set	Metric-Batch-Moles	Ambient T	25 C	Final T	25 C	N2	0
Unit Customize	none	Ambient P	calculated	Final P	1 atm		
Names Style	Formula			Gas : N2			
Framework	MSE (H3O+)						

Variable	Value	Type of calculation
C Stream Paramet	ers	Autoclave
Stream Amount (mol)	55.5082	
Ambient: Temperature (°C)	25.0000	Calc <u>u</u> late 🥝
Ambient: Pressure (atm)		Summary
Calculation Parame	eters	
Final Temperature (°C)	25.0000	Unit Set: Metric (moles)
Final Pressure (atm)	1.00000	Automatic Chemistry Model
Vessel Volume (L)	2.00000	
Partial Pressure: N2 (atm)		MSE (H3O+ ion)
Compute results at which condition	Final	Using Helgeson Direct
Inflows (mol)		Autoclave Calculation Specifications:
H2O	55.5082	
N2	0.0	
		Final Pressure 1.00000 atm Vessel Volume 2.00000 L
		N2
		A A A A A A A A A A A A A A A A A A A

- ✓ Change the Compute results at which condition to Final
- ✓ Calculate

Moles (True) - Liquid-1 (mol) 53 Moles (True) - Vapor (mol) 0.04 Calculation Results Calculation Results Final Temperature (°C) 22 Final Pressure (atm) 1. Vessel Volume (L) 1. Partial Pressure: N2 (atm) 0.9 Condition that results were compute Final H2O 55	_	Variable	Value
Moles (True) - Liquid-1 (mol) 53 Moles (True) - Vapor (mol) 0.04 Calculation Results Calculation Results Final Temperature (°C) 22 Final Pressure (atm) 1 Vessel Volume (L) 1 Partial Pressure: N2 (atm) 0.9 Condition that results were compute Final Final Final Vessel Volume (L) 1 Partial Pressure: N2 (atm) 0.9 Condition that results were compute Final H2O 55		Stream Parameters	(mol)
Moles (True) - Vapor (mol) 0.04 Calculation Results Final Temperature (°C) 22 Final Pressure (atm) 1 Vessel Volume (L) 1 Partial Pressure: N2 (atm) 0.9 Condition that results were compute Final Final Final Vessel Volume (L) 1 Partial Pressure: N2 (atm) 0.9 Condition that results were compute Final Final Final Vessel Volume (L) 5 Final Final Condition that results were compute Final H2O 55		Stream Amount	55.5483
Calculation Results Final Temperature (°C) 22 Final Pressure (atm) 1 Vessel Volume (L) 1 Partial Pressure: N2 (atm) 0.9 Condition that results were compute Final Condition that results were compute Final Condition that results were compute Final H2O 55		- Moles (True) - Liquid-1 (mol)	55.5076
Final Temperature (°C) 24 Final Pressure (atm) 1 Vessel Volume (L) 1 Partial Pressure: N2 (atm) 0.9 Condition that results were compute Final ∇ Inflows (mol) H2O 55		Moles (True) - Vapor (mol)	0.0407388
Final Pressure (atm) 1. Vessel Volume (L) 1. Partial Pressure: N2 (atm) 0.9 Condition that results were compute Final Condition that results were compute Final H2O 55		Calculation Result	lts
Vessel Volume (L) 1 Partial Pressure: N2 (atm) 0.9 Condition that results were compute Final Condition that results were compute Final H2O 55		Final Temperature (°C)	25.0000
Partial Pressure: N2 (atm) 0.9 Condition that results were compute Final Inflows (mol) 1 H2O 55		Final Pressure (atm)	1.00000
Condition that results were compute Final Inflows (mol) H20 53		Vessel Volume (L)	1.99999
Inflows (mol) H2O		Partial Pressure: N2 (atm)	0.968638
H2O 5		Condition that results were compute	Final
		Inflows (mol)	
N2 0.04		H2O	55.5082
		N2	0.0400673
N			

 \checkmark Click on the Output tab at the bottom of the grid

The computed N_2 inflow is 0.04007 moles. This compares to the Ideal Gas value of 0.0409 moles, a 2% deviation.

Species Output (True Species) Row Filter Applied: Only Non Zero Values

	Total	Liquid-1	Vapor
	mol	mol	mol
H2O	55.5082	55.507	1.27766e-3
N2	0.0400673	6.0619e-4	0.0394612
H3O+1	1.00624e-7	1.00624e-7	0.0
OH-1	1.00624e-7	1.00624e-7	0.0
Total (by phase)	55.5483	55.5076	0.0407388

✓ Click on the Report tab and scroll down to the Species Output True Species table

✓

 \checkmark

~

The software computes 0.03946 moles of N₂ in vapor. This is now 3.4% lower than the ideal gas value. When we include H₂O, the total gas amount (N₂ + H₂O) is 0.04074 moles, a 0.3% difference. Thus, a rigorous calculation (including fugacity) is consistent with a simple ideal gas calculation when computing total gas amount of an unreactive, low soluble gas.

Setting the Vessel volume to 5L and 20L

The OLI Software computes gas properties and composition using an Enhanced Suave-Redlich-Kwong (SRK) cubic equation of state. The SRK equation for one mole gas looks like the following:

$$P = \frac{RT}{V-b} - \frac{a}{V(V+)}$$

When 'a' and 'b' are set to zero, SRK equation collapses to the Ideal Gas equation.

We will run the same calculation, except now the vessel volume will be five liters, that is, four liters of vapor. The ideal gas equation will predict: $4L * 0.04087 \frac{moles}{L} = 0.1634 \frac{moles}{s}$ of gas.

Calculation Parameters	
Final Temperature (°C)	25.0000
Final Pressure (atm)	1.00000
Vessel Volume (L)	5.00000

- ✓ Select the Definition tab then change the Vessel volume to 5 L then Calculate
- \checkmark Click on the Output tab at the bottom of the grid
- \checkmark Click on the Advanced button below the grid and check the Phase Flow Properties box

Adv	vanced Options	?	×
Stream State to Display Input state Calculated state	Values from Stream	OK Cano	
Stream Sections To Displa	y .		
Stream Parameters Calculation Parameter Inflows Related Inflows Additional Stream Parameter			^
Phase Flow Properties			
Thermodynamic Prope	erties		

✓ Press OK

Variable	Value	
Stream Parameters (mol)		
Stream Amount	55.6671	
 Moles (True) - Liquid-1 (mol) 	55.5037	
Moles (True) - Vapor (mol)	0.163374	
Calculation Results		
Final Temperature (°C)	25.0000	
Final Pressure (atm)	1.00000	
Vessel Volume (L)	5.00006	
Partial Pressure: N2 (atm)	0.968638	
Condition that results were compute	Final	
T Inflows (mol)		
H2O	55.5082	
N2	0.158857	
Set of the set of t		
Moles (Inflow) (mol)	55.6671	
Moles (True) - Total (mol)	55.6671	
Moles (True) - Liquid-1 (mol)	55.5037	
Moles (True) - Vapor (mol)	0.163374	

✓ Review the N2 input and total Gas moles values

The calculated value is 0.1589 moles about 2.9% lower than predicted using Ideal Gas Law. The total gas amount is 0.1633 moles, nearly identical to the gas amount computed using Ideal Gas Law.

- \checkmark Click the Input tab at the bottom of grid
- ✓ Change the Vessel Volume to 20L
- ✓ Calculate

~

✓ Click the Output tab and view N2 inflow and Moles Vapor

The N_2 inflow is 0.7527 moles and total vapor is 0.7766 moles. The Ideal Gas Law predicts:

$$n = \frac{1 \ atm * 19L}{0.082057 \frac{L \ atm}{Kmol^{-1}}} = 0.776 \ moles$$

The result from the equation matches the calculated result. Therefore, it appears that the Ideal Gas Law, will work at ambient conditions as well as when the vapor phase volume is much larger than the liquid phase volume

Variable	Value	
Stream Parameters (mol)		
Stream Amount	56.2610	
 Moles (True) - Liquid-1 (mol) 	55.4845	
Moles (True) - Vapor (mol)	0.776528	
Calculation Results		
Final Temperature (°C)	25.0000	
Final Pressure (atm)	1.00000	
Vessel Volume (L)	19.9998	
Partial Pressure: N2 (atm)	0.968638	
Condition that results were compute	Final	
H2O	55.5082	
N2	0.752781	
Phase Flow Prope	rties	
Moles (Inflow) (mol)	56.2610	
Moles (True) - Total (mol)	56.2610	
Moles (True) - Liquid-1 (mol)	55.4845	
Moles (True) - Vapor (mol)	0.776528	
Malaa (Apparant) Liquid 4 (mal)	EE 404E	

Testing a higher pressure

The software computes that the Ideal Gas Law works well at ambient conditions. It also works when the gas phase is larger than the water phase. The next test is to see how it works at elevated conditions.

- ✓ Click the Input tab at the bottom of the grid
- ✓ Change the Final Pressure to 50 atm then Calculate

Variable	Value
Stream Parameters	(mol)
📮 Stream Amount	94.1439
 Moles (True) - Liquid-1 (mol) 	55.5108
Moles (True) - Vapor (mol)	38.6331
Calculation Resu	lts
Final Temperature (°C)	25.0000
Final Pressure (atm)	50.0000
Vessel Volume (L)	19.9998
Partial Pressure: N2 (atm)	49.9654
Condition that results were compute	Final
Inflows (mol)	
H2O	55.5082
N2	38.6356
Phase Flow Prope	rties
Moles (Inflow) (mol)	94.1439
Moles (True) - Total (mol)	94.1439
Moles (True) - Liquid-1 (mol)	55.5108
Moles (True) - Vapor (mol)	38.6331

 \checkmark

- ✓ Click on the Output tab and view the results
- ✓ Calculate the gas amount using the Ideal Gas Law

$$n = \frac{50 atm * 19 L}{0.082057 \frac{L-atm}{K-mol} * 298.15 K} = 38.83 moles$$

The ideal gas value is 38.83 moles compared to 38.66 moles computed by the software. The deviation is small, 0.4%.

✓ Select the Input tab, change the Final Pressure to 200 atm, recalculate, then selectOutput

Variable	Value			
C Stream Parameters (mol)				
Stream Amount	199.269			
 Moles (True) - Liquid-1 (mol) 	55.5720			
Moles (True) - Vapor (mol)	143.697			
Calculation Result	lts			
Final Temperature (°C)	25.0000			
Final Pressure (atm)	200.000			
Vessel Volume (L)	19.9998			
Partial Pressure: N2 (atm)	199.956			
Condition that results were compute	Final			
Inflows (mol)				
H2O	55.5082			
N2	143.761			
Phase Flow Prope	rties			
Moles (Inflow) (mol)	199.269			
Moles (True) - Total (mol)	199.269			
Moles (True) - Liquid-1 (mol)	55.5720			
Moles (True) - Vapor (mol)	143.697			

The computed gas amount is 143.76 moles and is less than the 155.32 moles as per the Ideal Gas Law:

$$n = \frac{200 \ atm * 19 \ L}{0.082057 \frac{L-atm}{K-mol} * 298.15 \ K} = 155.32 \ moles$$

Testing at High Temperature

Next, we will test the Ideal Gas Law against the Enhanced-SRK at higher temperatures.

- ✓ Select the Input tab then set the Final Temperature to 100C and calculate
- \checkmark View the results in the lower Output tab
- ✓ Compare the results to what the Ideal Gas equation would produce 200 atm * 19 L

$$n = \overline{\frac{0.082057 \frac{L-atm}{K-mol} * 373.15 K}{0.082057 \frac{L-atm}{K-mol} * 373.15 K}} = 124.104 \text{ moles}$$

Variable	Value
Stream Parameters	(mol)
E Stream Amount	167.051
- Moles (True) - Liquid-1 (mol)	54.6927
Moles (True) - Vapor (mol)	112.358
Calculation Resu	lts
Final Temperature (°C)	100.000
Final Pressure (atm)	200.000
Vessel Volume (L)	19.9998
Partial Pressure: N2 (atm)	198.415
Condition that results were compute	Final
Inflows (mol)	
H2O	55.5082
N2	111.543
Phase Flow Property	rties
Moles (Inflow) (mol)	167.051
Moles (True) - Total (mol)	167.051
Moles (True) - Liquid-1 (mol)	54.6927
Moles (True) - Vapor (mol)	112.358

The difference is between 124.1 moles and 112.2 moles, or about 11% higher.

✓ Recalculate at 200C and compare the two equation of states

The Ideal Gas Law computes 97.87 moles of gas in the 19 liters.

$$n = \frac{200 \ atm * 19 \ L}{0.082057 \frac{L-atm}{K-mol} * 473.15 \ K} = 97.87 \ moles$$

With enhanced SRK, the software computes 91.64 moles. Note also, that the Software computes a 19.02 L vapor volume.

Variable	Value				
Stream Parameters (mol)					
Stream Amount	137.024				
- Moles (True) - Liquid-1 (mol)	45.5787				
Moles (True) - Vapor (mol)	91.4450				
Calculation Resul	Its				
Final Temperature (°C)	200.000				
Final Pressure (atm)	200.000				
Vessel Volume (L)	19.9998				
Partial Pressure: N2 (atm)	178.011				
Condition that results were compute	Final				
Inflows (mol)					
H2O	55.5082				
N2	81.5155				
Thase Flox Proper	ties				
Moles (Inflow) (mon	137.024				
Moles (True) - Total (mon	137.024				
Moles (True) - Liquid-1 (mol)	45.5787				
Moles (True) - Vapor (mol)	91.4450				
Moles (Apparent) - Liquid-1 (mol)	45.5787				

Normalizing the moles to 19 L results in a value of 91.45 moles. This is 8% lower than the Ideal Gas predictions.

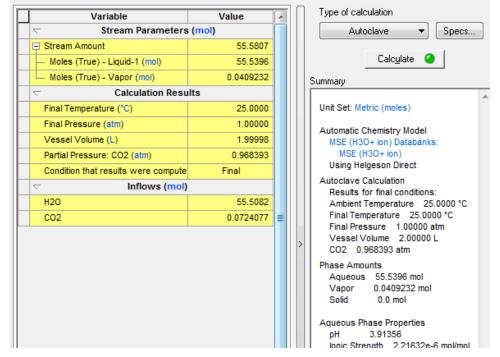
Basic Autoclave #2 – Ideal Gas Law, Reactive Gas

We will modify the approach taken in previous example by using a reactive gas, CO2, to fill the headspace. In addition, you will modify the chemistry by adding NaOH to the water so that CO2 reacts to form bicarbonate, changing the amount of CO2 that is needed to fill the headspace. We will use the same Ideal Gas Law calculations amount of CO2 needed, if the assumption was that no CO2 dissolved or reacted.

т	Р	Vol	Ideal Gas Law	Calculated (total)	Calculated (vapor)	%Diff (vapor)
С	atm	L	Mole	Moles of inert gas mixed with 1L H2O		
25	1	1	0.041	0.041 0.040		3.4%
25	1	5	0.163	0.159	0.158	3.1%
25	1	20	0.78	0.75	0.75	3.1%
25	50	20	38.83	38.64	38.61	0.6%
25	200	20	255.32	143.76	143.67	43.7%

Getting Started

- ✓ Create a new stream and rename it *Basic Autoclave Reactive Gas*
- ✓ Change the framework to MSE
- ✓ Make sure the units are set to Metric-Batch-Moles
- ✓ Add CO2 and NaOH to the inflow list
- ✓ Add a Single Point Calculation then select Autoclave as the calculation type
- \checkmark Click the Specs button
- ✓ Highlight CO2 in the gas field then press OK


alculation Options		ſ	×
Category	Autoclave		
Autoclave Calculation Options	Target Gas(es) (5 Max)		
	СО2 - Vap H2D - Vap		

- ✓ Change the Vessel volume to 2L
- ✓ Change the final temperature to 25C and Final Pressure to 1 atm
- \checkmark Confirm that the values in the grid match the information in the table below

Basic Autoclave Setup									
Setup			Calculation Pa	Inflows (mol)					
eam Name Basic Autoclave –		Calculated	Vessel Vol	2 L	H2O	55.508			
Reactive Gas									
Metric-Batch-Moles	Ambient T 25 C		Final T	25 C	N2	0			
Unit Customize none		calculated	Final P	1 atm	NaOH				
Names Style Formula			Gas : CO2						
Framework MSE (H3O+)									
	tup Basic Autoclave – Reactive Gas Metric-Batch-Moles none Formula	tup Stream Pa Basic Autoclave – Stream Amt Reactive Gas Ambient T none Ambient P Formula	tupStream ParametersBasic Autoclave – Reactive GasStream Amt ParametersCalculatedMetric-Batch-MolesAmbient T Parameters25 C CalculatednoneAmbient P CalculatedCalculated	tupStream ParametersCalculation ParametersBasic Autoclave – Reactive GasStream Amt ParametersCalculated Vessel VolMetric-Batch-MolesAmbient T Ambient P25 CFinal T Final PFormulaGas : CO2	tupStream ParametersCalculation ParametersBasic Autoclave – Reactive GasStream Amt Stream AmtCalculated CalculatedVessel Vol Vessel Vol2 LMetric-Batch-MolesAmbient T Ambient P25 CFinal T Final P25 CNoneAmbient P FormulaCalculated Gas : CO2Final P Final P1 atm	Stream ParametersCalculation ParametersInflowBasic Autoclave – Reactive GasStream Amt Stream AmtCalculated CalculatedVessel Vol Vessel Vol2 L H2OH2OMetric-Batch-MolesAmbient T Ambient P25 CFinal T Calculated25 C Final P1 atmNaOHFormulaGas : CO2Colspan="3">Colspan="3">Calculated			

√

✓ Calculate

 \checkmark Click on the Output tab at the bottom of the grid

Species Output (True Species)

The computed CO_2 inflow is 0.0724 moles. This compares to the Ideal Gas value of 0.0409 moles, a 2% deviation. Click on the Report tab and scroll down to the Species Output (True Species) table

Row Filter Applied: Only Non Zero Values column Filter Applied: Only Non Zero Values			
	Total	Aqueous	Vapor
	mol	mol	mol
H2O	55.508	55.5067	1.29227e-3
ОН-1	8.41456e-11	8.41456e-11	0.0
H3O+1	1.23094e-4	1.23094e-4	0.0
CO2	0.0722526	0.0326206	0.039632
C03-2	4.9102e-11	4.9102e-11	0.0
HCO3-1	1.23093e-4	1.23093e-4	0.0
Total (by phase)	55.5805	55.5396	0.0409242

The software computes 0.0396 moles of CO_2 in vapor, consistent with the ideal gas value. The difference is that about 45% of the CO_2 added dissolved in water.

Т	Р	Vol	Ideal Gas Law	Calculated (total) Calculated (vapor)		Calculated (total)	Calculated (vapor)
С	atm	L	M	oles of N2 mixed with	1L H2O	Moles of CO2 m	ixed with 1L H2O
25	1	1	0.041	0.040	0.039	0.073	0.040

Testing with 0.1m NaOH

You will repeat the study with NaOH added to the water. NaOH reacts with CO₂ to form HCO₃⁻¹ and CO⁻

3

², increasing overall CO₂ solubility.

- ✓ Click on the Input tab
- ✓ Add 0.1 moles NaOH to the input grid

	Variable	Value			Type of calculation
	C Stream Parameters (mol)				Autoclave 👻 Specs
	📮 Stream Amount	55.7797			
	- Moles (True) - Liquid-1 (mol)	55.7389			Calc <u>u</u> late 🥥
	Moles (True) - Vapor (mol)	0.0408296			Summary
F	Calculation Resu	ilts			
F	Final Temperature (°C)	25.0000			Unit Set: Metric (moles)
F	Final Pressure (atm)	1.00000			Automatic Chemistry Model
F	Vessel Volume (L)	2.00002			MSE (H3O+ ion) Databanks:
	Partial Pressure: CO2 (atm)	0.968498			MSE (H3O+ ion)
	Condition that results were compute	Final			Using Helgeson Direct
					Autoclave Calculation Results for final conditions:
Γ	H2O	55.5082			Ambient Temperature 25.0000 °C
	CO2	0.171450	Ξ		Final Temperature 25.0000 °C
	NaOH	0.100000			Final Pressure 1.00000 atm Vessel Volume 2.00000 L
		·			CO2 0.968498 atm
					Phase Amounts
					Aqueous 55.7389 mol
					Vapor 0.0408296 mol Solid 0.0 mol
					Solid 0.0 mol
					Aqueous Phase Properties
					pH 6,71240

The CO_2 inflow is approximately 0.1 moles greater than calculation without the NaOH, which is consistent with the CO_2 absorption and reaction by a base.

Testing a higher pressure

You will repeat the solubility calculations at 50atm.

- \checkmark Click the Input tab at the bottom of the grid
- ✓ Change the Vessel volume to 20 L
- ✓ Change the Final Pressure to 50 atm
- ✓ Calculate

Variable	Value	Type of calculation
Stream Parameters	(mol)	Autoclave 🔻 Specs
Stream Amount	113.995	
- Moles (True) - Liquid-1 (mol)	56.7568	Calc <u>u</u> late 🥝
- Moles (True) - Vapor (mol)	57.2385	Summary
Calculation Result	ts	
Final Temperature (°C)	25.0000	Unit Set: Metric (moles)
Final Pressure (atm)	50.0000	Automatic Chemistry Model
Vessel Volume (L)	19.9997	
Partial Pressure: CO2 (atm)	49.9389	
Condition that results were compute	Final	Using Helgeson Direct
Inflows (mol)		Autoclave Calculation Results for final conditions:
H2O	55.5082	
C02	58.3870	
NaOH	0.100000	Final Pressure 50.0000 atm Vessel Volume 20.0000 L
		CO2 49.9389 atm
		Phase Amounts
		Aqueous 56.7568 mol
		Vapor 57.2385 mol
		Solid 0.0 mol
		Aqueous Phase Properties
		pH 5.09331

✓ Click on the Output tab and view the results

The ideal gas value is 38.83 moles compared to 58.3 moles computed by the software.

✓ Click on the Report and view the Species Output

Row Filter Applied: Only Non Zero Values			
column Filter Applied: Only Non Zero Values	i		
	Total	Liquid-1	Vapor
	mol	mol	mol
CO2	58.287	1.1185	57.168
H2O	55.5082	55.4382	0.069988
HCO3-1	0.100006	0.100006	0.0
Na+1	0.1	0.1	0.0
H3O+1	8.74885e-6	8.74885e-6	0.0
CO3-2	1.37355e-6	1.37355e-6	0.0
OH-1	1.85647e-9	1.85647e-9	0.0
NaOH	1.2057e-16	1.2057e-16	0.0
NaOHCO3-2	2.33697e-17	2.33697e-17	0.0
Total (by phase)	113.995	56.7568	57.238

The vapor amount is 57.2 moles, compared to ~39 for ideal gas and with N_2 . The primary difference is the CO2 fugacity.

Т	Р	Vol	Ideal Gas Law	Calculated (total) Calculated (vapor)		Calculated (total)	Calculated (vapor)
С	atm	L	Mo	oles of N2 mixed with	1L H2O	Moles of CO2 m	nixed with 1L H2O
25	50	20	38.83	38.64	38.61	58.3	57.2

✓ Change the Final Pressure to 200 atm.

✓ Recalculate

✓

Í	Description 🧕 Definition 🧊	Report 🚊 Fil	eV	iev	/er			
Г	Variable	Value			Type of calculation			
	Stream Parameters (mol)				Autoclave 👻 Specs			
	📮 Stream Amount	467.270						
	- Moles (True) - Liquid-1 (mol)	466.669			Calc <u>u</u> late 🥥			
	Moles (True) - Solid (mol)	0.0499978			Summary			
	Calculation Resu	llts						
	Final Temperature (°C)	25.0000			Unit Set: Metric (moles)			
	Final Pressure (atm)	200.000			Automatic Chemistry Model			
	Vessel Volume (L)	20.0002			MSE (H3O+ ion) Databanks:			
	Condition that results were compute	Final			MSE (H3O+ ion)			
	√ Inflows (mol)				Using Helgeson Direct			
	H2O	55.5082			Autoclave Calculation Results for final conditions:			
	C02	411.662			Ambient Temperature 25.0000 °C			
	NaOH	0.100000	Ξ		Final Temperature 25.0000 °C			
				>	Final Pressure 200.000 atm Vessel Volume 20.0000 L CO2VAP			
					Phase Amounts Aqueous 466.669 mol Vapor 0.0 mol Solid 0.0499978 mol			
					Aqueous Phase Properties pH 0.981504 Ionic Strength 2.31997e-6 mol/mol			

Notice that the output differs significantly, and there is no vapor phase reported in the Summary section. The computed gas amount is 412 moles, which is far from the Ideal gas value of ~155 moles.

✓ Click on the Report tab and view the Total and Phase Flow table

Total and Phase Flows (Amounts) column Filter Applied: Only Non Zero Values							
	Total	Aqueous					
	mol	mol					
Mole (True)	467.250	467.250					
Mole (App)	467.251	467.251					
	g	g					
Mass	19120.8	19120.8					
	L	L					
Volume	20.0002	20.0002					

	Unit	Total	Aqueous
Density	g/ml	0.956029	0.956029
Enthalpy	cal	-4.40425e7	-4.40425e7

According to the calculation, the stream is monophasic and the liquid density is 0.95. The software either computed the wrong results, or the system is monophasic under these conditions.

There is a setting that is off by default, the 2^{nd} liquid phase. Normally a 2^{nd} liquid is organic, but in this case it will be a supercritical CO2 phase. The software computed the wrong results, because this button is not on by default. OLI does not provide an automatic adjustment for this.

✓ Click on the 2^{nd} button in the ribbon ad then calculate.

Variable	Value		Type of calculation
Stream Parameters	(mol)		Autoclave 🔻 Specs
Stream Amount	454.848		
— Moles (True) - Liquid-1 (mol)	55.5736		Calculate 🥝
Moles (True) - Liquid-2 (mol)	399.274		Summary
Calculation Resul	lts		
Final Temperature (°C)	25.0000		Unit Set: Metric (moles)
Final Pressure (atm)	200.000		Automatic Chemistry Model
Vessel Volume (L)	20.0003		MSE (H3O+ ion) Databanks:
Condition that results were compute	Final		MSE (H3O+ ion)
Inflows (mol)			Second Liquid phase Using Helgeson Direct
H2O	55.5082		Autoclave Calculation
C02	399.240		Results for final conditions:
NaOH	0.100000	E	Ambient Temperature 25.0000 °C
			Final Temperature 25.0000 °C Final Pressure 200.000 atm Vessel Volume 20.0000 L CO2VAP
			Phase Amounts Aqueous 55.5736 mol Vapor 0.0 mol Solid 0.0 mol 2nd Liquid 399.274 mol
			Aqueous Phase Properties pH 4.93312

🎻 Description 🔯 Definition <u> </u> Report ⊒ File Viewer

When the 2^{nd} liquid phase is selected, the software compute a large 2^{nd} liquid phase, and the CO2 amount is slightly lower, 399 moles.

✓ Click on the Report tab and review the Total and Phase Flows table. <u>Total and Phase Flows (Amounts)</u>

column Filter Applied: C	nly Non Zero Values		
	Total	Aqueous	2nd Liquid
	mol	mol	mol
Mole (True)	454.704	55.4912	399.213
Mole (App)	454.705	55.4920	399.213
	g	g	g
Mass	18568.6	1036.46	17532.2
	L	L	L
Volume	20.0002	1.01801	18.9822

The calculated phases are 1.01 liters of water and 19 liters of critical CO2. The Autoclave filled the void space (~19 liters) with sufficient critical CO2 to match the specified vessel volume.

Click here for the final worked examples from this chapter: Chapter 11 - Autoclaves

12. Reaction Kinetics

Overview

In this chapter we discuss reaction kinetics. Most of the chemistry in OLI Studio/Analyzer assumes equilibrium. This means the forward and reverse reactions are considered to be very fast. OLI considers two types of reaction kinetics; 1-Arrhenius and 2-User defined. This chapter will consider both type.

Arrhenius type reaction kinetics

Arrhenius type reactions use a traditional form of a reaction rate constant. For the theoretical reaction of:

$$aA + bB \xrightarrow{k_f} cC + dD$$

Where:

$$k_f = A_f e^{\frac{-E_a}{RT}}$$

The user is required to supply these values. OLI does not maintain a database of these parameters.

Reaction of Ammonia and Carbon Dioxide

For our example, we are going to consider the reaction of ammonia and carbon dioxide to form urea and water. We will also be using the AQ thermodynamic framework. Here is our reaction:

$$NH_{3(aq)} + CO_{2(aq)} \rightarrow NH_2CONH_{2(aq)} + H_2O$$

There is a forward and reverse reaction (a k_f and k_r) which we will have to define. We start by using OLI Studio and then entering the following components:

Table 2 U	Urea reaction	kinetics	inflow	species
-----------	---------------	----------	--------	---------

Standard Reaction Kinetics			
Thermodynamic Framework	Aqueous (H+ Ion)	А	
Additional Databanks	None		
Phases	Default		
Inflows	Formula	OLI Tag Name	
Water	H_2O	H2O	
Carbon Dioxide	CO_2	CO2	
Ammonia	NH ₃	NH3	
Urea	NH ₂ CONH ₂	UREA	

Here is the OLI Studio/Analyzer input screen.

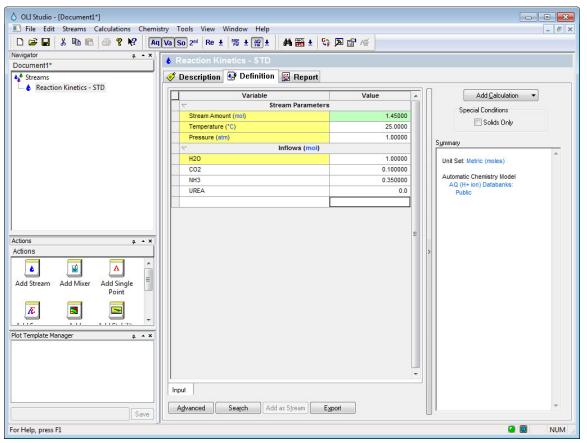


Figure 12-1 Input conditions

We now need to enable reaction kinetics. <u>Click</u> the <u>Chemistry</u> menu item, then <u>Model Options</u> and finally select the <u>Phases</u> tab.

Databanks Redox Phas	ses T/P Span
Include Phases Aqueous Vapor Solids Second Liquid Ion Exchange Model Margules Wilson Kinetics Finable	Include Solid Phases
	Calculate Scaling Tendencies for excluded solids OK Cancel Apply Help

Figure 12-2 Check the indicated box

Check the <u>Kinetics/Enable</u> box to turn on reaction kinetics.

We add the actual reaction kinetics in the calculation. For our example, add an isothermal single point calculation.

We will the reaction kinetics via the **Specs...** button.

	Variable	Value	*	Type of calculation	
	C Stream Parameters			Isothermal 🔻	Specs
	Stream Amount (mol)	100.000			
	Temperature (°C)	25.0000		Calc <u>u</u> late 🧉	<u> </u>
	Pressure (atm)	1.00000		Summary	-
	Calculation Paramete	rs			
	Kinetics Holdup Time (hr)	2.00000		Unit Set: Metric (moles)	
	Number of Kinetics Steps	2		Automatic Chemistry Model	
	Inflows (mol)			AQ (H+ ion) Databanks:	
	H2O	1.00000		Public	
	C02	0.100000		Stream amount overridden:	
	NH3	0.350000		100.000 mol	
	UREA	0.0		Isothermal Calculation	
L	•		Ξ	25.0000 °C 1.00000 atm	
2	ut		*		

Figure 12-3 Click the specs... button

Click the **Specs...** button.

This will display options for this calculation.

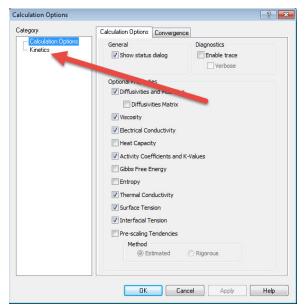


Figure 12-4 Calculation options

Click the category that says *Kinetics*.

Category	Rate Limited Reactions
Calculation Options Kinetics	Add Edit Delete
	Rate Spedification:

Figure 12-5 Kinetics Dialog

Click the \underline{Add} button to start adding our reaction kinetics.

You will be given a list of reactions which are already in the chemistry model. These can be replaced if you require it. For our example, the reaction we need is not in the list:

elect a Reaction:		<u>-</u> ×
<create new="" reaction=""></create>	ON-	ŕ
CO2VAP=CO2AQ HCO3ION=HION+CO3ION NH2CO2ION+H2O=NH3AQ+H NH3AQ+H2O=NH4ION+OHIO NH3VAP=NH3AQ NH44H2CO33PPT=4NH4ION+	DN +2HCO3ION+CO3ION	E
NH4HCO3PPT=NH4ION+HCC UREAPPT=UREAAQ UREAVAP=UREAAO	1310M	-

Figure 12-6 List of reactions

We will create a new reaction. Click the <u><Create New Reaction></u> line and then click <u>OK</u>.

Category	Rate Limited Reactions
Calculation Options	Add Edit Delete Reactions: Enter a new reaction
	Rate Specification:
	OK Cancel Apply Help

Figure 12-7 Adding a new reaction

You can now enter your reaction. You must use the OLI Tag Name for this step. Enter the following reaction:

NH3AQ+CO2AQ=UREAAQ+H2O

When you press the enter key the dialog will update:

Category	Rate Limited Reactions
Calculation Options Kinetics	Add Edit Delete Reactions: NH3AQ+CO2AQ=UREAAQ+H2O
	Rate Spedification: STD Rate Constants: Constant Value Add
	Delete
	OK Cancel Apply Help

Figure 12-8 Added ammonia reaction

There are two types of Rate Specification. For this example, we are using the standard or <u>STD</u> type. Leave the button <u>Rate Specification</u> as <u>STD</u>.

WE can now add our rate constant parameters.

The first comment we need to make is that we have combined some of the terms in the standard Arrhenius equation. The gas constant and the energy of activation are constant, so OLI had decided to make them another constant.⁴¹

$$B = \frac{E_a}{R}$$

The forward and reverse reactions have the same format. The mechanism of the rate is the following:

$$Rate = k_f [NH_3]^2 [CO_2] - k_r [NH_2 CONH_2]$$

The forward rate constant is fixed in value, but the reverse is:

$$k_r = A_r e^{\frac{-B_r}{T}} = 1.2x 10^{-06} e^{\frac{3480.78}{T}}$$

Here are the parameters⁴²

⁴¹ The reason for this is lost to antiquity. Rather than upset the developers we have kept the format the same as when Marshall Rafal wrote the original program.

⁴² It is unknown from whence these parameters were obtained. Do not use them for any real design work.

Table 3 Reaction Rate Parameters

Parameters	Value	Comment	
k _f	20	forward rate constant	
kr	calculated	See above	
Ar	1.2×10^{-6}		
Br	3480.78	Determined from $B_r = -(-28939.9/8.3142)$	
EP1	1	This is the exponent of product 1 in the	
		mechanism. In this case [NH ₂ CONH ₂]	
EP2	0	H2O does not partake in the reaction	
ER1	2	This is the exponent of reactant 1 $[NH_3]^2$	
ER2	1	This is the exponent of reactant 2 [CO ₂]	

The values of EP and ER are based on the added reaction in Figure 12-8 on page 223 above.

Now that we have the parameters we can add them. Click the \underline{Add} button in Figure 12-8

Rate L	imited Reaction	ons	
	eactions:	Add Edit	Delete
21	NH3AQ+CO24	AQ=UREAAQ+H2O	
Ri	ate Specificati	ion: STD 🔻	
R	ate Constants		ī
μ	Constant	Value	Add
			Delete
1			

Figure 12-9 Select a parameter

Select KF

Constant	Value	Add
KF		Delete
		Delete

Figure 12-10 Selecting kf

Enter the value from the Table 3 Reaction Rate Parameters above:

Constant	Value	Add
KF	20	Delete
		Delete

Figure 12-11 Entered kf

Repeat these steps for the remaining parameters (not k_r does not need to be entered)

Click \underline{OK} when done.

You will see that the input grid has changed accommodate time parameters:

OLI Studio - [Document1*]			- • •
Eile Edit Streams Calculations Chemis	stry <u>T</u> ools <u>V</u> iew <u>W</u> indow <u>H</u> elp		_ 8 ×
	Va So 2 nd Re 🛨 🎬 🛨 🙀 🖬 🎬 🛨 💱	A 🖓 🖓	
Navigator # *	▲ SinglePoint		
Document1*			
• Streams	🧭 Description 🥸 Definition 📓 Report 🚊	File Viewer	
Reaction Kinetics - STD	Variable	Value	Type of <u>c</u> alculation
SinglePoint	Stream Parameters		Isothermal
	Stream Amount (mol)	1.45000	
	Temperature (°C)	25.0000	Calc <u>u</u> late 🥝
	Pressure (atm)	1.00000	Summary
	Calculation Parameter	rs	
	Kinetics Holdup Time (hr)	2.00000	Unit Set: Metric (moles)
	Number of Kinetics Steps	2	Automatic Chemistry Model
	C Inflows (mol)		AQ (H+ ion) Databanks:
	H2O	1.00000	Public
	C02	0.100000	Isothermal Calculation 25.0000 °C 1.00000 atm
	NH3	0.350000	Calculation not done
	UREA	0.0	
Actions + *		E	
Actions			>
Plot Template Manager # *			
		-	
		×	5
	Input		1
	Advanced Search Add as Stream Eg	root	-
Save	Aut as Siledin Ex	sport	
For Help, press F1			NUM //

Figure 12-12 Updated time parameters

This example is simulating a chemical reactor with a residence time of 100 hours. We call this in OLI Studio/Analyzer <u>*Kinetics Holdup Time*</u>. We are also going to simulate this as a plug-flow reactor and divide the simulation into 10 stages (or plugs). Finally, we will increase the temperature to 35 $^{\circ}$ C.

1.45000
1.45000
35.0000
1.00000
s
100.000
10
1.00000
0.100000
0.350000
0.0

Figure 12-13 Input conditions are filled out.

OLI recommends that you save the file at this time!

Click the **<u>Calculate</u>** button.

When the program calculation is complete click on the **<u>Output</u>** mini-tab and then add a section for <u>Molecular Apparent –</u> <u>Aqueous</u>.

	Variable	Value			Type of calculation
∇	Stream Parameters	3			Isothermal 🔹 Specs
📮 Stream Amount	(mol)	100.000			
Moles (True) -	Aqueous (mol)	93.1035			Calc <u>u</u> late 🥝
Temperature (°C)	35.0000			Summary
Pressure (atm)		1.00000		r	
$\overline{\nabla}$	Calculation Results	i i i i i i i i i i i i i i i i i i i			Unit Set: Metric (moles)
Kinetics Holdup	Time (hr)	100.000			Automatic Chemistry Model
Number of Kinet	cs Steps	10			AQ (H+ ion) Databanks:
$\overline{\nabla}$	Inflows (mol)		1		Public
H2O		68.9655			
CO2		6.89655			Stream amount overridden: 100.000 mol
NH3		24.1379			Isothermal Calculation
$\overline{\nabla}$	Molecular Apparent - Aque	ous (mol)	E		35.0000 °C 1.00000 atm
H2O		68.9655			Phase Amounts
NH3		24.1379			Aqueous 93.1035 mol Vapor 0.0 mol
CO2		6.89655			Solid 0.0 mol
UREA		1.41575e-7			
					Aqueous Phase Properties pH 9.74381 Ionic Strength 0.0872492 mol/mol Density 1.13639 g/ml
					Calc. elapsed time: 0.162 sec
					Calculation complete
			•		

Figure 12-14 The results

So, it seems we have created some urea. Not much but some. The user is left to make changes to the holdup time and/or steps to see if the results change.

You can find this worked example file on our wiki page at: http://wiki.olisystems.com/wiki/OLI Studio Stream Analyzer User Guide v9.5

Non-standard SPEC type reaction kinetics

These reactions do not necessarily follow Arrhenius kinetics or require a more complicated mechanism than can be represented by the standard OLI implementation of reaction kinetics.

Ammonia Hydrolysis

In this example we are using simpler chemistry. The hydrolysis reaction we are using is the following:

$$NH_{3(aq)} + H_2 0 \rightleftharpoons NH_4^+ + OH^-$$

For this example, we know the forward rate constant but need to constrain the reverse reaction to the thermodynamic equilibrium constant. This implies that we are going to replace an existing equation.

We are going to start off by creating a stream with the following parameters:

Non-standard Reaction Kinetics			
Thermodynamic Framework	Aqueous (H+ ion)		
Additional databanks	None		
Temperature	25 °C		
Pressure	1.0 atm		
Stream Value	automatic		
Inflows	Formula	OLI Tag Name	Value
Water	H ₂ O	H20	55.5087 mol
Ammonia	NH ₃	NH3	0.1 mol

The stream should look like this:

OLI Studio - [Document2*]	
File Edit Streams Calculations Chemis	try Tools View Window Help _ 문 >
🗋 🗅 🚔 🖶 👗 🛍 🛍 🎒 🍞 🎀 🥂 🗛	Va So 2 nd Re ± 15 ± 16 ± 16 ± 16 ⊅ 16 ± 16 ⊅ 16 ± 16 ↓ 16 ↓ 16 ↓ 16 ↓ 16 ↓ 16 ↓ 16 ↓
Navigator # * *	💧 Stream
Reaction Kinetics.oad	
Document2*	🧭 Description 🔯 Definition 📓 Report
Streams	Variable Value Add Calculation V
Stream	Stream Parameters Special Conditions
	Stream Amount (mol) 55.6082
	Pressure (atm) 1.00000 Summary
	H20 55 5082
	H20 55.5082 Unit Set: Metric (moles)
	Automatic Chemistry Model
	AQ (H+ion) Databanks: Public
Actions	
Actions	
Add Stream Add Mixer Add Single	
Point	
æ 🖻 📃	
Disk Template Manager	
Plot Template Manager 📮 🔺 🗙	
	· · · · · · · · · · · · · · · · · · ·
	Input
Save	Advanced Search Add as Stream Export
For Help, press F1	

Figure 12-15 Non-standard kinetics stream

As with the previous example, we need to first enable kinetics via the Chemistry | Model Options | Phases menu items.

Review the steps illustrated in Figure 12-1 and Figure 12-2 on page 219.

Now we need to add a calculation, for the example we are adding a single point isothermal calculation.

As before we start with the **Specs...** button and then the **Kinetics** category.

Calculation Options	8
Category	Rate Limited Reactions
Calculation Options	Add Edit Delete
	Rate Specification:
	OK Cancel Apply Help

Figure 12-16 Adding a new reaction kinetics equation

Click the \underline{Add} button

Once again we will see a list of equation in the OLI Tag Name format;

S	elect a Reaction:	×
	<create new="" reaction=""> NH3AQ +H2O =NH4ION +OHION NH3VAP =NH3AQ</create>	
	OK Cance	!

Figure 12-17 Possible reactions

In this case our desired reaction is the second one. Click it and then click the <u>OK</u> button.

Category Rate Limited Reactions
Calculation Options Add Edit Delete Kinetics Add Edit Delete Reactions: NH3AQ+H2O=NH4ION+OHION Rate Specification: SPEC OL/ASAP DEFINES: Variable Expression Add Delete Image: Calculation of the second
OK Cancel Apply Help

Figure 12-18 Clicking the SPEC type reaction.

These is where things get difficult. You now need to speak "OLI". We have some rules for SPEC type equations. First we will show you the rate equations were using:

$$Rate_{forward} = k_{f} \gamma_{NH_{3}(aq)} [NH_{3}(aq)] \gamma_{H_{2}0} [H_{2}0]$$

$$Rate_{reverse} = k_{r} \gamma_{NH_{4}^{+}} [NH_{4}^{+}] \gamma_{0H^{-}} [OH^{-}]$$

$$k_{f} = 3$$

$$k_{r} = \frac{k_{f}}{K_{eq}}$$

$$rate = (k_{f}e^{Rate_{forward}} - k_{r}e^{Rate_{reverse}}) \frac{Volume}{1000}$$

We now need to turn these values into "OLI" terms⁴³.

We can define any variable we want. We have some variables that you will need to use. Any concentration variable such as $[NH_{3aq}]$ is defined as the natural log and is designated with the letter "L". So $[NH_{3aq}]$ is used as $Log_e[NH_{3aq}] = LNH3AQ$,

Similarly, activity coefficients (γ) are also taken as the natural log so γ_{OH} is used as Log_e γ_{OH} = AOHION.

KEQ is the thermodynamic equilibrium constant for the equation. AH2O is special in the Aqueous thermodynamic framework in that it is the variable $Log_e(a_{H2O})$.

⁴³ Commonly referred to as ASAP variables.

We now need to add these variable to the kinetics window:

FXRATE=LNH3AQ+ANH3AQ+LH2O+AH2O RXRATE=LNH4ION+ANH4ION+LOHION+AOHION KF1=3 KR1=KF1/KEQ RATE1=(KF1*EXP(FXRATE)-KR1*EXP(RXRATE))*VOLLIQ/1000.

Start with the first line and keep going, in the variable field add FXRATE and in the expression, add the rest.

OL/ASAP DEFINES:					
Variable Expression	Add				
FXRATE 13AQ+ANH3AQ+LH2O+AH2O	Delete				

Figure 12-19 Adding variables

You will notice in the image above that we have scrolled to the end. That is ok. Click the <u>Add</u> button to continue with the equations. It is important that you keep the order correct. You see what we are using previously defined variables in subsequent equations.

Complete the remainder of the variables.

Calculation Options	5			8 🛛
Category	Rate	Limited Reacti	ions	
Calculation Op Kinetics		Reactions: NH3AQ +H2O = Rate Specifical	Add Edit	Delete
		OL/ASAP DEFI	NES:	
		Variable	Expression	Add
		FXRATE	LNH3AQ+ANH3AQ+LH2O+AH	
		RXRATE	LNH4ION+ANH4ION+LOHION+	Delete
		KF1	3	
		KR1	KF1/KEQ	
		RATE1	(KF1*EXP(FXRATE)-KR1*EXP(
		OK	Cancel Appl	y Help

Figure 12-20 The completed equations

The variable VOLLIQ is the volume of the liquid phase in Liters. OLI requires the rate to be in mol/m^3 we need to divide by 1000.

Click the \underline{OK} button.

Like the previous example, this is a plug-flow reactor with a holdup time of 100 hours and 10 steps.

OLI Studio - [Document2*]		x				
File Edit Streams Calculations Chemistry Tools View Window Help						
1/ //	1 Va So 2 [™] Re ± ∰ ± ∰ ± ∰ ± 💱 🔉 📾 🚿					
Navigator # * *		_				
Reaction Kinetics.oad	A SinglePoint					
Document2*	< Description 😼 Definition 📓 Report 🚘 File Viewer					
🍓 Streams	Variable Value Type of calculation					
🚊 🗄 Stream	Variable Value Value Value Stream Parameters Isothermal Specs					
▲ SinglePoint	Stream Amount (mol) 55.6082					
	Temperature (°C) 25.0000 Calculate @					
	Pressure (atm) 1.00000 Calculation Parameters Summary					
	Kinetics Holdup Time (hr) 100.000 Unit Set: Metric (moles)					
	Number of Kinetics Steps 10 Automatic Chemistry Model					
	Aduthatic Chemistry Modern					
	H2O 55.5082 Public					
	NH3 0.100000 isothermal Calculation 25.0000 °C 1.00000 atm					
	Calculation not done					
Actions						
Actions						
Plot Template Manager # * *						
	Input					
	Advanced Search Add as Stream Export					
Save						
For Help, press F1		1 📈				

Figure 12-21 Setting up the calculation

OLI recommends you save the file at this time:

Once the calculation is complete you can click the **Output** mini tab and add the <u>Aqueous</u> section (not molecular aqeous):

Variable	Value	*	Type of calculation
Stream Parameters			Isothermal 💌 Specs
Stream Amount (mol)	55.6082		
Moles (True) - Aqueous (mol)	55.6082		Calculate 🥥
Temperature (°C)	25.0000		Summary
Pressure (atm)	1.00000		
Calculation Results			Unit Set: Metric (moles)
Kinetics Holdup Time (hr)	100.000		Automatic Chemistry Model
Number of Kinetics Steps	10		AQ (H+ ion) Databanks:
Inflows (mol)			Public
H2O	55.5082		Isothermal Calculation 25.0000 °C 1.00000 atm
NH3	0.100000		
Aqueous (mol)			Phase Amounts Aqueous 55.6082 mol
H2O	55.5077	=	Vapor 0.0 mol
NH3	0.0994574		Solid 0.0 mol
OHION	5.42587e-4		Aqueous Phase Properties
NH4ION	5.42587e-4		pH 10.7171
HION	1.97028e-11		lonic Strength 9.75731e-6 mol/mol Density 0.996159 g/ml
			Densky 0.000100 grill
			Calc. elapsed time: 0.387 sec
			Calculation complete
		Ŧ	
ut Output			
	6		

Figure 12-22 The results

You can see that some ammonium ion has been created. It is interesting to see what the equilibrium condition would be.

Create another single point isothermal calculation and run it without any reaction kinetics. Here are results below:

Variable	Value	-	
E Stream Amount (mol)	55.6082		
Moles (True) - Aqueous (mol)	55.6082		
Temperature (°C)	25.0000		
Pressure (atm)	1.00000		
Calculation Results			
Kinetics Holdup Time (hr)	2.00000		
Number of Kinetics Steps	2		
√ Inflows (mol)			
H2O	55.5082		
NH3	0.100000		
H2O	55.5069	Ξ	
NH3	0.0986221		
OHION	1.37789e-3		
NH4ION	1.37789e-3		
HION	7.99755e-12		
6		-	

Figure 12-23 No kinetics, only equilibrium results

The reaction kinetics have forced the back reaction to be dominant. In the equilibrium case, approximately 1.3×10^{-3} moles of NH₄⁺ have been created. By limiting the forward reaction we allow the back reaction to take place and that only formed 5.4×10^{-4} moles of NH₄⁺

13. Petroleum Calculations

Overview

Calculations with the OLI Software can be used to characterize crude oils. Here is a quote from the OLI Tricks of the Trade manual (AQSim)

Crude oils are complex groups of organic molecules containing hundreds, perhaps thousands of pure components in a single oil. Modeling crude oils using pure components is impractical, because analyzing for each pure component is cost prohibitive and the number of species would make calculations overwhelming. A convenient solution to this problem and to modeling the properties of a crude oil is to create pseudo components. Crude Oil properties may be defined through a distillation curve, where each boiling point range is a progression of molecular weights, densities, solubilities, viscosities and other properties associated with that section. It is reasonable for low boiling point molecules to be low molecular weight, low density, low viscosity, and more soluble in water. We can dice boiling point curves using well accepted methods standard to create pseudocomponents that in combination reflect the property of the whole oil.

There are two ways to create a crude oil stream on the Analyzers. The first is to start with a PVT curve and create pseudocomponents using one of the three thermodynamic methods coded into the software. The second is to enter the pseudocomponent data directly and using the same thermodynamic methods to predict the component properties.

The three thermodynamic methods are API, Lee Kesler, and Cavett. At the time of writing, the software implementation specifications for these methods were not in hand.

This involves taking distillation data (such as ASTM D86) and converting that information into properties that the OLI software can use. This is generally referred to as "Creating Pseudo Components."

There are two classes of this type of data. Actual assay (or distillation data) in which we cut the boiling point curves up into individual components or the actual entering of a pseudocomponent.

This section shows you how to enter each method.

Assays

For this example we will enter a distillation curve for a sample crude oil. This sample used ASTM method D86 to characterize the crude oil (see Chapter 14 on page 251 for a description of the distillation methods). The data for the distillation curve can be found in Table 13-1 on page 238.

Distillation Data		
Volume Percent Distilled	Temperature, C	
1	20	
5	30	
10	50	
20	60	
40	80	
60	120	
80	150	
90	180	
95	200	
99	220	
100	240	

Table 13	Sample	Distillation	data usino	ASTM m	nothod D86	API Gravity of 3	1
Tuble 15-1	Sumple	Distillation	uuuu using	ASIM III	<i>iemou D</i> 00, .	ALL Gravity Of 5	1

Create a standard OLI Studio stream at the following conditions

Stream Name	Crude	
Temperature	25	°C
Pressure	1.0	atmospheres
H ₂ O	5	moles

You will need to enter the name of the assay. In our example we are using the name "Assay". You are limited to only 5 characters for the name of the assay.

After entering the name Assay Do Not (repeat Do Not) press any other key! See Figure 13-1

OLIAnalyzer - [AnalyzerStudio3*]	an a	x		
🗉 File Edit Streams Calculations Chemistry Tools View Window Help				
D 🚅 🖬 👗 🖻 🛍 🎒 💡 📢	Aq Va So 2 ^M Re ± 1 5 ± 1 🙀 🎬 🛟 🔉 😭 🔏			
Navigator # * *	♦ Crudes			
AnalyzerStudio3*				
Streams	🤣 Description 😼 Definition 📓 Report			
Crudes	Variable Value Add Calculation -			
	Stream Parameters Special Conditions			
	Stream Amount (mol) 55.5082			
	Temperature (°C)			
	Pressure (atm) 1.00000 C Inflows (mol)			
	H2O 55.5082 Unit Set: Metric (moles)			
	Assay			
	Automatic Chemistry Model Aqueous (H+ ion) Databanks:			
	Public			
1				
Actions				
Actions				
Add Stream Add Mixer Add Single				
Point				
Add Survey Add Add Stability Chemic Diagram				
Chemic Diagram				
Add				
Corrosi				
	Input			
	Advanced Search Add as Stream Export			
For Help, press F1		M		

Figure 13-1 Entering a petroleum sample, Don't press ENTER yet!

The OLI Analyzer requires a different series of key strokes to enable the entering of the assay data.

After typing the name "Assay" you will need to use the following key combination

Shift – Enter

Press both of these keys together. You should be able to view the screen as shown in Figure 13-2 on page 240.

	Variable	Value	
	Stream Parameters		
S	Stream Amount (mol)	5.00000	
Т	emperature (°C)	25.0000	
F	Pressure (atm)	1.00000	
	Inflows (mol)		
H	120	5.00000	
A 🖓 /	ASSAY	0.0	
	Assay Data Type	ASTM D86	
	Average Bulk Density Type	Specific Gravity	
x –	Specific Gravity	0.0	
x –	Distillation Curve Cuts	0	
x –	Distillation Data	Edit	
	Thermo Method	API-8	=
	_		
	<u> </u>		

Figure 13-2 Blank Assay input grids

We will begin by defining the type of assay data. Click in the cell next to the **Assay Data Type** to see a list of distillation types.

R P ASSAY	0.0
- Assay Data Type	ASTM D86
Average Bulk Density Type	ASTM D86
× - Average Bulk Density	ASTM D1160 ASTM D2887
× - Distillation Curve Cuts	TBP CURVE
× - Distillation Data	Edit
L Thermo Method	API-8

Figure 13-3Assay Data Types

There are four types, select ASTM D86

Next click in the cell next to the

Average Bulk Density Type

A	₽ ASSAY	0.0
	 Assay Data Type 	ASTM D86
	 Average Bulk Density Type 	API Gravity 🔽
	 Average Bulk Density 	Specific Gravity
×	Distillation Curve Cuts	API Gravity
^	1	Watson K
×	 Distillation Data 	Edit
	L Thermo Method	API-8

Figure 13-4 Average Bulk Density options

There are three types (see 14 on page 251)

Select API Gravity

Finally we need to select the thermodynamic method. Click in the cell next to

Thermo Method

There are four types (see 14 on page 251)

A	P ASSAY	0.0
	 Assay Data Type 	ASTM D86
	 Average Bulk Density Type 	API Gravity
	 Average Bulk Density 	0.0
×	Distillation Curve Cuts	0
x	Distillation Data	Edit
	L Thermo Method	API-8 💌
		API-8
_		API-5
		Cavett
		Kessler

Figure 13-5 Thermodynamic methods

Select API-8 (Default)

We are now ready to enter the distillation data. Click the Edit button next to the

Distillation Data cell. You should see Figure 13-6 below

Assa	IY ASSAY		? X
D	stilation Data		
	Percent Distilled	Temperature °C	
	OK	Cancel Apply	Help

Figure 13-6 Blank Distillation Data, cut and paste works here!

Enter the data from Table 13-1on page 238

1.000	20.00
	20.00
5.000	30.00
10.00	50.00
20.00	60.00
40.00	80.00
60.00	120.0
80.00	150.0
90.00	180.0
95.00	200.0
99.00	220.0
100.0	240.0

Figure 13-7 Completed Data

When done click the **OK** button.

We can now finish the ent	ering of t	he data.
Temperature	25.0	°C
Pressure	1.0	Atm
H2O	5.0	mole
Assay	1000.0	mole
Density (API)	31	
Distillation Curve Cuts	5	

Variable	Value	
	s	
Stream Amount (mol)	1005.00	
Temperature (°C)	25.0000	
Pressure (atm)	1.00000	
H2O	5.00000	
R 🖓 ASSAY	1000.00	
- Assay Data Type	ASTM D86	
- Average Bulk Density Type	API Gravity	
- API Gravity	31.0000	
Distillation Curve Cuts	5	
Distillation Data	Edit	
L Thermo Method	API-8	Ξ

Figure 13-8 Completed Assay Data Entry

The Distillation Curve Cuts will eventually become individual pseudocomponents, each with its own critical parameters and thermodynamic reference data.

After entering the data, select an Isothermal calculation and click the **Calculate** button.

Figure 13-9 below shows the range of composition.

column Filter Applied: Only Non Zero Values							
	То	tal	Aque	0115	2nd Liquid		
		IOI	m		mol	_	
ASSAY_322K		371.863	1.0	3915e-5	371.8	63	
ASSAY_389K		243.392	6.5	8424e-7	243.3	92	
ASSAY_443K		170.906	6.9	7573e-8	170.9	06	
ASSAY_262K		165.725	2.9	8127e-5	165.7	25	
ASSAY_503K		48.1144	1.3	5637e-9	48.11	44	
H2O		5.0		4.58697	0.4130	29	
HION	8.3	32973e-9	8.3	2973e-9		0.0	
OHION	8.3	32973e-9	8.3	2973e-9		0.0	
Total (by phase)		1005.0		4.58701	1000.	41	
Total (by phase) Element Balance Row Filter Applied: Only Non Zero Values solumn Filter Applied: Only Non Zero Values		1005.0		4.58701	1000.	41	
	Total	Aque	ous	2nd Li	quid		
	mol	ma	ol	m	bl		
H(+1)	10.0	1	9.17394	0	826059		
O(-2)	5.0		4.58697	0	413029		

Figure 13-9 Results of a single point Calculation

You can see that the program calculated a Liquid-Liquid case in which we have some organic liquid and some aqueous liquid. Our crude oil named "Assay" has been split apart into 5 individual components (remember the "Cuts" above?). Each component has the parent assay name and temperature of the cut in Kelvin.

Pseudocomponents

There are times when the user does not have (or does not want to use) distillation data. Rather the user had the individual properties for a single pseudocomponent. OLI allows the user to enter the individual pseudocomponents.

We will start by creating a standard stream. On the input grid we will enter our pseudocomponent name. In Figure 13-10 below we are entering the name PC1.

OLIAnalyzer - [AnalyzerStudio3*]	off	
File Edit Streams Calculations C	hemistry Tools View Window Help	_ 8 ×
🗄 🗅 🚅 🖬 👗 🖻 🛍 🦪 🤗 💔	Aq Va So 2nd Re 🛨 1 🗱 🛨 🚳 🛃 🚱 🖓 🕼 👘	
Navigator a AnalyzerStudio3*	♦ Pseudo	
♦ Streams ☐ 6 Crudes	Secription Definition B Report	
SinglePoint	Variable Value	▲ Add <u>Calculation</u> ▼
Pseudo	C Stream Parameters	Special Conditions
		55.5082
		25.0000
	Inflows (mol)	Summary
		55.5082 Unit Set: Metric (moles)
	PC1	
		Automatic Chemistry Model Aqueous (H+ ion) Databanks:
		Public
]		=
Actions		
Actions		>
Add Stream Add Mixer Add Single		
Point		
Add Survey Add Add Stability		
Chemic Diagram		
Add		
Corrosi		
	Input	
	Advanced Search Add as Stream Export	
For Help, press F1	,	

Press the Control-Enter keys to open the dialog.

Figure 13-10 Starting to enter a pseudocomponent

This will create an empty data grid for the pseudocomponent. As with the assays, we need to enter some data for the pseudocomponent.

	Variable	Value
	Stream Amount (mol)	55.5082
	Temperature (°C)	25.0000
	Pressure (atm)	1.00000
	√ Inflows (mol)	
	H2O	55.5082
P	₽ PC1	0.0
	- Thermo Method	API-8
	Normal Boiling Point (°C)	
	 Specific Gravity 	
	L Molecular Weight	

Figure 13-11 An empty Pseudocomponent grid

For this example we will have 100 moles of the component which has a normal boiling point of 20°C and a specific gravity of 0.72. The third parameter, molecular weight, will be calculated in this example. In general, only two of the three parameters need be entered.

	√ Inflows (mol)	
	H2O	55.5082
P	₽ PC1	100.000
	 Thermo Method 	API-8
	Normal Boiling Point (°C)	20.0000
	 Specific Gravity 	0.720000
	L Molecular Weight	

Figure 13-12 Entering data for PC1, note only 2 of 3 parameters entered

After entering the pseudocomponent, please enter the remaining pseudocomponents as found in Table 13-2 below.

Table 13-2 Sample pseudocomponent data

Pseudocompo nent	Amount (moles)	Method	Normal Boiling Point, C	Specific Gravity
PC1	100	API	20	0.72
PC2	200	API	60	0.76
PC3	250	API	100	0.8
PC4	250	API	140	0.85
PC5	180	API	190	0.9

Stream Parameters Stream Amount (mol) Temperature (°C) Pressure (atm) Inflows (mol) H20	s 1035.51 25.0000 1.00000
Temperature (°C) Pressure (atm) Inflows (mol)	25.0000
Pressure (atm)	
Inflows (mol)	1.00000
H2O	
	55.5082
PC1	100.000
— Thermo Method	API-8
 Normal Boiling Point (°C) 	20.0000
 Specific Gravity 	0.720000
— Molecular Weight	
Calculated Properties	
PC2	200.000
— Thermo Method	API-8
 Normal Boiling Point (°C) 	60.0000
 Specific Gravity 	0.760000
— Molecular Weight	
Calculated Properties	
PC3	250.000
— Thermo Method	API-8
 Normal Boiling Point (°C) 	100.000
 Specific Gravity 	0.800000
— Molecular Weight	
Calculated Properties	
PC4	250.000
— Thermo Method	API-8
 Normal Boiling Point (°C) 	140.000
 Specific Gravity 	0.850000
— Molecular Weight	
Calculated Properties	
PC5	180.000
— Thermo Method	API-8
 Normal Boiling Point (°C) 	190.000
 Specific Gravity 	0.800000
— Molecular Weight	
Calculated Properties	
	Calculated Properties PC2 Thermo Method Normal Boiling Point (°C) Specific Gravity Molecular Weight Calculated Properties PC3 Thermo Method Normal Boiling Point (°C) Specific Gravity Molecular Weight Calculated Properties PC4 Thermo Method Normal Boiling Point (°C) Specific Gravity Molecular Weight Calculated Properties PC4 Thermo Method Normal Boiling Point (°C) Specific Gravity Molecular Weight Calculated Properties PC4 Thermo Method Normal Boiling Point (°C) Specific Gravity Molecular Weight Calculated Properties PC5 Thermo Method Normal Boiling Point (°C) Specific Gravity Molecular Weight Molecular Weight Normal Boiling Point (°C) Specific Gravity Molecular Weight

Figure 13-13 below shows the completed input grid.

Figure 13-13 Completed PC input grid

Notice that at the bottom of each pseudo component there is a "+" and a field called calculated properties. OLI Studio immediately predicts all the calculated properties for each pseudocomponent. Click the "+" sign next to PC1.

P 🖓 PC1	100.000
- Thermo Method	API-8
 Normal Boiling Point (°C) 	20.0000
- Specific Gravity	0.720000
- Molecular Weight	
Calculated Properties	
- Calc:Molecular Weight	65.1222
Calc:Specific Gravity	0.720000
 Calc:Boiling Point (°C) 	20.0000
 Calc:Critical Temperature (°C) 	200.020
- Calc:Critical Pressure (atm)	46.0694
Calc:Critical Volume (L/mol)	0.247849
- Calc:Acentric Factor	0.178056
- Calc:HREF Vapor	-1.18908e5
- Calc:GREF Vapor	-12764.7
- Calc:SREF Vapor	329.257
- Calc:CPREF Vapor	93.0248
- Calc:VREF	24.4483
- Calc:HREF Aqueous	-1.30063e5
- Calc:GREF Aqueous	5974.22
- Calc:SREF Aqueous	228.990
- Calc:CPREF Aqueous	222.383
Calc:Rackett	0.282162

Figure 13-14

The values in the green boxes can be changed to match data from other programs.

Create a single point calculation, set the conditions to 15°C and 1.0 atmospheres and press the calculate button.

Species Output (True Species)					
Row Filter Applied: Only Non Zero Values					
column Filter Applied: Only Non Zero Values					
	To	tal	Aqueous	2nd Liquid	1
	m	ol	mol	mol	1
PC3		250.0	5.12056e-	6 250.0)
PC4		250.0	1.28992e-	·6 250.0	
PC2		200.0	2.03272e-	-5 200.0)
PC5		180.0	3.90779e-	8 180.0)
PC1		100.0	4.58959e-	-5 100.0)
H2O		55.5082	55.24	0.267209	
HION	6.7	6165e-8	6.76165e-	8 0.0)
OHION	6.7	'6165e-8	6.76165e-	8 0.0	
Total (by phase)		1035.51	55.241	1 980.267	,
Element Balance Row Filter Applied: Only Non Zero Values column Filter Applied: Only Non Zero Values					
	Total	Aqueo		l Liquid	
	mol	mol	l I	mol	
H(+1)	mol 111.016		10.482	mol 0.534418	

Figure 13-15 PC Output

14. ScaleChem Overview

Why Use ScaleChem?

Scale problems arise in high rate gas wells for the same basic reason that they occur in water flood operations: produced brines become supersaturated with mineral scales as a result of changing conditions between the reservoir and the point of deposition.

A complicating factor in the assessment of these scale problems is that significant changes in the brine composition may occur between the reservoir and the surface conditions, due to the exchange of water between the liquid and vapor phases.

Thus, scaling tendencies that are important at downhole conditions may not be evident based on the produced brine composition.

The ScaleChem program estimates scale formation under CO_2 and water flood conditions. ScaleChem can be used to evaluate stimulation compatibility amongst formation waters.

ScaleChem's Development

Shell Oil originally developed the technology for the high temperature and pressure effects used in ScaleChem's calculations and linked this technology to the OLI's unique, predictive aqueous model. A consortium of companies which co-funded and steered ScaleChem's development include

BP

Conoco-Phillips in its entirety

Shell.

Initial development phase for ScaleChem started in 2007. One of the reasons to formulate this product was to unify the code base. Prior to ScaleChem, there were two separate products viz. OLI Stream Analyzer and ScaleChem Standard. Each program with different source codes, two different numerical engines and two data banks. To eliminate that, OLI needed a new feature added to existing Stream Analyzer.

A second reason was that at that time new best practices were emerging for performing scaling calculations. ScaleChem Standard had multistep procedures for such calculations. OLI wanted to target the new approach for optimized calculations. To mention a few of the fixes offered by ScaleChem product:

Unit handling

Report writing

Graphical reports

Cumbersome calculations

ScaleChem has a completely new calculation type in addition to other improvements. It is called contour plot.

Flexibility of the analyzer code enabled OLI to add features and calculations which were impossible in ScaleChem Standard.

15. ScaleChem Chemistry

Aqueous Chemistry

The ScaleChem chemistry uses the OLI Aqueous Model as well as the MSE model to predict the distribution of species. The OLI Aqueous Model is unique because it can predicatively model the speciation of a wide range of chemicals in water. Like other process simulation software, the OLI Aqueous and MSE Model consider the vapor-liquid equilibrium (VLE) of a given chemistry for the molecular species.

ScaleChem Standard Chemistry

ScaleChem Standard was developed with a specifically defined chemistry set. It is known as the Standard Chemistry Model.

As ScaleChem Standard use grew, users requested additional chemistry. From this development work, an Expanded Chemistry Model was created.

The Standard Chemistry Model

As originally developed, the Standard Chemistry model contained a vapor phase, an aqueous phase and a limited number of solid phases.

Standard Chemistry: Aqueous phase

Standard Chemistry: Vapor phase

H₂O, H₂S, CO₂, CH₄

Standard Chemistry: Solid phases

anhydrite	CaSO ₄	barite	BaSO ₄
calcite	CaCO ₃	gypsum	CaSO ₄ .2H2O
siderite	FeCO ₃	pyrrhotite	FeS
halite	NaCl	celestite	SrSO ₄

Disordered Dolomite ($CaMg(CO_3)_2$), or simply dolomite is not the Standard Chemistry but is represented as an inflow only species in the expanded chemistry.

Dolomite is not considered to be a possible scaling solid under most oil field operations.

The Expanded Chemistry Model

Expanded Chemistry: Aqueous phase

This includes the Standard model plus:
Cations: H⁺, Cs⁺, Zn⁺² Pb⁺², Ni⁺², Cu⁺, Cu⁺², NH₄⁺, Fe⁺³, Al⁺³,
Anions: OH⁻, F⁻, Br⁻, H₂SiO₄⁻, H₃SiO₄⁻, SO₃⁻², S⁻², CO₃⁻², NO₃⁻, NO₂⁻, COOH⁻, C₃H₇COO⁻ C₄H₉COO⁻ C₅H₁₁COO⁻
Organic acids: formic, acetic, propanoic, butanoic, pentanoic
Alcohols: methanol, ethanol, ethylene glycol,
Mineral Acids: HF, HCl, H2SO4, HBr, HNO3, H2SO4,
Hydrocarbons: methane, ethane, and propane
Other: NH3, N2, CO2

Expanded Chemistry: Vapor phase

This includes the Standard Model plus: Ethane, propane, butane, isobutane, pentane, isopentane, hexane, cyclohexane, heptanes, octane, isooctane, nonane, and decane

Expanded Chemistry: Solid phases

The Expanded Solids phases include fifty-nine solids that are practical to oilfield operations. This allows solids analysis from the new cations and anions which have been added.

Expanded solids is automatically accessed when using the expanded chemistry. It can also be accessed for the standard chemistry by using the radio buttons on the Precipitates Page, in any Scaling request.

Scaling tendencies for every solid with a scaling tendency > 1.0E-05 are reported for a calculation using expanded solids.

Hydrocarbon Petroleum Fractions

Frequently a hydrocarbon analysis is the only data available for entry into the software. This analysis is usually a distillation curve where the volume distilled as a function of temperature of a petroleum fraction has been analyzed. This information must be turned into a vapor, organic and aqueous component for use in the simulator.

ASTM D86

Used for light and medium crudes, and is carried out at atmospheric pressure. The results are converted internally in the OLI model generator to a TBP (True Boiling Point) Curve. This curve is fit to a spline to smooth the curve. The cuts are taken from the spline.

ASTM D1160

Used for heavier crudes, and is carried out under vacuums as low as 1 mm Hg. The results are converted internally in the OLI model generator to a TBP Curve. This curve is fit to a spline. The cuts are taken from the spline.

ASTM D2887

	Uses gas chromatography to produce the distillation curve and is applicable to a wide range of petroleum products. The results are reported on a volume percent basis. The results are converted internally in the OLI model generator to a TBP Curve. This curve is fit to a spline. The cuts are taken from the spline
ТВР	This is the true boiling point curve. These curves, in practice, are difficult to obtain. The other methods are usually used instead.
Density	
	The density units for the average bulk density are:
Specific Gravity	
	Unitless
Degrees API (°AP	
	This is calculated via the following equation:
	$^{\circ}API(60F) = \left(\frac{141.5}{s.g.(60F)}\right) - 131.5$
	where, SG is the specific gravity at 60 °F.
Watson K	
	The Watson K has no units but is calculated via:
$K = \left(\frac{NBP^{1/3}}{SG}\right)$	
	where NBP is the normal Boiling point.
Thermodynami	c Methods (pseudo-components and petroleum fractions)
API	Uses the specific gravity to estimate the critical parameters. The specific gravity, if not entered, can be estimated from the API gravity or the Watson K. The boiling points are taken from the assay data.
Cavett	This method uses the API gravity method to determine the critical properties. The API gravity, if not entered can be estimated from the actual specific gravity or the Watson K. The boiling points for the pseudo-components are taken from the assay.

Lee-Kesler This method uses the Watson K and the specific gravity (which can be estimated via the Watson K) to determine the critical parameters.

Summary

The use of a full speciation model allows for more accurate calculations. Using just a simple vapor-liquid equilibrium approach is not valid for aqueous systems.

16. ScaleChem Getting Started

Terminology	
	Before we can discuss how to use ScaleChem we must first discuss some terms. This will help us define some of the concepts in ScaleChem that will be expanded in later sections.
Analysis	
	There are three analysis types, brines gases, and Oils. Each type must be reconciled.
Brines	
	ScaleChem refers to all waters and aqueous samples as brines. A brine can be a surface water, an injection water, a formation water, a production water or any other type of aqueous fluid you can create. Brine compositions are entered in terms of ionic concentrations. In addition, the brine pH, density and alkalinity are also specified.
	A brine is entered by means of the Add Water function, located in the <i>Analyses</i> menu.
Gases	
	A gas is any hydrocarbon mixture which may or may not contain water, carbon dioxide or hydrogen sulfide. The default hydrocarbon is methane (CH ₄) but the hydrocarbon list may be expanded to include higher carbon numbers.
	A gas is entered by means of the Add Gas function, located in the Analyses menu.
Oils	
	An oil is a non-aqueous phase. The oil sample may consist of pure component hydrocarbons (e.g., alkanes), distillation data, pseudocomponent or all three.
	A hydrocarbon is entered by means of the Hydrocarbon function, located in the Analyses menu.
Reconciliation	
	Corrections must be made for deficiencies in the sample measurements.
Electroneutrality	
	Due to the nature of experimentation, most, if not all water analyses are incomplete or inaccurate in some manner. Thus, no analysis is electrically neutral. Yet, a real water must be. To solve this problem ScaleChem reconciles each brine analysis for

	Electroneutrality or charge balance. The reconciliation method will be discussed in a later section.
pН	
	Many brines have a measured pH. This pH may or may not match the ScaleChem- calculated pH. The cause may be an incomplete and/or inaccurate brine description. ScaleChem reconciles this difference by adding or removing HCl and CO2 to match the measured pH.
Alkalinity	
	Alkalinity is a brine's capacity to absorb acid to a given pH. In oilfield applications, this pH is 4.5, and the alkalinity is referred to as the Carbonate alkalinity.
	The standard alkalinity measurement involves titrating the brine with a known acid to 4.5 pH. ScaleChem performs a mini-titration on the brine to 4.5 (or specified) pH. It then:
	1. Calculates the alkalinity for the given water analysis
	2. Adjusts HCl and CO2 inflow to match the calculated alkalinity with the reported alkalinity
CO ₂ Fraction in Gas	
	Frequently it is simpler and more stable to measure the gas-phase CO ₂ that is separated from the brine at the sampling point. When matched with another measured variable, usually alkalinity, the concentration of the carbonate species and the pH can be calculated. ScaleChem performs a CO ₂ gas fraction calculation by taking the PCO ₂ and the calculated alkalinity (based on the water analysis data) to reconcile the system for pH and carbonate properties.
Scaling Tendency	
	The scaling tendency is defined as the ratio of the activity product to the solubility product for a particular solid. This ratio is related to the saturation index.
	When this ratio is greater than 1.0, then there is a thermodynamic tendency for this solid to form. When less than 1.0 then there is no thermodynamic tendency for the solid to form.
	The Activity product is the product of all the species on the right hand side of the equation, also known as the Available ions.
	The solubility product, usually represented as K_{sp} is the thermodynamic equilibrium constant and is a function of temperature and pressure.
Calculating a Scaling	g Tendency

The Scaling Tendency is defined as the ratio of the activity product of an equilibrium equation to the solubility product for the same equation. We define the activity product as Q, therefore the Scaling Tendency $(ST) = Q/K_{sp}$.

As an example, consider the equilibrium for gypsum solubility. The chemical formula for gypsum is $CaSO_4 \bullet 2H_2O$ and the equilibrium expression is:

 $CaSO_{4}\bullet 2H_{2}O = Ca^{2+} + SO_{4}{}^{2-} + 2H_{2}O$

The activity product, Q, is defined as:

 $Q = a_{ca++} a_{so4-2} a^2_{H2O}$

Where a_i is the activity of the species.

 $a_i = \gamma_i \ m_i$

Where γ_i is the activity coefficient for species i. and m_i is the molal concentration.

The solubility product, K_{sp} is a thermodynamic quantity and is a function of temperature and pressure (although in most cases, the pressure functionality for solids can be ignored). ScaleChem has stored the K_{sp} for all of the solids used in the chemistry model.

When the ratio Q/K_{sp} is greater than 1.0, then the solid has tendency to form. When the ratio is less than 1.0, then there is little tendency to form.

For example: consider a 0.01 molal solution of calcium sulfate at 25 C and 1 atmosphere.

The equilibrium concentrations are:

$[Ca^{+2}]$	=	0.008 molal
$[SO_4^{-2}]$	=	0.008 molal
γ _{Ca}	=	0.5
γso4	=	0.5
a _{H2O}	=	0.99977
K _{sp}	=	2.68 x 10 ⁻⁵

The Q value is:

 $Q = (0.5)(0.008)(0.5)(0.008)(0.99977)^2$

The Scaling Tendency is Q/Ksp

ST = 0.000016/(2.68E-05) = 0.596

Thus the solution is under-saturated with respect to calcium sulfate.

Why are the concentrations of the ions not exactly equal to 0.01 molal (which is the feed concentration)? The neutral complex $CaSO_4^{\circ}$ exists and ties up 0.002 moles of each ion. The ions are not available for precipitation and thus do not appear in the scaling tendency calculation.

Calculating a Scale Index

The scale index is very much related to the Scaling Tendency. The relationship is:

Scale Index (SI) = $Log_{10}(ST)$.

When the SI is less than zero (SI < 0), then the solid is said to be undersaturated. When the SI is greater than zero (SI > 0) then solid is said to be oversaturated.

Putting together a calculation

Now that we have defined some terms we are now ready to begin entering the information required to run a calculation. In this calculation we will be entering the concentrations of a single brine. This sample will be calculated at a range of temperatures and pressures. The amount of any solids produced will be displayed graphically.

Starting the ScaleChem Program

ScaleChem can be accessed via the OLI Studio. Objects for ScaleChem are Brine, Gas, Oil, Saturator and Contour plots.

To access these objects click on Streams in the Navigator and you will see these objects amongst others in the Actions Panel.

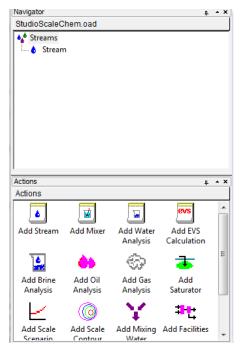


Figure 16-1 ScaleChem objects.

ScaleChem Tour

In this tour we will create a brine (water analysis) and calculate its scale tendency. Let's begin.

Add Brine Analysis from Actions Panel.

lavigator s • × Document1*	🖬 Brine				
Streams	🦪 Dese	cription 🥶 Design 📓 Report			
	2	Variable	Value	Balanced +	Entry Options
	Entry	Hg+2	0.0	0.0	Units
	Data	\$1+2	0.0	0.0	maA -
	6	Be+2	0.0	0.0	Display
ictions + *		Fe+2	0.0	0.0	Formula •
Actions	2	Anions	4		Show Non-zero Only
TT b	2	CL1	(mg/L)	0.0	Show Balanced Column
强 🤲 ñ	Reconcile	504-2	0.0	0.0	Show Balanced Column
Add Brine Add Oil	"	HC03-1	0.0	0.0	Template Manager
Analysis Analysis		B(OH)4-1	0.0	0.0	Standard •
® 👗		HS-1	0.0	0.0	atandaru
~~		C2H302-1	0.0	0.0	Save as
Add Gas Add					
Analysis Saturator +		Neutral	(mol)		Balance Options
fot Template Manager 🛛 a 🔸 🕷		CO2	0.0	0.0	Type
		H25	0.0	0.0	Dominant Ion
		5/02	0.0	0.0	Dominant ton
		B(OH)3	0.0	0.0	
Save					

Figure 16-2 Brine Analysis

Brine Analysis Data

The chemistry of the brine needs to be entered. This information includes concentrations, alkalinity, pH and density.

Entering a brine description

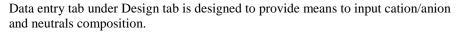
Click on the description Tab. If the *Description* tab is not currently displayed, click on the tab.

🔚 Brine				
🦪 Description		髮 Report		
SSC_Brine				
	cription	cription 🤒 Design		

Figure 16-3 Brine description tab

We can fill several items on this screen. All of the items (except the name) are optional.

Well	This name, if entered in a Well View calculation, is the name of the well. It is frequently blank.
Date	The date of the sample. Defaults to the current date.
Comments	Up to 256 characters may be entered as text to describe the well.
	Brief, direct comments are recommended.


Entering Brine Species

The Design Tab is where you enter the cations, anions and dissolved gases (or neutrals). The species formulas (default) or species names may be displayed. This display By Formula or By Name can be changed by clicking the names manager logo on the toolbar which looks like this:

A window will pop up where you can choose to select what display method you prefer. The pop up window will look like below:

Names Manager				2	x
Name Style Se	arch Criteria	Names Dict	ionary		
-Component I	Name Style				
🔘 Display n	ame				
√ Use	Names Dictior	hary			
Formula					
OLI Nam	e (TAG)				
The selected names in tab	l style will be u les and lists.	ised for displa	aying comp	oonent	
ОК	Cancel	Ap	ply	He	lp

Cations (mg/L) NAION 20400.0 20400.0 Units KION 402.000 402.000 Display CAION 3800.00 3800.00 OLI Tag SRION 15.2000 15.2000 Show Non-zee		Variable	Malua	Delensed	_	
NAION 20400.0 20400.0 KION 20400.0 20400.0 KION 402.000 402.000 CAION 3800.00 3800.00 MGION 829.000 829.000 SRION 15.2000 15.2000 BAION 0.700000 0.700000 FEIION 9.5000 9.5000 CLION 37000.0 38934.7 SO4ION 200.00 2200.00 HCO3ION 0.0 0.0 HSION 0.0 0.0 HSION 715.000 715.000	H			Balanced	(
KION 402.000 402.000 CAION 3800.00 3800.00 MGION 829.000 829.000 SRION 15.2000 15.2000 BAION 0.700000 0.700000 FEIION 9.50000 9.50000 CLION 37000.0 38934.7 SO4ION 2200.00 2200.00 HCO3ION 0.0 0.0 HSION 0.0 0.0 HSION 715.000 715.000	F			20400.0		
CAION 3800.00 3800.00 3800.00 MGION 829.000 829.000 829.000 SRION 15.2000 15.2000 BAION 0.700000 0.700000 FEIION 9.50000 9.50000 CLION 37000.0 38934.7 SO4ION 2200.00 2200.00 HCO3ION 0.0 0.0 HSION 0.0 0.0 HSION 715.000 715.000	⊢					
MGION 829.000 829.000 829.000 SRION 15.2000 15.2000 5.0000 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td>Display</td>						Display
SRION 15.2000 15.2000 BAION 0.700000 0.700000 FEIION 9.50000 9.50000 CLION 37000.0 38934.7 SO4ION 2200.00 2200.00 HCO3ION 0.0 0.0 BOH4ION 4.00000 4.00000 HSION 0.0 0.0 ASTATEION 715.000 Type						OLI Tag 🔹
FEIIION 9.50000 9.50000 Feiiion Anions (mg/L) Template Manage Template Manage Standard	F	SRION	15.2000	15.2000		Show Non-zero Only
Anions (mg/L) Template Manage CLION 37000.0 38934.7 SO4ION 2200.00 2200.00 HCO3ION 0.0 0.0 BOH4ION 4.00000 4.00000 HSION 0.0 0.0 ACETATEION 715.000 715.000	F	BAION	0.700000	0.700000		Show Balanced Column
Anions (mg/L) Standard CLION 37000.0 38934.7 SO4ION 2200.00 2200.00 HCO3ION 0.0 0.0 BOH4ION 4.00000 4.00000 HSION 0.0 0.0 ANION 715.000 715.000	F	FEIION	9.50000	9.50000	=	
CLION 3700.0 38934.7 SO4ION 2200.00 2200.00 HCO3ION 0.0 0.0 BOH4ION 4.00000 4.00000 HSION 0.0 0.0 CETATEION 715.000 715.000						Template Manager
SO4ION 2200.00 2200.00 Save as HCO3ION 0.0 0.0 0.0 BOH4ION 4.00000 4.00000 Balance Options HSION 0.0 0.0 0.0		Anions (mg	J/L)			Standard 👻
SO4ION 2200.00 2200.00 HCO3ION 0.0 0.0 BOH4ION 4.00000 4.00000 HSION 0.0 0.0 ACETATION 715 000 715 000		CLION	37000.0	38934.7		
BOH4ION 4.0000 4.0000 Balance Options HSION 0.0 0.0 Type		SO4ION	2200.00	2200.00		Save as
HSION 0.0 0.0 Type ACETATEION 715 000 715 000 715 000 715 000		HCO3ION	0.0	0.0		
ACETATEION 715 000 715 000					L C	Balance Options
ACETATEION 715.000 Dominant Ion						Туре
		ACETATEION	715.000	715.000		Dominant Ion 👻
Neutrals (mg/L) CO2 0.0 0.0						
	-	H2S	0.0	0.0	-	

Figure 16-4 Brine data entry

Fields

Cations:

The positive ions are entered in grid. The units may be changed by clicking on the Units button under entry options. The default units are mg/l (milligrams per liter).

Anions: Neutrals: This field is similar to the Cations field except that negative ions are added. Neutral gases such as dissolved CO_2 , H_2S and methane (CH4) are added. These dissolved gases do not affect the Electroneutrality of the sample but can have an overall affect on pH and alkalinity.

Reconcile tab: This tab gives options from three calculation types:-Equilibrium calculation CO2 Fraction in Gas pH Alkalinity Reconcile

Entering Brine Species - Balance Button

It is highly unusual for the data to be electrically neutral. Therefore, samples are reconciled for Electroneutrality. After entering each species concentrations, you will notice that Balanced values show up in the column next to values. The Column header says Balanced.

Ionic samples measured experimentally are almost always not electrically neutral. Before we can proceed we must reconcile this sample for Electroneutrality.

2	Variable	Value	Balanced
Entry	Cations (mg	g/L)	
ata E	Na+1	20400.0	20400.0
Dat	K+1	402.000	402.000
	Ca+2	3800.00	3800.00
	Mg+2	829.000	829.000
cie	Sr+2	15.2000	15.2000
econcile	Ba+2	0.700000	0.700000
Å	Fe+2	9.50000	9.50000

Figure 16-5 Electroneutrality balance column

When adding or removing ions to balance charge, the solute mass is altered. We must make a decision as to whether we keep the mass of the solution constant (thereby adjusting the amount of water) or keeping the amount of water constant and adjusting the solution mass.

	The user can select from a variety of balancing methods	
Dominant Ions	The deficient charged species with the largest concentration is added.	
Proration	Equal ratios of the deficient charge is added.	
Make Up Ion	The selected ion is either added or removed to balance the solution.	

Balance Options	
Туре	
Dominant Ion	-
Dominant Ion	
Prorate Cation	
D 1 4 1	
Prorate Anion	

Figure 16-6 Balance Options

Reconciling a brine

We are now ready to reconcile the sample for pH and alkalinity.

Click the <u>*Reconciliations*</u> tab. Make sure if you are choosing the pH and Alkalinity type of calculation, you need to specify the HCO3 concentration in the grid under reconciliation tab.

Des	scription 🤒 Design Report		
cile Data Entry	Calculate Brine Properties Using: Concentration Data Only Spec Gas-Phase CO2 Content (mole%) Measured pH and Alkalinity Measured pH Only Allow solids to form	5	Calcylate 🥥
Reconcile	Properties	Measured	Calculated
Re	Temperature (°C)	25.0000	
	Pressure (atm)	1.00000	
	pH	7.18000	
	Alkalinity (mg HCO3/L)	0.0	
	Alkalinity End Point pH	4.50000	
	Density (g/ml)	0.0	
	Elec Cond, specific (mho/m)		
	Total Dissolved Solids (mg/L)	0.0	
	Con	position Adjustments	
	Added titrant (mg/L)		
	Add Charge Balance (mg/L CI-1)		

Figure 16-7 The reconciliations tab

Reconciliations (Select one).

	Due to experimental uncertainty and error, the measured values for a water sample may not match the calculated values. Therefore, we need to reconcile the calculated values. There are four reconciliation types.
Concentration Data Only	Using the entered ionic and neutral compositions, the pH, density and alkalinity are
	calculated for this sample.
Gas-Phase CO2 Content	The CO2 is adjusted to match a saturated gas composition
Measured pH and Alkalinity	This adds or removes Hydrochloric Acid (HCl) to match the specified pH and
	alkalinity. This is default calculation.
Measured pH Only	The pH of the solution can be specified by adjusting the titrant/s.

Radio buttons for the above types can be found under reconciliation options

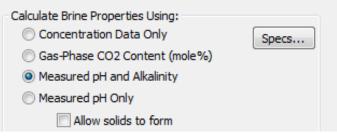


Figure 16-8 Radio buttons

Variables

	The following variables are part of the Reconciliation step. Several variables are
_	user-entered and other are calculated.
Temperature	The default temperature is at ambient conditions. The user may change these values as required.
Pressure	The default pressure is at ambient conditions. The user may change these values as required.
рН	A measured pH is considered to be an unreliable value Therefore, users enter the measured pH and compares it to the calculated pH. A user can also force ScaleChem to adjust the concentrations so that the calculated pH matches the measured pH.
Density	The water density is a very reliable number. The program can adjust the total volume or amount of water to match this value. If no density information has been entered, then a calculated density will be used.
Alkalinity	This is generally a reliable value, unless solids have precipitated in the sample. Alkalinity is often but not always the same value as the bicarbonate ion (HCO3 ⁻). ScaleChem can reconcile on a measured alkalinity by adjusting the solution composition.
Titration pH	This is the end point for the experiment used by the lab to determine the Alkalinity. The default value is 4.5.
CO2 Fraction in Gas	This is the gas phase, partial pressure of CO2 on a mole-fraction basis. ScaleChem adjusts the dissolved CO2 concentration to match this measured CO2 mole fraction. The CO2 value is assumed to be on a dry basis (no water) and that the complimentary gas is methane (CH4).
HCl Added	This is the amount of HCl either added or removed to match the measured pH and Alkalinity. This value is calculated by ScaleChem.
CO2 Added	This is the amount of carbon dioxide either added or removed to match the measured pH and alkalinity. This value is calculated by ScaleChem.
Total Dissolved Solids	This is the calculated TDS as reported by ScaleChem. It is used as a check to see if all the solutes were properly accounted for in the analysis. This value is calculated by ScaleChem.
Electrical Conductivity	This is the solution electrical conductivity. This value is calculated by ScaleChem.

Once the reconciliation options have been selected, the Calculate button is clicked.
--

Buttons	Calculate Button
Allow Solids to form	This button begins the reconciliation calculation. This check box allows solids to form
	Enter a value of $pH = 7.1$ and alkalinity = 715 as HCO3-, mg/L

Concentration Data Only Gas-Phase CO2 Content (mole%) Measured pH and Alkalinity Measured pH Only Allow solids to form	Specs	Calc <u>u</u> late 🥥
Properties	Measured	Calculated
Temperature (°C)	25.0000	
Pressure (atm)	1.00000	
рН	7.10000	
Alkalinity (mg HCO3/L)	715.000	
Alkalinity End Point pH	4.50000	
Density (g/ml)	0.0	
Elec Cond, specific (mho/m)	0.0	
Total Dissolved Solids (mg/L)	0.0	
	Composition Adjustments	
Added titrant (mg/L)		
Add Charge Balance (mg/L CI-1)		

Figure 16-9 Entering pH and alkalinity

Click the *Calculate* button.

The OLI calculation orbit will now display.

Calculation Dialog	8 ×
OLI	Cancel Close
Generating the Chemistry Model for Recor	nciled-SSC_Brine
SSC_Brine	
Display this dialog when calculating	

Figure 16-20 the revolving electron

This dialog will close automatically.

Super saturation Warning

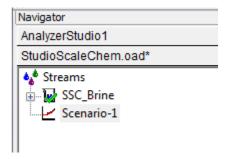
Experimental inaccuracies in sample measurement may, on occasion, result in a calculation that indicates that solid is supersaturated. This can normally be ignored providing that the super saturation is not excessive.

Figure 16-31 Super saturation warning.

Parameter		A	queous			
pН		7.10000				
Density (g/ml) 1.04481						
Specific Electrical Conductivity (mho/m) 9.13274						
Ionic Strength (mol/mol))	0.0225482	2			
Ionic Strength (mol/kg)		1.30103				
Viscosity, absolute (cP)		1.02323				
Viscosity, relative		1.14877				
Alkalinity (mg HCO3/L)		715.032				
Pre and Post Scaling Te			T			_
Scale Mineral	Pre-so		Pre-index	Post-scaling	Post-index	
BaSO4 (Barite)	9.38		0.972510	9.38334	0.972357	_
CaCO3 (Calcite)	11.3	078	1.05338	11.3072	1.05335	_
CaSO4.2H2O (Gypsum)	0.929	837	-0.0315932	0.929426	-0.0317851	
CaSO4 (Anhydrite)	0.732	2900	-0.134956	0.732577	-0.135147	
FeCO3 (Siderite) 1.26		295	0.101386	1.26292	0.101376	
Fe(OH)2 (Amakinite) 2.5272		26e-4	-3.59735	2.52710e-4	-3.59738	
KCI (Sylvite)	6.705	25e-4	-3.17359	6.70426e-4	-3.17365	
NaCl (Halite)	0.012	1056	-1.91701	0.0121042	-1.91706	
	0.203	3533	-0.691365	0.203444	-0.691554	
SrSO4 (Celestine)						
SrSO4 (Celestine)						
Brine Composition						
Brine Composition Cations	Value (mg/L		Anions	Value (mg/L)	Neutrals	Value (mg/L)
SrSO4 (Celestine) Brine Composition Cations K(+1)	Value (mg/L 402.		Anions Cl(-1)	Value (mg/L) 38665.4	Neutrals B(OH)3	Value (mg/L) 3.1384

Figure 16-4 Reconciled Brine report

The results show that the pH has been reconciled to 7.18 and the alkalinity to 715 mg HCO3-/L. To do this approximately 20 mg/L of HCl was removed (i.e., H+ and Cl-) and approximately 24.66mg/L CO2 was added.


Report is one of the peculiar features of ScaleChem. Navigation and customization of the output data has been made much easier in this format.

Now that we have specified the flow rate of the brine, we need to specify the temperatures and pressures that we wish to simulate as shown in the following example.

Scaling Scenario

Once the Brine Analysis data is entered and the sample reconciled, we can begin the scaling calculation. We now begin to describe the conditions of the calculation.

Select Add Scale Scenario from Actions panel.

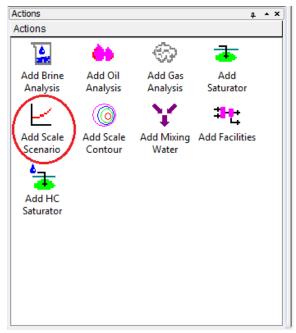


Figure 16-53 Scaling Scenario object

Click on the description tab and rename the Scale Scenario as " SSC-Brine Scale Scenario".

Your screen should now look like image 3-14

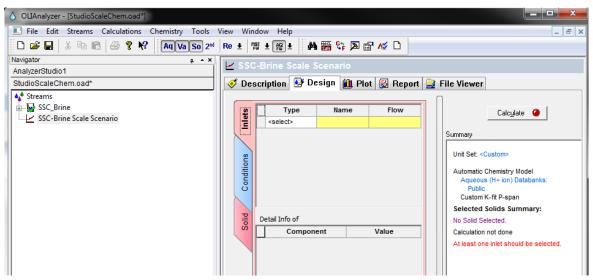


Figure 16-14 Scaling Scenario Design tab

Brine and Gases

The brines and gases that are to be considered for this calculation must now be selected.

Click the <u>Drop-Down</u> arrow in the box next to the word "Select" under the "Type" heading.

This will display all the available brines in this document.

✓ SSC-Brine Scale Scenario							
🦪 Des	cription	🔮 Desi	ign 🛍	Plot	题 Report	📄 F	
	Тур		Name		Flow	Π	
Inlets	<select></select>		name		riow		
-	Brine Whole Fl	Jid					
e e							
Conditions							
Cor							
Solid	Detail Info					,	
		mponen	t		Value		

Figure 16-15 Selecting a brine

In this example we are going to use only a single Brine SSC- Brine at 1000L/hr.

Desi	cription 🔮 Design	🛍 Plot <u> </u> Report	👔 File Viewer		
"	Туре	Name		Flow	
Inlets	Brine (m3/day)	SSC_Brine	-	1000.	0
-	<select></select>				
C onditions					
	- 11- ··· (-	· (222.2.)			
Solid	Reconciled Composition of B		Value (mg/L)		
Solid	Reconciled Composition of B		Value (mg/L)	9.77366e5	
Solid	Compo		Value (mg/L)		
Solid	Compo H2O		Value (mg/L)	9.77366e5	
Solid	Compo H20 C02		Value (mg/L)	9.77366e5 341.029	
Solid	Compo H20 C02 B203		Value (mg/L)	9.77366e5 341.029 1.76608	
Solid	Compo H2O CO2 B2O3 Ba[C2H3O2]2		Value (mg/L)	9.77366e5 341.029 1.76608 1.30193	
Solid	Compo H2O CO2 B2O3 Ba[C2H3O2]2 Ca[C2H3O2]2		Value (mg/L)	9.77366e5 341.029 1.76608 1.30193 89.3876	
Solid	Compo H2O CO2 B2O3 Bel(2H3O2]2 Ca(C2H3O2]2 Ca(C2H3O2)2		Value (mg/L)	9.77366e5 341.029 1.76608 1.30193 89.3876 10460.2	
Solid	Compo H2O CO2 B2O3 Be(C2H3O2]2 Ca(C2H3O2]2 Ca(C2H3O2]2 Fe(C2H3O2]2		Value (mg/L)	9.77366e5 341.029 1.76608 1.30193 89.3876 10460.2 29.5880	

Figure 16-16 The completed case

You can select the brine, gas or hydrocarbon of interest Click in the Name field. As you position the cursor in the field, a Down Arrow will appear. You can then select from a list of brines, gases or oils already entered into this ScaleChem document.

Flow

Name

Input Box Туре

Enter the flow rate for the gas, hydrocarbon or brine.

Conditions

Now that we have specified the flow rate of the brine, we need to specify the temperatures and pressures that we wish to simulate as shown in the following example.

Click on the *Conditions* tab.

For our example we are going to perform a temperature survey at constant pressure.

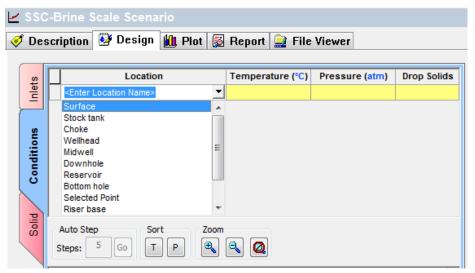


Figure 16-67 The empty conditions tab.

Click on surface and move on to the temperature tab. Change the units by clicking the hyperlinked (0 C) and (atm) via units manager second layer. Input the temperature as 77 0 F. Change the Pressure field to 250 psia. Add second point at a temperature of 300 F.

OLI Studio - [9_3_ScaleanalyzerChapter.oa	d*]					
🔳 File Edit Streams Calculations Chemistry Tools View Window Help						
🗅 😅 🖬 🎖 🛍 🛍 🍜 📍 🕅	Aq Va So 2 nd Re ± ₩ ± ₩ ± ₩	🎬 🛃 💱 🔊 😭 🎸				
Navigator # * X	🖌 🗠 Scenario					
9_3_ScaleanalyzerChapter.oad*			-			
SSC_Brine	🦪 🗸 Description 🔮 Design 🛍 Plot	😥 Report 🔜 File 🦞	liewer			
Scenario		-				
_	Location Surface	Temperature (°F) 77.0000	Pressure (psia) Drop Solids			
	Stock tank	300.000	250.000			
	<enter location="" name=""></enter>					
Actions a + ×						
Actions						
Edit Units - Sc	tenario	? <mark>×</mark>				
Add Brine Add Oil	Ratch Su	stem System				
Analysis Analysis		stem I wing system				
Composition						
🐨 📥 🔤	Variable	Units ^				
Add Gas Add Pressure		JSIA				
Analysis Saturator			<u> </u>			
		lay ≡				
Plot Template Manager Alkalinity		ng HCO3/L				
Density		g/ml				
		n2/ohm-mol				
Energy		cal/day				
Energy, k		cal/mol	·			
Entropy Entropy,		cal/K day cal/mol K	L			
Opening Document '\\GR Fugacity		atm	alyzerChapter.oad'			
+ Heat Cap	-	cal/g K				
		nol/mol +				
ja Loading 4 objects			E			
off off						
in interview in the spent openi						
Loading 4 objects	ОК	Cancel Help	-			
For Help, press F1			NUM //			

Figure 16-18 The first and second point added.

We now want to add additional points between the two we've just entered.

Click the Auto Step button.

Location	Temperature (*)	Pressure (csix)	Drop Solids
Surface	77 0000	250 000	
Leob	121.680	250.000	
Lee1 .	166.200	250.000	
Lec2	215,880	250.000	
Lee3	251.400	250-006	
Directors.	001,000	250.000	
<enter location="" name=""></enter>			
1/100 Lin0 Lin1 Lin2 1/100 1/1002 1/1002 1/1002 1/100 1/1002 1/1002 1/1002			
7.77.0 T 121.0			

Figure 16-19 The completed conditions tab.

Sort options

Temperature/Pressure

Sort the list according to the temperature or pressure fields.

The graphical view clearly shows the five locations and their Temperature and pressure conditions. The Drop Solids checkbox column at the very end of the grid is designed to help the users decide if they want to carry forward solids from certain locations or not.

Precipitates

ScaleChem allows for many solid phases to be considered in the actual calculation. For this example we want to consider all the available solids

In ScaleChem, you have to manually turn the solids on at the top of the toolbar in order to enable the solids tab.

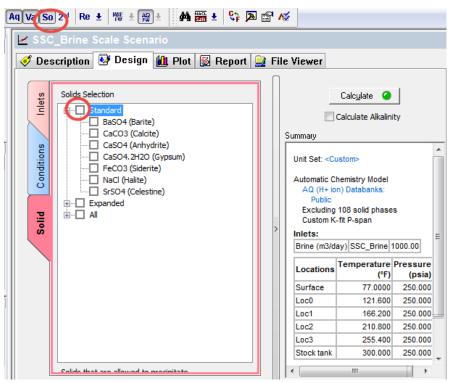


Figure 16-20 possible precipitates

All the possible precipitates could be seen if + sign before all is clicked.

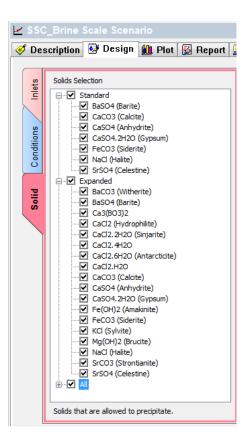


Figure 16-71 All solids selected.

Calculate

We are now ready to calculate Click on the <u>Calculate</u> tab.

Results

After ScaleChem has finished calculating, there will be information of the type shown below available for review. Click on any report tab to display more information.

Scenario Analysis Summary Scenario Analysis Summary Scenario Analysis Summary Row Filter Appled: Only Non Zero Values SSC_Brine Scale Scenario			1	
Row Filter Applied: Only Non Zero Values				
Row Filter Applied: Only Non Zero Values				
SSC_Brine Scale Scenario				
	06/20/2016			
nlets Summary				
Туре		Name	Flow	Unit
Brine		SSC_Brine	1000.00	m3/day
ocation Reports (6 Locations)				
ocation Name: Surface				
Stream Properties				
Stream Amount	999.381	m3/day		
Temperature	77.0000	°F		
Pressure	250.000	psia		
Phase Properties				
Parameter	Aqueous	Solid		
рН	6.22816			
Mass (kg/day)	1.04466e6	150.149		
Moles (True) (kgmol/day)	56389.9	1.49410		
	1.04536	2.71781		
Density (g/ml)				
Specific Electrical Conductivity	9.13351			
Specific Electrical Conductivity (mho/m)	9.13351 0.0225138			
Specific Electrical Conductivity (mho/m) lonic Strength (mol/mol)				
Specific Electrical Conductivity (mho/m) lonic Strength (mol/mol) lonic Strength (mol/kg)	0.0225138			
Specific Electrical Conductivity (mho/m) Ionic Strength (mol/mol) Ionic Strength (mol/kg) Viscosity, absolute (cP)	0.0225138 1.29901			
Density (g/ml) Specific Electrical Conductivity (mholm) Ionic Strength (mol/mol) Ionic Strength (mol/kg) Viscosity, absolute (cP) Viscosity, relative Volume (m3/day)	0.0225138 1.29901 1.02201	0.0552463		

Figure 16-82 The report tab.

Information in reports

Reprint of individual brines

Input brine mixture

Output brine and gas mixture Pre and Post Scaling tendencies and solids Location reports

Each brine as it was entered and reconciled will appear in the report. All known information about the brine will be displayed. Input gases will also be displayed. Prior to each calculation, brines may be mixed with other brines and gases. The sum of these mixtures is displayed in the report.

After each calculation, the resultant brine and gas compositions are displayed.

The resultant formation of solids and their tendency to form is displayed. Parameters like Temperature, pressure, viscosity etc will be calculated for both aqueous and solid phase existing at each individual location is calculated and reported.

Plot

This tab when selected, will display a plot of scaling scenario.

Go to plot and click on Variables.

✓ SSC_Brine Scale Scena	ario				
🦪 Description 🔮 Design	🛍 Plot (😼 Report	🚊 File Viewer		
	0	•	📴 🛛 View Data	Variables	Options

A window will pop up named Select Data to plot. Get rid of the pre-scaling tendencies and plot Solids against Temperature on X-axis.

Select Data To Plot	? ×
Curves	
Scenario Locations Scenario Locations Stream Parameters Calculation Parameters Additional Stream Parameters Phase How Properties Thermodynamic Properties Scaling Tandagoies	
Scaling Tendencies Pre-scaling Tendencies Aqueous Solid Molecular Totals MBG Totals - Totals MBG Totals - Aqueous MBG Totals - Aqueous MBG Totals - Vapor	
Solids Z Axis	
Standard Standard Standard	-
Image: Second	
OK Cancel Apply	Help

Figure 16-93 Editing the plot.

Plot looks as below:

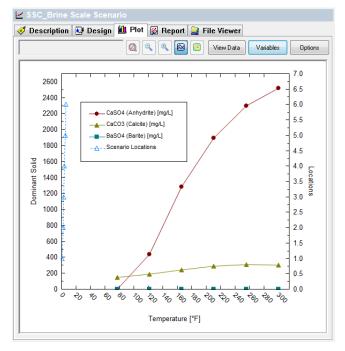


Figure 16-104 The resultant plot.

Most importantly name your file SSC_tutorial and save!save!

17. ScaleChem Calculations

Calculations Overview

ScaleChem can be used to calculate scaling at one or more user specified temperatures and pressures. Other calculation options include the ability to mix waters at user specified ratios to find compatible waters, and the ability to saturate a water with respect to one or more solids to simulate reservoir conditions.

We have already entered a scaling calculation in the ScaleChem Tour, you are referred there to review that information

We will need to add some additional brines, gases and oils to continue.

Calculations: Adding a new brine sample

Position the mouse on the Actions Panel and select object name Add brine analysis which looks like a logo above and double click. Rename the brine in Descriptions tab

🖌 W T	WTR					
of Des	scription	🔮 Design	🔯 Report	🔒 File	Viewer	
Name:	WTXWTR			Date:	6 /20/2016	•
Descrip	tion					

Figure 17-1 The default brine sample description

You must reconcile the sample for both electroneutrality, pH and alkalinity.

Name	WTXW	TR
Type of water	Aquifer	Water
Comment:	West Te	xas Water Supply
Species:		
Na ⁺	3074	mg/L
Ca ⁺²	910	mg/L
Mg^{+2}	249	mg/L
Fe ⁺²	0.77	mg/L
Cl ⁻¹	4474	mg/L
SO_4^{-2}	2960	mg/L
HS ⁻¹	146.2	mg/L
HCO ₃ -	439	mg/L
Conditions:		
pН	7.98	
Alkalinity	439 mg/	L as HCO ₃ -
Titration pH	4.5	

Temperature	77 F
Pressure	14.7 PSI
Density 0	(will be estimated)

cument1	WTX					
	🥑 Desc	cription 🥹 Design 🛐 Report 💂	File Viewer			
Streams WTXWTR	Entry	Calculate Brine Properties Using:				Summary
	Data En	Concentration Data Only Gas-Phase CO2 Content (mole%) Measured pH and Alkalinity	Specs	Calc <u>u</u> late 🥥		Unit Set: <custom> Automatic Chemistry Model AQ (H+ ion) Databanks: Public</custom>
	Reconcile	Measured pH Only Calculate Alkalinity				No Solid phase(s) Custom K-ft P-span Stream Parameters:
	00	Properties	Measured	Calculated		Temperature (*C) 25,0000
	e l	Temperature (°C)	25.0000			Pressure (psia) 14.6960
ons a • ×		Pressure (psia)	14.6960			Stream amount (L) 1.00000
ons		pH	7.98000		>	Dominant Ion Charge Balance
		Alkalinity (mg HCO3/L)	439.000			(eq/L):
		Alkalinity End Point pH	4.50000			Cation Charge 0.199639
dd Brine		Density (g/ml)	0.0			Anion Charge -0.199436
Analysis		Elec Cond, specific (µmho/cm)	0.0			Imbalance 2.02957e-4
		Total Dissolved Solids (mg/L)	0.0			Ion(s) needed to balance (mg/L):
Template Mar a + ×			osition Adjustments			CI-1 7.195
		Added titrant (mg/L)				Measured pH and Alkalinity.
		Add Charge Balance (mg/L CI-1)				standards providente de decide à cabe de la construction

Figure 17-2 The calculated Brine WTXWTR

Calculations: Adding a Gas Sample

From the Actions Panel click on Add Gas Analysis. Input the name in the description tab. We recommend that you use a suitable name

🖗 Gas					
🎻 Des	scription	🥸 Design	🥺 Definition	🛛 题 Report	🚊 File Viewer
Name:	LightHC			Date: 6 /20/	/2016 🗨
Deresi	6				
Descrip	llion				

Figure 17-3 Entering a gas sample

To add more descriptive information, click on the Design tab.

r	Component	Value	Normalized	Entry Options Summary	_
	Component	Subtotal:	Subtotal: 10	Units Unit Set: Metric (mole fraction)	4
SMOILI	H20	0.0	0.0	mole %	
	N2	0.0	0.0	Display Automatic Chemistry Model AQ (H+ ion) Databanks:	
	C02	0.0	0.0	Formula Public	
	H2S	0.0	0.0	Second Liquid phase	
	CH4	0.0	100.000	Show Non-zero Only Custom K-fit P-span	
2	C2H6	0.0	0.0	Show Normalized Column Stream Parameters:	
	C3H8	0.0	0.0	Template Manager Template Manager 1 00231	
	i-C4H10	0.0	0.0		
	n-C4H10	0.0	0.0	Standard Makeup Normalization: CH4.	
	i-C5H12	0.0	0.0	Save as Equilibrium Calculation.	
	C5H12	0.0	0.0	Jave as	
	C6H14	0.0	0.0		
				Normalize Options	
				Makeup	
				Group Manager	
				Use Groups Add	

Figure 17-4 The blank gas entry. Initially 100 % methane (CH4)

Please enter the following	ng comp	osition
Carbon dioxide (CO2)	10	mole %
Water (H2O)	15	mole %

	Component	Value	Normalized	Entry Options	
_	1100	Subtotal:	Subtotal: 10	Units	
	H20	15.0000	15.0000	mole %	
	N2	0.0	0.0	Display	
	C02	10.0000	10.0000	Formula	
	H2S	0.0	0.0		
	CH4	0.0	75.0000	Show Non-zero Only	
	C2H6	0.0	0.0	Show Normalized Colum	
	C3H8	0.0	0.0	Template Manager	
Г	i-C4H10	0.0	0.0		
	n-C4H10	0.0	0.0	Standard	
	i-C5H12	0.0	0.0	Save as	
	C5H12	0.0	0.0	Sure usin	
	C6H14	0.0	0.0		
	-			Normalize Options	
				Makeup	

Figure 17-5 Entered gas.

Gas

The gas composition is entered as mole% or volume% (these are equivalent for an ideal gas). The total must be 100% and can be adjusted by normalizing, or by letting the program determine the amount of hydrocarbon gases present. The gases that are displayed here will be either the standard gases or expanded gases . Toggling from the standard to expanded can be achieved by clicking the Gases button.

NormalizingYou can enter just the amounts of carbon dioxide, hydrogen sulfide and water and let
the program Calculate Hydrocarbon Percent (default) or enter all values and then
normalize to 100%.Displaying GasesYou can display the name of the gases by Name (the default) or by Formula.
ScaleChem will assume that all of the hydrocarbon gas is methane (CH4). If you
want to use a more detailed list of hydrocarbon gases, click on Gases to expand the
list.Frequently the data received by the user refers to gas compositions that are reported
on a "Dry" Basis. Any water that was present in the actual gas has been removed
mathematically and reported as a dry sample.

The dew point corresponds to the temperature or pressure where a gas will begin to condense and form a liquid (aqueous) phase. The Dew Point calculation will allow you to determine the amount of water that could be contained in the gas at the stated temperature, pressure and composition.

S		omponent	Normali	Reconcile	Calculate	
Inflows			Subtota	Subtotal:	Condition	
=	H20)	15.0000	1.75794		
,	CO	2	10.0000	11.5567	Saturate With	None 🔻
e	CH	ŧ.	75.0000	86.6854	Conditions	Value
Reconcile					Temperature (°C)	15.5556
ê					Pressure (atm)	1.00231

Figure 17-6 Reconcile tab

Type of Calculation

Saturated water ContentAt the entered conditions, the amount of water that the gas can contain before an
aqueous liquid will form is determined. If the Water Vapor field is entered, then that
value is used as an initial guess to the calculation.The calculated value is NOT updated in the actual gas composition. The user must
enter that value manually if desired.At ConditionsEnter the temperature, pressure and water content of the gas. Click the Calculate
button to start the calculation.
You can change the units of the calculation by clicking the Units button. When the
calculation is complete, you may view the internal files by clicking the View Files
button (currently grayed-out in the above example).

Calculations: Adding an Oil sample

From the Actions Panel click Add Oil Analysis. Enter the name in the Description Tab.

🌢 Oil				
🦪 Description	🥺 Design	反 Report	🚊 File Vie	wer
Name: OIL-1			Date: 67	20/2016 💌
Description				

Figure 17-7 Input name for the Oil Analysis

Input the composition information in the design tab.

Calculations: Hydrocarbon - Pseudocomponent approach

There are three entry types. The first is pure components (organic and inorganic), the second is pseudocomponents, and the third is a distillation curve (termed petroleum fraction. ScaleChem groups the pseudocomponent and assays together.

For this example we will enter pure component and pseudocomponent data.

Entering Pseudocomponent data

-	Component	Value	Normalized	Entry Options	
	Inflows		Subtotal: 100.0	Units Unit Set: Metric (mole fraction)	
	H20	0.0	0.0	mole %	
	CH4	20.5300	58.2990	Display Automatic Chemistry Model	
5 -	C6H14	8.59500	24.4072	Display AQ (H+ ion) Databanks: Formula Public	
	CO2	6.09000	17.2938	Second Liquid phase Show Non-zero Only Custom K-fit P-span	
			8	Show Normalized Column Stream Parameters:	
				Temperature (°C) 15.0000	
				Template Manager Pressure (atm) 1.00000	
				Standard Prorate Normalization.	
				Save as	
				IIII0WS. 100.000	
5				Pseudocomponents: 0.0	
(man -				Normalize Options Assay: 0.0	
				Prorate	

Figure 17-8 Starting to add compositions.

We will start by entering the following composition:

Methane (C1)	20.53mole %
Hexane (C6)	8.595mole %
CO2	6.09mole %

(you will have to scroll down to find the CO2 entry).

	Component	Value	Normalized
8	C21H44	0.0	0.0
in the second	C22H46	0.0	0.0
Combined	C23H48	0.0	0.0
ŭ	C24H50	0.0	0.0
	C25H52	0.0	0.0
Pseudocomp	C30H62	0.0	0.0
8	C35H72	0.0	0.0
B	C40H82	0.0	0.0
å	нсоон	0.0	0.0
	СНЗСООН	0.0	0.0
	C3H6O2	0.0	0.0
	СНЗОН	0.0	0.0
ay	C2H5OH	0.0	0.0
Assay	C2H4(OH)2	0.0	0.0
	C4H8O2	0.0	0.0
	C2H4O4	0.0	0.0
	N2	0.0	0.0
Reconcile	C02	6.0900	17.2938
60	H2S	0.0	0.0

Figure 17-9 C1 to C20 entered. Scroll down to find CO2

ined	Component	Molecular Weight	Nomal Boiling Point (°C)	Specific Gravity	Thermo Method	Value (mole %)
Combined	<enter a="" name=""></enter>					
Pseudocomp						
Assay						

Figure 17-10 Entering pseudocomponents.

Type the name PC1 in the section <Enter Name> below column heading Component. Please enter the following information. Add a mole percentage of 27.57 %

Combined		Component	Molecular Weight	Nomal Boiling Point (°F)	Specific Gravity	Thermo Method	Value (mole %)
5	Г	PC1		100.210	98.4300	API-8	27.5700
		<enter a="" name=""></enter>					1

Figure 17-11	Adding	the first	pseudocomponent.
--------------	--------	-----------	------------------

We have now entered the first pseudocomponent. Keep typing in the Enter Name section to add more pseudocomponents. We have 3 additional entries.

Name	MW (g/mol)	nBP (F)	Method	mole %
PC2	170.34	216.32	API	29.35
PC3	282.55	343.78	API	7.19
PC4	506.0	645.00	API	0.68

The completed input looks like this:

olL-1 ✓ Desci 	ription 🔮 Design) <u> [5</u> Report 🚉 f	ile Viewer			
Combined	Component	Molecular Weight	Nomal Boiling Point (°F)	Specific Gravity	Thermo Method	Value (mole %)
THE -	PC1	98.4300	100.210		API-8	27.5700
	PC2	170.340	216.320		API-8	29.3500
문	PC3	282.550	343.780		API-8	7.19000
comp	PC4	506.000	645.000		API-8	0.680000

Figure 17-12 Completed input

Reconciling the Pseudocomponent

Click on the <u>*Reconciliation*</u> tab to see how well the pseudocomponent will predict the phase behavior of the hydrocarbon sample. You will be presented with the following display:

Inflows Subtotal: 35.2132/100.000 (mole %) Condition H2O 0.0 Condition Saturate With None C6H14 6.08970 Conditions Value C02 6.08970 Temperature ('F) 59.000		Component	Normalized	Calculate	0
C68114 8.59457 C02 6.08970 Pseudocomponents Subtotal: 64.7868/100.000 (mole %) PC1 27.5686 PC2 29.3485 PC3 7.18964 PC4 0.679966	ed	Inflows	Subtotal: 35.2132/100.000 (mole %)		-
C68114 8.59457 C02 6.08970 Pseudocomponents Subtotal: 64.7868/100.000 (mole %) PC1 27.5686 PC2 29.3485 PC3 7.18964 PC4 0.679966	-E	H2O	0.0	Condition	
C68114 8.59457 C02 6.08970 Pseudocomponents Subtotal: 64.7868/100.000 (mole %) PC1 27.5686 PC2 29.3485 PC3 7.18964 PC4 0.679966	B	CH4	20.5290	Saturate With	None 🔻
CO2 6.08970 Pseudocomponents Subtotal: 64.7868/100.000 (mole %) PC1 27.5686 PC2 29.3485 PC3 7.18964 PC4 0.679966 Add boiling point curve	0	C6H14	8.59457	Conditions	Value
Pseudocomponents Subtotal: 64.7868/100.000 (mole %) PC1 27.5686 PC2 29.3485 PC3 7.18964 PC4 0.679966	21	C02	6.08970		59.000
PC3 7.18964 PC4 0.679966	B				1.00000
PC3 7.18964 PC4 0.679966	ę	Pseudocomponents	Subtotal: 64.7868/100.000 (mole %)		
PC3 7.18964 PC4 0.679966	seu	PC1	27.5686		
PC3 7,15964 PC4 0.679966 Boling Point Curve Add boling point curve	ă	PC2	29.3485	I de la colo	
Add boiling point curve		PC3	7.18964		
Add boiling point curve		PC4	0.679966		
Assa				Add boiling point	t curve
As	sa)				
	As				
	0				

Figure 17-13 Reconciliation Tab

We will hold the temperature constant at 204 F and vary the pressure from 200 to 2000 PSI in 100 PSI increments.

Click the *Boiling point* button. A new calculation appears in the navigation panel below OIL1 Object.

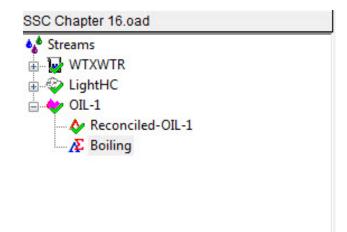


Figure 17-14 Boiling Point calculation

This is a survey by Pressure. Click on the specs button and specify the conditions below.

Enter a fixed value of 204 deg F

Enter a pressure range:

Start	200 psia
End	2000 psia
Start	100 psia

Click the *Calculate* button.

Click on the plot tab, you will see the following graph: You could adjust the parameters by clicking on curves.

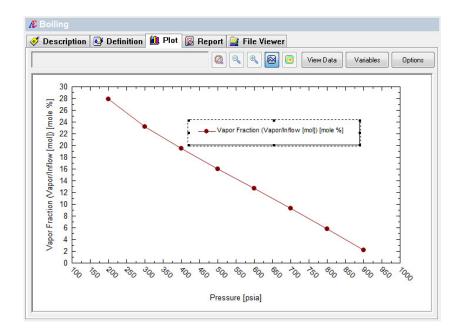


Figure 17-15 Boiling point curve

If the curve does not meet expectations, you will have to adjust the mole percentages or the pseudocomponent properties. This is a manual iterative approach. You can see the actual data by clicking the View data button.

Saturating the hydrocarbon with water

Frequently the hydrocarbon was saturated with water.

Click on the Saturate with drop down. Select H20

	Component	Normalized	Reconciled Oil	Calcylate 🥝	
	Inflows	Subtotal: 26.0052/100.000 (mole %)	Subtotal: 26.6491/100.000 (mole %)		
H20 CH4 CBH14		0.0	0.870142	Condition	
		15.1608	15 0289	Soturate With H20	
		6.34715	6.29192	Conditions Value	
	C02	4.49728	4,45815	Temperature (°F) 77.00	
				Pressure (csia) 14.69	
	Pseudocomponents	Subtotal: 73.9948/100.000 (mole %)	Subtotal: 73.3509/100.000 (mole %)		
	PC1	31.4241	31.1505		
	P02 P03	33.6056	33,3062	Show Non-zero Only Boling Point Curve	
	PC3	8.19510	8.12379		
	PC4	0.775054	0.768310		

Figure 17-16 Saturate with H2O

In this example we are saturating the hydrocarbon sample at 77 F and 14.7 PSI. The program requires an initial "Guess" for the concentration of the water. When done, we will save the saturated hydrocarbon as the object **SatOIL1**.

Click on the *Calculate* button.

Mix Calculation: Overview

The Mixer calculation determines if two waters (brines) can be mixed. Frequently the mixing of two waters will cause precipitates to form which were not present in original brines. This can lead to the plugging of a formation when an injection water is mixed with the natural fluids in the formation.

Mix Calculation: Set Up

From the Actions Panel, click on the Add Mixing Water logo. After double clicking the logo, you will the object in the Navigation Panel.

¥¥ MixingWater	
< Description 🥸 Design 🛍 Plot 🖟	💈 Report 🔛 File Viewer
Name: Mixing Water-1	Date: 6 /21/2016 💌
Deveniation	
Description	

Figure 17-17 Input name for Mixing Water object

Click on the design tab to enter more information.

Summary Summary Utit Set Scale Herbio Automatic Chemistry M A (11+ inc) Satisfan Conditions Value Temesaure (***) Pressure (cor) Temesaure (c	Value	: (m3	nS/day)						Summary Unit Set: Scale Metric Automatic Chemistry Model AQ (H+ Ion) Databanks:
Summary Summary Utit Set Scale Herbio Automatic Chemistry M A (11+ inc) Satisfan Conditions Value Temesaure (***) Pressure (cor) Temesaure (c	Value							-	Summary Unit Set: Scale Metric Automatic Chemistry Model AQ (H+ Ion) Databanks:
Conditions Value Temperature (*C) Protect Dend Mod Follows Instance One (mod Set)	Value Unit Set: Ecale Metric Automatic Chemistry Model Adj (1+- 6x) Statemans, Public Automatic Annual Public Value Couldant Kill & epan Interts: Umme (midary) 0.0 Table flow rate is 0.0 Brine Ballio: 1 60000 0.0 Brine Ballio: 1 60000 0.0 0.0		Cond						Unit Set: Scale Metric Automatic Chemistry Model AG (H+ kn) Ostabanks:
A C Ort-Son D Satalan Paile Conditions Value Temperature (*C) Pressure (son) Conditions Temperature (*C) Pressure (son) Conditions Temperature (*C) Pressure (son) Conditions	Value Automatic Chemistry Model Ad (14: 60) Ostatemas, Public Cautom Kitl & Again Intets: Value Interest: Unren (midsky) (0,0) Unren (midsky) (0,0) Tasla four rate is 0.0 Brite Ratio: 1 60000 (0,00000) Brite Ratio: 0 000000 (0,00000) 0.0		Cond						Automatic Chemistry Model AQ (H+ Ion) Databanks:
Detail Info of Selected Inlet Name > Brine Bation	t 00000 0.0 0.800000 0.200000 0.800000 0.400000	ŋ	2)				v	lalue	Custom K- ft P-span Inlets: Brine (m3/day) Brine (m3/day) 0.0
	1.00000 0.0 0.800000 0.200000 0.800000 0.400000								> Brine Ratio:
0.800000 0.200000 0.800000 0.400000								-	0.800000 0.200000 0.800000 0.400000 0.400000 0.800000 0.200000 0.800000

Selecting objects for the calculation

Figure 17-28 Setting up the mix calculation

Select your brines, gases and oils as shown in the next figure. Enter the indicated brine flow rate of 1000 bbl/day, gas flow of 230 stdMft3/day and oil flow of 7 bbl/day.

There are two ways to change the units.

Method 1: To change units on brine, oil and gas, click on the hyperlinked (blue) units inside of the bracket next to Inlets First Brine, Second Brine etc. This is under the column heading Type.

< Des	cri	iption 🔮 Design 🛍 Plot 📓	Report 🚘 File Viewer
Inlets	Г	Type	Name
Ē	Г	First Brink (bbl/day)	WTXWTR
	Г	Second Brine (DDI/day)	SSC_Brine
	Г	Gas (std E3m3/day)	Light-HC
Suc	Г	Oil (bbl/day)	OIL-1
ditions		<select></select>	

Figure 17-19 Changing units

This should pop the following window up. Click on Inlets tab and change the units. Inlets tab looks like below. Changing units on Brine:

t Units - Mixing Water-1		? ×
Composition Parameters Corrosion Inlets	🔘 Batch Syst	em 💿 Flowing System
Variable		Units
Brine Quantity		bbl/day
Oil Quantity		bbl/day
Gas Quantity		std Mft3/day
Whole Fluid Quantity		m3/day

Figure 17-20 Units manager layering

Method 2: This can also be done in one other way, that is through the units manager

button on the toolbar. which looks like

Mixing Water-1	Units Manager	
🖸 Description 🔯 Design 🌇	Plot 🔯 Report 🚉 File Viewer	
👸 🔟 Туре	Name	Flow
First Brine (bbl/day)	WTXWTR	1000.00
Second Brine (bbl/day)	SSC_Brine	
Gas (std Mft3/day)	Light-HC	230.000
Oil (bbVday) <select></select>	0IL-1	7.00000

Figure 17-21 Units Manager accessibility

When you click on units manager, following windows pops up.

Units Manager - Mixing Water-1	9	23
Units Manager		
<custom></custom>	▼	·
Customize		
OK Cancel Apply	H	elp

Figure 17-22 Units Manager first layer

Click on Customize. Change the individual parameters as shown below.

nposition Parameters Corrosion Inlets		
variable	Basis	Units
Inflow var	iables	
Stream Amount	Volume	m3/day
Inflows	Concentration	mg/L
Output va		
Aqueous Composition	Concentration	mg/L
Vapor Composition	Mole Fraction	mole %
Solid Composition*	Concentration	mg/L
2nd Liquid Composition	Mole Fraction	mole %
Total Composition	Concentration	mg/L
Basis ch	oice	
Moles		kgmol/day
Mass		kg/day
Volume		m3/day
Concentration		mg/L
Molar Concentration		mol/L
Mass Fraction		mass %
Mole Fraction		mole %
solid phase, concentrations are calculated in a	queous volume basis.	

Figure 17-23 Changing units for parameters

	ng Water-1 cription 🔮 Design 📶 Plot 👔	🛿 Report 🔛 File Viewer	
Inlets	Туре	Name	Flow
=	First Brine (bbl/day) Second Brine (bbl/day)	WTXWTR SSC_Brine	1000.00
	Gas (std Mft3/day)	Light-HC	230.000
S	Oil (bbl/day)	OIL-1	7.00000
Conditions	<select></select>		

Figure 17-24 Mixer with inflows entered (Inlets Tab)

In this example we will mix two brines, created in other sections at a total brine flow rate of 1000 barrels per day. In addition, we will add a gas and a hydrocarbon to the calculation.

Entering Conditions

In this example, we are mixing the brines at 100 F and 200 PSIA. The first brine specified (brine1 in the example) is the one we compare to when evaluating the ratios. In this case we start out with all brine1 and none of the brine WTXWTR and end up with none of brine1 and all of WTXWTR.

sta	Select Type	Enter Values	
Inlets	Ratio	WTXWTR	SSC_Brine
		1.00000	0.0
	Total flow: 1000.00 bbl/day	0.800000	0.20000
5	Steps: 5 Auto Step	0.600000	0.40000
ŧ	Auto Step	0.400000	0.60000
Conditions		0.200000	0.80000
<u> </u>		0.0	1.00000

Figure 17-25 the mixing conditions (Conditions tab)

Selecting Precipitates

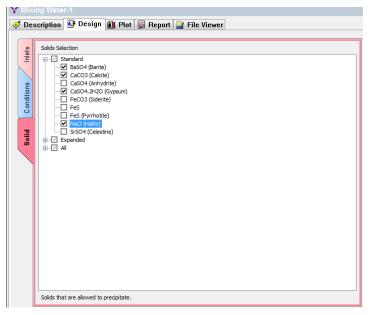


Figure 17-27 Selecting a few solids. (Solids tab)

For this calculation we are only selecting a few of the possible solids. Mark a check box next to desired solids (BaSO4, CaCO3, CaSO4.2H2O, NaCl).

Click on the Calculate button.

View the report. Click on the Plot tab and view Plot

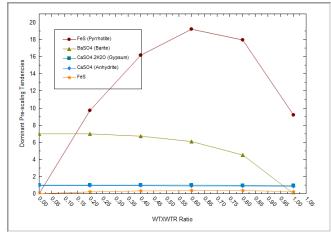


Figure 17-28 Default plot

To study the effects better go to the variables button and eliminate other solids precipitated by the << arrow. Keep only one solid (in this case BaSO4). The ratio is relative to the first brine specified. This means at a ratio of 0.0 (all the first brine and none of the second) we have no BaSO4 scaling. As we add the second brine, the amount of BaSO4 increases. These waters are perhaps incompatible.

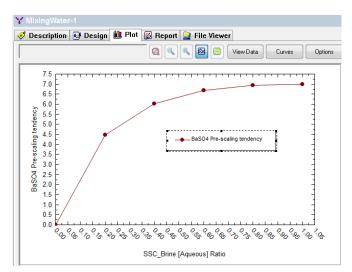


Figure 17-29 Mixing results

Thermodynamic Properties	X Axis
Scaling Tendencies	>> WTXWTR Ratio
Pre-scaling Tendencies	
Dominant Pre-scaling Tendencies	Y1 Axis
CaCO3 (Calcite) — CaSO4 (Anhydrite) ≡	BaSO4 (Barite) Pre-scaling tendency
FeS	
···· FeS (Pymhotite)	
····Na2SO4	
NaCl (Halite) SrSO4 (Celestine)	Y2 Axis
••• Aqueous	>>
Second Liquid	<<
· · · · · · · · · · · · · · · · · · ·	
Solids	Z Axis
Standard -	- Select -
Hide zero species	
Plot data which is only within temperature ran	0e

Figure 17-30 Editing the plot via variables button

You could choose to select any of the other solids that could be precipitated from the above pre-scaling tendencies. The red marked << arrow removes the existing component from Y1-axis and >> arrow adds components to axis. Simply double clicking the component/parameter name under axis works for removing it from the list to display on plot too.

Saturate Calculations: Overview

Water and gas samples at the surface are not necessarily representative of conditions in the reservoir. The processing of the samples may involve significant changes in the chemistry.

The Saturate option (often referred to as "Saturate at reservoir conditions") allows the user to "Back" calculate the conditions down hole.

Saturate Calculations: Set Up

Select Add Saturator from the Actions Panel. Rename the object in the descriptions tab.

Description 💽 Design 👔	Report 🚂 File Viewer
fame: Saturator1	Date: 6/21/2016
Description	

Figure 17-31 Description tab

The default location will be the *Component* tab.

We will select objects that we have already defined.

Brine (bbl/day) Gas (std Mft3/day) <select></select>	SSC_Brine [Aqueous] Light-HC [Aqueous]	1000.0 230.00
	Light-HC [Aqueous]	230.00
<select></select>		
Temperature (°C)		25.000
		1.0000
Pressure (atm)		

Figure 17-32 Selecting saturating components

For the Gas and Brine flow and Conditions units for temperature and pressure, we have to make sure to have bbl/day, Mft3/day and F, PSIA respectively. Set these units as custom units for all new objects in Units manager.

Units Manager - Stream	8 23
Units Manager	
Metric Moles	• •
Customize	
OK Cancel Apply	Help

Figure 17-33 Customize the unit sets

We have to select solids inflow to vary for Saturator1. Under the solids tab select the solids allowed to be formed. Under the table select inflows to vary, choose the solid to vary from the dropdown list.

Saturator1				
Description	🔮 Design	髮 Report	🚊 File Viewe	r
Solid		ck solids allowed Standard BaSO4 CaCO3 CaSO4 CaSO4 CaSO4 CaSO4.2H2t CaSO4.2H2t FeS NaCl SrSO4 Expanded All		
	t Inflows To Vary	Solid		Inflow
	BaSO4			BaSO4
	Select Solid>			

Figure 17-34 Selecting solids to vary

To study the saturator brine at various locations we need to add a Scaling Scenario from the saturator.

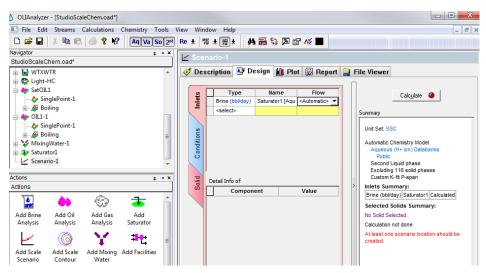


Figure 17-35 Adding a scaling Scenario

We have to make sure when we add brine under the inlets tab, under Type column, that we are selecting brine from Saturator1 and not SSC brine or WTXWTR brine. Flow will be automatically controlled. Locations can be input under the conditions tab.

	Location	Temperature (°F)	Pressure (psia)	Drop Solids
Inlets	Surface	77.0000	14.6960	
	Choke	101.000	71.7600	
	Midwell	126.200	128.820	
ŝ	Wellhead	150.800	185.880	
i i	Downhole	175.400	242.940	
Conditions	Stock tank	200.000	300.000	
ט ו	<enter location="" name=""></enter>			
	Surface Choke T:77.0 T:101.0 P:14.7 P:71.8	Midwell T:128.2 P:128.8	Wellher T:150 P:185.	8

Figure 17-36 Conditions set up

We will start at 77 $^{\rm o}F$ and 14.696 PSIA and end at 200 $^{\rm o}F$ and 300 PSIA. We will use 5 steps.

This case differs from the other calculations in that we will force a scale to appear just at its solubility limit. The scaling tendency is forced to be equal to 1.0 exactly. See report tab on the Saturator 1where Pre and Post Scaling Tendency table shows more details.

Scale Mineral	Max Scale (Ibmol/day)	Pre-scaling	Pre-index	Post-scaling	Post-index
Na[C2H3O2].3H2O	0.0	8.13548e-4	-3.08962	8.11722e-4	-3.09059
MgCO3.3H2O (Nesquehonite)	0.0	2.87353e-4	-3.54158	2.07936e-4	-3.68207
CaSO4.2H2O (Gypsum)	0.0	0.930189	-0.0314286	0.926655	-0.0330819
CaCO3 (Aragonite)	0.0	0.586274	-0.231900	0.419877	-0.376878
FeCO3 (Siderite)	0.0	0.159419	-0.797461	0.114829	-0.939950
NaHCO3 (Nahcolite)	0.0	5.00092e-3	-2.30095	4.27561e-3	-2.36900
SrSO4 (Celestine)	0.0	0.203427	-0.691592	0.203606	-0.691209
BaSO4 (Barite)	5.29109e-8	1.00000	3.50074e-11	1.00000	0.0
Na2SO4.10H2O (Mirabilite)	0.0	7.19368e-3	-2.14305	7.20588e-3	-2.14231
MgSO4.7H2O (Epsomite)	0.0	8.47496e-4	-3.07186	8.53133e-4	-3.06898
CaSO4 (Anhydrite)	0.0	0.733302	-0.134717	0.730447	-0.136411
CaCO3 (Calcite)	1.28496	1.39630	0.144977	1.00000	0.0
Na2SO4 (Thenardite)	0.0	1.12143e-3	-2.95023	1.12280e-3	-2.94970
MgCO3 (Magnesite)	0.0	3.03330e-4	-3.51809	2.19466e-4	-3.65863
NaCI (Halite)	0.0	0.0121050	-1.91704	0.0121087	-1.91690
KCI (Sylvite)	0.0	6.70480e-4	-3.17361	6.70604e-4	-3.17353

Figure 17-37 Pre and post Scaling tendencies at location one-surface

We want to force the BaSO4 (barite) solid to appear. It is generally a good idea to select a maximum of one or two solids. As we can see above, BaSO4 has a scaling tendency of exactly one.

After the calculation is complete, the plot for scale scenario shows that other solids are appearing. In this case both Anhydrite and calcite and disordered dolomite are appearing.

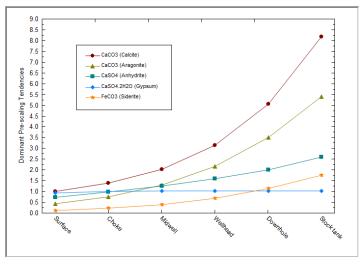
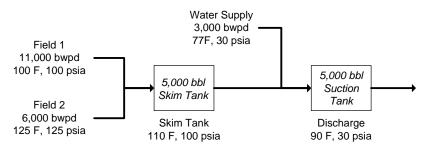



Figure 17-38 The plotted results

At this point it may be beneficial to saturate with other solids. We will leave that as an exercise for the user.

Facility Calculation: Overview

ScaleChem has the ability to link together several individual calculations to create a flow sheet facility. An example of a facility calculation is shown in the figure below.

which two field brines mix in a skim tank. The discharge from this tank then mixes with a water supply in a discharge tank. Below are the compositions and conditions of the inlet fluids

Name	Field1 .	Field2 .	Water Supply
Na+	38209	27078	3074
Ca+2	6600	4480	910
Mg+2	1531	1191	249
Fe+2	120	6.6	0.77
Cl-1	73150	51134	4474
SO4-2	2453	1840	2960
HS-1	244	146.2	0
HCO3-	421	677	439
Conditions Temperature Pressure Alkalinity (As HCO3 mg/L) Titration pH Sample pH	100F 100 PSI 421 4.5 6.97	125 F 125 PSI 677 4.5 7.53	77 F 30 PSI 439 4.5 7.98

It is a simple process in

Create the above brines

You start this example by first creating the above three brines: Use the Add Brine Analysis object as you have done before to create them. *Reconcile these three brines for measured pH and alkalinity*. Make sure that the *Allow solids to form* box is uncheck at the bottom of the reconciliation options for all the brines.

Facility Calculation: Set Up

Add Facilities

The facilities calculation is based upon transferring information between calculations through nodes. These nodes can be thought of as pseudo brines and gases. These pseudo brines are not stored as individual brine rather they are used internally in the calculation. The concentration and flow rates for these nodes can be viewed in the output.

Select Add Facilities from the Action Panel.

🕈 Descripti	on 🔯 Desi	gn 🛍 Plot	题 Report	📄 File Vie	wer
Name: Facilitie	es-1		Date:	6 /21/2016	•
Description					

Figure 17-39 The Description tab for the Facilities

Under design tab, within Inflow Specs, we can add Nodes via Node input options. There will be one default node added. Click on the node name and type "Skim Tank" That populates the name field below Node Input section.

At the start the panel contains Node #1. It has default conditions and no inlet streams. This node will be the Skim Tank.

	ilities-1					
Solid Inflow Specs	scription 🤡 Design	I IIII S Report	t 🚅 File Viewer		Calculate Calculate Calculate Calculate Calculate Alkalinity Calculate Alkalinity Unit Set: Scale Metric Automatic Chemistry Model AQ (H+ ion) Databanks: Public Custom K-fit P-span	*
	<				Some node(s) do not have inlet. Node(s): Skim Tank: No inlet	
	Node Input Current Node: Skim Tank Add Delete	Drop Solids	Zoom The second	>	Selected Solids: No Solid Selected.	
	Con Temperature (°C)	ditions	Value 15.0		Calculation not done	
	Pressure (bar)		1.01325			
	Type <select></select>	Name	Flow			

Figure 17-40 Node input Screen

Enter the name, description, conditions, and streams for the Skim Tank shown above. When complete, your screen should look like this.

< III Node Input Current Node: Skim Tank Add Delete	Drop Solids Zoom	► 8. 4
	Conditions	Value
Temperature (*F)		110.0
Pressure (psia)		100.0
Туре	Name	Flow
Brine (bbl/day)	Field1	11000.0
Brine (bbl/day)	Field2	6000.00
<select></select>	-	

Figure 17-41 Node 1 is complete

The temperature and pressure of the calculation is 110 F and 100 PSI. A default node name is supplied and it is sufficient for our use. The output of this calculation will go to the next node. Make sure to select drop solids checkbox at the Skim Tank node.

Next, enter the information for the second node, Suction Tank. We will select the output brine of the Skim tank, which is a *brine from node* The temperature and pressure as well as the flow of the brine are calculated.

When a brine is calculated in a facilities calculation, we have the option of allowing any produced solids to be considered (that is they traveled along with the brine) or to *eliminate* them as they precipitate out. We will eliminate the solids in this case. The orange downward arrow from Skim Tank indicate dropped solids.

We are also adding the **Water Supply** to this tank.

: Facilit Ø Desci		📓 Report 📄 File Viewer		
Inflow Specs	Skim Tank	Suction Tank	E	
	Node Input	Drop Solids Zoom	±	
	Add Delete			
	Temperature (°F)	nditions	Value 110.0	
	Pressure (psia)		100.0	
	Туре	Name	Flow	
	Brine from (bbl/day)	Skim Tank	Calculated	
	Brine (bbl/day)	Water Supply	3000.00	
	<select></select>			

Figure 17-42 Node 2 is entered

The program assigns a default node name of **Node2** which is sufficient for our use. We have added the description "**Suction Tank**".

Click on the Calculate button. Or press Ctrl+F9.

oto: Pre-Scaling						
	l'endencies	•				Customize
Pre-Scaling Tendencies Column Filter Applied: Values > 1.0e-4 Temperature Filter Applied: Active TRange Only.						
Nodes	CaCO3 (Aragonite)	CaCO3 (Calcite)	CaSO4.2H2O (Gypsum)	CaSO4 (Anhydrite)	FeCO3 (Siderite)	Fe(OH)2 (Amakinite)
Temp Range °C	Valid	0.0 - 300.0	0.0 - 126.0	0.0 - 455.0	0.0 - 250.0	Valid
			1 24312	1 39963	0,165836	3.49824e-4
Skim Tank	5.25693	8.99714	1.24312	1.59905	0.100000	3.490246-4
Skim Tank Suction Tank	5.25693 5.99512			1.39903		5.27108e-4
Suction Tank Nodes	5.99512	10.2606	1.22561 MgCO3.3H2O	1.34974 MgCO3	0.285723 Mg(OH)2	5.27108e-4 MgSO4.7H2O
Suction Tank	5.99512 FeS (Pyrrhotite)	10.2606 FeS Valid	1.22561 MgCO3.3H2O (Nesquehonite)	1.34974 MgCO3 (Magnesite)	0.285723 Mg(OH)2 (Brucite) Valid	5.27108e-4 MgSO4.7H2O (Epsomite)

Figure 17-43 the reports tab

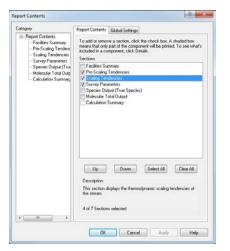


Figure 17-4 Results for nodes

pto: Scaling Ten	Design 🛍 Pl	ot 🔯 Report	🚉 File Viewer		0	Customize	Exp
Scaling Tenden Column Filter Applied: V emperature Filter Appli							
Nodes	CaCO3 (Aragonite)	CaCO3 (Calcite)	CaSO4.2H2O (Gypsum)	CaSO4 (Anhydrite)	FeCO3 (Siderite)	Fe(OH)2 (Amakinite)	
Temp Range °C	Valid	0.0 - 300.0	0.0 - 126.0	0.0 - 455.0	0.0 - 250.0	Valid	
Skim Tank	5.25660	8.99658	1.24242	1.39885	0.165818	3.49750e-4	
Suction Tank	5.99466	10.2598	1.22492	1.34898	0.285708	5.27036e-4	
Nodes	FeS (Pyrrhotite)	FeS	MgCO3.3H2O (Nesquehonite)	MgCO3 (Magnesite)	Mg(OH)2 (Brucite)	MgSO4.7H2O (Epsomite)	
Temp Range °C	Valid	Valid	Valid	Valid	Valid	0.0 - 49.99	
Skim Tank	41913.4	905.864	4.49530e-3	9.23960e-3	1.06604e-3	1.11410e-3	
Suction Tank	47270.7	1021.65	4.94048e-3	9.82326e-3	9.91217e-4	1.08223e-3	
	Na2SO4		NaHCO3				

Figure 17-45 Scaling tendencies

18. ScaleChem Interpreting Results

Overview

ScaleChem reports and displays data in a variety of forms. This information can be confusing to a new user. In this chapter we will examine the various types of output and interpret the meaning of that output.

Some of the data that is reported are reported in summaries and other data are reported in dialog boxes. We will look at several examples of each.

Valid Water Analysis Data

Using valid water (brine) analysis data is the key concept behind using ScaleChem. If the water analysis is not valid then the resulting calculations are not valid.

Assumptions

Reconciliations within the Water Analysis are assumed to be at ambient conditions, 77° F and 14.7 PSIA (25 °C and 1 atmosphere). The default temperature and pressure are set to ambient conditions.

Electroneutrality

Ionic concentrations, even when measured with the best available techniques, tend to have some degree of uncertainty associated with them. These uncertainties will results in an aqueous solution which, when the concentrations are summed together, appears to be not electrically neutral.

In addition to having uncertainties in the measured concentration, some ions may be misreported. For example, the pH of a solution may indicate that the dominant form of carbonate ion in solution should be bicarbonate ion but the reported value is carbonate ion. For the same mass, there is approximately twice as much negative charge in misreporting the carbonate ion.

Correcting for the Electroneutrality of a solution is essential for proper simulations. The following sample is not electrically neutral.

scr	iption 🔮 Design <u> </u>	Report 🚊 File View	ver	
	Variable	Value	Balanced	Entry Options
	c	ations (mg/L)		Units
	Na+1	3074.00	3074.00	mg/L 👻
	K+1	0.0	0.0	Display
	Ca+2	910.000	910.000	Formula 💌
	Mg+2	249.000	249.000	Formula
	Sr+2	0.0	0.0	Show Non-zero Only
Г	Ba+2	0.0	0.0	Show Balanced Column
L	Fe+2	0.770000	0.770000	Template Manager
⊢	4	Standard 👻		
F	CI-1	4474.00	4481.20	
F	S04-2	2960.00	2960.00	Save as
F	HC03-1	439.000	439.000	
	B(OH)4-1	0.0	0.0	Balance Options
Γ	HS-1	146.200	146.200	Type
	C2H3O2-1	0.0	0.0	Dominant Ion 👻
⊢	N			
	C02	0.0		
	H2S	0.0		
	Si02	0.0		
	B(OH)3	0.0		

Figure 18-1 A non-electrically neutral sample

In ScaleChem we will receive a report of the required amount of material required to balance the sample in the yellow column headed as Balanced. Stream is balanced as soon as the components are entered.

🖬 W1	WTXWTR						
🦪 Di	es	cri	ption 😻 Design 📓 Repor	t 🚊 File Vi	ewer		
			Variable	Value	Balanced	Entry Options	
ata Entry	1	۲	Cations (bulanced	Units	
ш е			Na+1	3074.00	3074.00		
Dat			K+1	0.0	0.0		
			Ca+2	910.000	910.000		
			Mg+2	249.000	249.000	Formula	
Reconcile			Sr+2	0.0	0.0	Show Non-zero Only	
Co.			Ba+2	0.0	0.0	Show Balanced Column	
R			Fe+2	0.770000	0.770000	Template Manager	
	4		Anions (Standard 🗸	
			CI-1	447.400	447.400	Envo no	
			S04-2	2960.00	8424.99		
			HCO3-1	439.000	439.000		
			B(OH)4-1	0.0	0.0		
			HS-1	146.200	146.200	1 ypc	
			C2H3O2-1	0.0	0.0	Dominant Ion 👻	
			Neutrals				
			C02	0.0			
			H2S	0.0		-	

Figure 18-2 Switching of dominant ion

If Cl- quantity is change from 4474 to 447.4 then automatically SO4-2 ion becomes the dominant ion. And its balanced quantity increases by almost 5464

mg/L as opposed to 2960mg/L of SO4-2 ions.

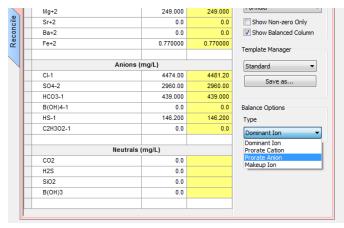


Figure 18-2a Balance options

This report shows us that 5464mg/l of SO4-2 ions must be added. Since the original sample only had 2960 mg/l of SO4-2 ion (see Figure 18-12a) there is probably an error.

In general, an added value of less than 10% of an ion concentration is acceptable. In this case we would have expected a value of less than 45 mg/l and that of chloride ion rather than Sulfate ion.

Another consideration is the type water that this analysis represents. This water is an aquifer water. The concentration of the sodium and chloride ions, on a mole basis, tends to be roughly equal. If we have 3074 mg/l of sodium (see Figure 18-1) or 134 mmoles (1000 mmoles =1 mole), then we would expect 4481 mg/l of chloride.

Therefore the concentration of the chloride seems to be in error. Perhaps a typographical error occurred either in the analysis or in the input. Change the value of the chloride concentration by increasing the number one order of magnitude from 447.4 mg/l chloride ion to 4474 mg/l chloride ion.

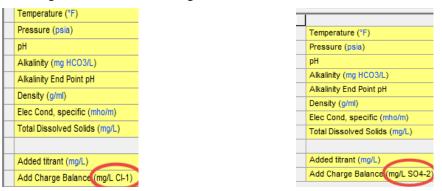


Figure 18-3 Reconcile tab when Chloride ion quantity is 4474 mg/L and Chloride ion is 447.4 mg/L(SO4-2 becomes adjustment parameter in the second image on the right).

		WTR		
	🦪 Desc	cription 🤒 Design 📓	Report 📃 File Vi	ewer
	2	Variable	Value	Balanced
Each species	Entry	(Cations (mg/L)	
concentration has been	ata E	Na+1	3074.00	3074.
altered.	Dat	K+1	0.0	C
		Ca+2	910.000	910.0
		Mg+2	249.000	249.0
	Reconcile	Sr+2	0.0	(
	C C	Ba+2	0.0	(
	Å.	Fe+2	0.770000	0.7700
he chloride				
centration value		1	Anions (mg/L)	
		CI-1	4474.00	4481
nged		S04-2	2960.00	2960.
		HCO3-1	439.000	439.0
		B(OH)4-1	0.0	(
		HS-1	146.200	146.2
		C2H3O2-1	0.0	(
		N	eutrals (mg/L)	
		CO2	0.0	
		H2S	0.0	

Figure 18-4 The chloride ion has been increased to 4474 mg/l

pH/Alkalinity

The pH of a solution is related to the alkalinity of the solution. In the simplest terms, the alkalinity is the acid neutralizing capacity of the solution. In practice we often refer to the alkalinity as the concentration of carbonate species in the sample.

The actual alkalinity experiment involves the titration of a known acid concentration against the sample. A predetermined Titration End Point (usually a pH of 4.5) is the end of the experiment. The Titration End Point is set sufficiently low to ensure that all of the neutralizing species in solution have been neutralized.

The pH/Alkalinity reconciliations have many options.

Reconciling pH/Alkalinity

Alkalinity	The measured pH and alkalinity can be reconciled The user enters a measured pH and an alkalinity. The alkalinity can be entered as: meq/1 mg/1 as HCO3 mg/1 as CaCO3
Titration pH	The units meq/l is the actual base capacity of the solution regardless of speciation. The units mg/l as HCO3 are the most common unit in the industry. It is important to note however, that the sample does not have to contain carbonates to have the alkalinity reported as HCO ₃ ⁻ . The last unit, mg/l as CaCO3 is also used frequently. The titration pH is the end point of the actual alkalinity experiment. Normally this value is a pH of 4.5. The only requirement here is that the alkalinity pH must be less than the measured pH. An error will occur if this is not true.
	Clicking on <i>Calculate</i> will execute the procedure.
	When the calculation is complete, ScaleChem will report the values required to reconcile the sample.

The calculated pH is somewhat higher than the measured pH. HCl will have to be added to adjust the pH.

The calculated alkalinity is approximately 700 mg/l as HCO3⁻

The reconciled values are approximately 159 mg/l HCl added and 183 mg/l of CO₂ removed

sile Data Entry	Calculate Brine Properties Using: Concentration Data Only Specs Gas-Phase CO2 Content (mole%) Measured pH and Alkalinity Measured pH Only Allow solids to form		Calcylate 🥝
Reconcile	Properties	Measured	Calculated
2	Temperature (°F)	77.0000	
	Pressure (psia)	14.6960	
	pH	7.98000	
	Alkalinity (mg HCO3/L)	439.000	
	Alkalinity End Point pH	4.50000	
	Density (g/ml)	1.00000	
	Elec Cond, specific (mho/m)	0.0	
	Total Dissolved Solids (mg/L)	12260.0	
	· · · · · · · · · · · · · · · · · · ·	position Adjustments	
	Added titrant (mg/L)		
	Add Charge Balance (mg/L CI-1)		

Figure 18-5 Reconciled pH and alkalinity

Calculating pH and Alkalinity

Sometimes it is desirable to determine the pH and alkalinity of the solution prior to reconciling.

Select the Equilibrium option

Click on *Calculate* to begin.

ScaleChem will then return the calculated pH and alkalinity.

Description 🤒 Design 📓	Report 🚂 File Viewer	
p to: Brine Analysis Data	•	Q
Brine Analysis Data		
Row Filter Applied: Only Non Zero Values		
WTXWTR 06/20/2016		
00/20/2010		
Stream Properties		
Temperature	°F	
Pressure	14.6960	psia
Phase Properties		
•	Aqueous	
Parameter	Aqueous 7.98000	
Parameter pH		
Parameter pH Density (g/ml) Specific Electrical Conductivity	7.98000	
Parameter pH Density (g/ml) Specific Electrical Conductivity (mho/m)	7.98000 1.00661	
Parameter pH Density (g/ml) Specific Electrical Conductivity (mho/m) Ionic Strength (mol/mol)	7.98000 1.00661 1.70000	
Parameter pH Density (g/ml) Specific Electrical Conductivity (mho/m) Ionic Strength (mol/mol) Ionic Strength (mol/kg)	7.98000 1.00661 1.70000 4.35554e-3	
Phase Properties Parameter pH Density (g/ml) Specific Electrical Conductivity (mho/m) Ionic Strength (mol/mol) Ionic Strength (mol/kg) Viscosity, absolute (cP) Viscosity, relative	7.98000 1.00661 1.70000 4.35554e-3 0.243200	

Figure 18-6 Calculated pH and alkalinity.

Speciation

The display of the ionic species can be altered to meet user requirements. By default the display of the ionic species are the standard list and the reconciled values.

	Report Items Phases Options	
Report Contents Brine Summary Charge Balance Species Output Scaling Tendencies Pre-Scaling Tendenci	Row Display All rows Only non zero rows Only rows where any value is greater than Sort User entered order Sort by name Sort descending amount	Column Display All columns Only non zero columns Only columns with all values greater than Layout Details Show header Show footer New page to start New page after

Figure 18-7 The default species display

Default Speciation Display

See **Chapter 2: Thermodynamics** for a more complete description of the standard chemistry.

Phase Properties							
Parameter		Aqueous					
pH		7.98000					
Density (g/ml)		1.00661					
Specific Electrical Conductivity (mho/m)		1.70000					
Ionic Strength (mol/m	ol)	4.355544	+3				
Ionic Strength (mol/kg	0	0.243200)				
Viscosity, absolute (cl	P)	0.919721					
Viscosity, relative		1.03256					
Alkalinity (mg HCO3/L	.)	439.275					
Pre and Post Scaling						_	
Scale Mineral	Pre-scaling		Pre-index	Post-scaling	Post-index	_	
CaCO3 (Calcite) CaSO4.2H2O		1693 7387	1.15743 -9.93362e-3	0.976800	-0.0101945	-	
(Gypsum) CaSO4 (Anhydrite)	0.71	0700	-0.142834	0.719291	-0.143095	-	
FeCO3 (Siderite)	-		-0.192039	2.86063e-3	-2.54354		
			2.98126	2.86003e-3	2.98126		
FeS (Pyrrhotite) 957.							
FeS 16.3			1.21357	16.3519	-3.25394	-	
Mg(OH)2 (Brucite) 5.572			-3.25394	5.57266e-4		-	
NaCl (Halite) 2.364		33e-4	-3.62629	2.36401e-4	-3.62635		
Brine Composition							
Cations	Value (mg/L	.)	Anions	Value (mg/L)	Neutrals	Value (mg/L)	
Na(+1) 3074.0		4.00	CI(-1)	4636.84	H2S	150.603	٦
Ca(+2)	910	000	HC03- (*)	170,758			7
Fe(+2)	0.77	0000	SO4-2	2964.14			7
Mg(+2)	249	000					7

Figure 18-8 The standard display

Expanded Species Display

Click on Customize under the report tab. Click on Species output and then by checking boxes before the species name will display Species List. Click on OK to redisplay the **Report** tab.

The expanded species lists are scrollable	Report Contents Category Preport Contents Preport Contents Observe to under the order of hems in the report, click the check box. To change the order of hems in the report, drag the item up/down or use the up/down buttons. Description Description Pre-Scaling Tendencies Pre-Scaling Tendencies V 120 V 120
	TH OK Cancel Apply Help

Figure 18-9 Displaying the Expanded Species lists

The complete list of the expanded ions can be found in **Chapter 2**: Thermodynamics.

The Non-Zero species Display

Sometimes viewing species with zero concentrations can be difficult to read. The Species Display dialog allows the user to mask zero valued species. Customize report-> Species Output->Options leads to display options where we can select to view species only greater than value 0. Column and rows are adjustable according to the user's preference.

	And and a second se	
itegory	Report Items Phases Options	
 Report Contents Brine Summary Charge Balance Species Output Scaling Tendencies Pre-Scaling Tendenci 	Row Display All rows Only non zero rows Only rows where any value is greater than	Column Display All columns Only non zero columns Only columns with all values greater than 0.0
	Sort ● User entered order ○ Sort by name ○ Sort descending amount	Layout Details y Show header Show footer New page to start New page after
	OK Cancel	Арріу Неір

Figure 18-10 Water Analysis with zero values masked

Supersaturation of Solids

Frequently a measurement of a water sample (brine) may have a small uncertainty associated with the measurement. This uncertainty, especially when the sample was in contact with solid minerals, may lead to ScaleChem reporting that the sample is supersaturated.

Isothermal Calculation 77.0000 *F 14.6960 psia Calculation in progress

The brine is supersaturated with 3 solids: CaCO3, FeS, FeS Calculation Complete!

Figure 18-11 A warning that the sample is supersaturated.

Summary Content

Reconciliation summary

Water Analysis

The results of a reconciliation for pH, alkalinity and neutrality are reported for each sample.

mmary					
Unit Set: <cust< td=""><td>om></td><td></td><td></td><td></td><td></td></cust<>	om>				
Automatic Cher AQ (H+ ion) Public No Solid pha Custom K-fit Stream Paran Temperature (* Pressure (psia	Databank se(s) P-span neters: °F) 77.0 a) 14.6	s: 000 960		E	
Stream amount				-	
Dominant Ion (eg/L):	Charge	Balance	•		
Cation Charge	0.1996	39			
Anion Charge	-0.1994	36			
Imbalance	e-4				
lon(s) needeo CI-1 7.195	d to bala	nce (mạ	g/L):	L	
Measured pH	and Alk	alinity.			
Phase Amour	nts:				
Aqueous (g) 1	006.61				
Vapor (g)	0.0				
Aqueous Pha	se Prop	erties:			
pH	7.98	000			
Ionic Strength	(mol/mol)	4.35554	le-3		
Density (g/ml)		1.00	661		
Calc. elapsed		170 sec			
Calculation com	nplete			Ŧ	

Figure 18-12 The summary for a water analysis

Gas Analysis

The information that can be displayed for a gas analysis is rather limited. Unless a **Dew Point** calculation had been performed, the output is an echo of the input.

Unit Set: <custom></custom>	
	Fubic
Automatic Chemistry Model Aqueous (H+ ion) Databanks: Public	Second Liquid phase Custom K-fit P-span
Second Liquid phase Custom K-fit P-span	Dew Point Calculation 215.990 psia
Saturate Gas with H2O Calculation 264.900 °F 215.990 psia	264.900 °F
Phase Amounts Aqueous 1.00000e-6 mol Vapor 57.9947 mol Solid 0.0 mol 2nd Liquid 0.0 mol	Phase Amounts Aqueous 5.79947e-5 mol Vapor 57.9946 mol Solid 0.0 mol 2nd Liquid 0.0 mol
Aqueous Phase Properties pH 4.23000 lonic Strength 1.07249e-6 mol/mol Density 0.935644 g/ml Calc. elapsed time: 0.210 sec	Aqueous Phase Properties pH 4.22999 lonic Strength 1.07249e-6 mol/mol Density 0.935644 g/ml
Calculation complete	Calc. elapsed time: 0.190 sec

Figure 18-13 Gas Analysis Summary and the Dew Point summary

Node Summary

The brines and/or gases collected at the node are displayed along with the flow rate of each item. The temperature and pressure of the node is also displayed.

iummary				
Automatic Cherr				
Aqueous (H+ Public	ion) D	atabank	S:	
Excluding 116	6 solid	phases		
Custom K-fit I	P-span			
Node(s) Summ	nary:			
Skim Tank:			_	
Brine (bbl/day)	Field1	11000.0)	
Brine (bbl/day)	Field2	6000.00	D	
Suction Tank:				_
Brine (bbl/day)	Ski	im Tank	Calculated	
Brine (bbl/day)	Water	Supply	3000.00	
Selected Solid BASO4PPT	ls Sun	nmary:		
CACO3PPT				
CAS04.2H20				
CAS04PPT				
FEIICO3PPT				
FEIISPPT				

Figure 18-14 Node Summary Report

Overview of ScaleChem Output

There are three types of output which a user can request after a ScaleChem calculation: Plot, Reports, or File Viewer.

Summaries	
	Summaries is the default ScaleChem output. It is located on the right most corner of the software window under the calculate button.
	After a successful calculation, internal files produced by the OLI Solver are scanned for available sections of data which can be viewed. A list of the available sections is displayed when customize section is clicked open under the reports tab. This includes check boxes which can include, or eliminate a section in the report.
Report Section Selection	n
	Clicking on the individual check boxes toggles between including and eliminating that section from the report.
Facilities Summary	
	Report for each node and dropped phases are shown.
Pre-Scaling tendencies	
	Solids to be displayed can be chosen from an extensive list of possible precipitants.
A Guide to Using OLI Studio	310

Scaling Tendencies	
	Sorting options are more to choose from. TRANGES can be displayed. The solids analysis gives a report of the solids which precipitated (Scaled out), and of the pre-precipitation and post-precipitation scaling tendency.
	If the solid was not selected as a possible precipitate, but if the scaling tendency is greater than 1.0E-04, the solid is included in the analysis list. The amount of solid precipitated is left as 0.0, and the scaling tendency is reported.
Survey Parameters Stream An	nount, Temperature, pressure etc is reported.
OLI Speciation Report	
	When this report is available, the full speciation which the OLI Solver uses to perform an equilibrium calculation is given. This report is activated by requesting detailed output, using the <u>T</u> ools <u>Options menu choice</u> .
Convergence Pattern	
	When this report is available, the mathematical convergence pattern which was used in performing the equilibrium calculation is given. This report is not normally requested. It is included as a debugging aid when trying to identify convergence problems. This report is activated by requesting detailed output, using the <u>T</u> ools <u>Option menu choice</u> .

Plot

To view ScaleChem Plot Options click on Plot tab. This is located next to the design tab. This will show a default plot.

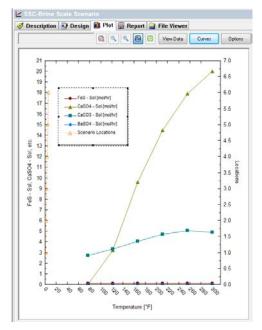
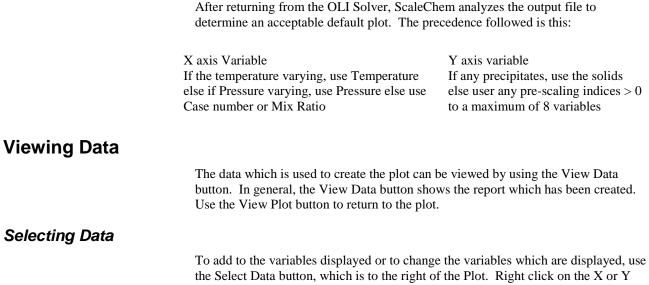



Figure 18-15 Displaying the Default plot

Determining the Default Plot

axis will pop up a format plot window. It has options like Format X-axis, Adjust Scale, Label Axes etc. Curves Button will prompt a Select data window.

		X Axis
Facilities Nodes Facilities Nodes	*	
Stream Parameters		>> Temperature
Calculation Parameters		
inflows		Y1 Axis
Additional Stream Parameters		CaCl2 Pre-scaling tendency
	-	CaCO3 Pre-scaling tendency
Vapor Solid	Ξ	BaSO4 Pre-scaling tendency
Solid Molecular Totals		
Pre-scaling Tendencies		
Gibbs Free Energy		Y2 Axis
Gibbs Free Energy Standard St	atı	
		>>
Entropy Standard State (x-base	d)	
MBG Aqueous Totals		<<
MBG Vapor Totals		
MBG Solid Totals		
MBG Second Liquid Totals	-	Z Axis
	F	- Select -
		- Select -

Figure 18-16 Selecting Data

Data Available

The list of variables which can be displayed are shown as Data Available. Stream parameters include Temperature and Pressure etc. Additional Stream parameters contain density, viscosity etc.

Selecting Data

To select different X and Y axis variables, highlight the variable in the Data Available box, and then click on >> button either before X or Y Axis. Of course, variables can also be removed from the axis variables by highlighting the selected variable, and clicking the << button.

Minimum Data Required

A minimum of one X variable and one Y variable must be selected from the Select Data facility, in order to leave Select Data. Of course, you always have the option of canceling, and returning to the original plot.

19. Scope of Corrosion Analyzer

Overview

Corrosion Analyzer[™] is a component of OLI Studio, which is OLI's Microsoft Windows[™] based simulation software. Corrosion Analyzer has evolved from the Corrosion Simulation Program (CSP) developed in the latter half of the 1990's.

The purpose of the CSP project was multifold:

- To create generalized "real solution" stability diagrams.
- Develop a comprehensive redox databank.
- To create a thermodynamic model for alloys.
- To develop a rates-of-corrosion model.
- Create a model for growth and breakdown of passive films.
- Create a model for localized corrosion.
- Create a model for predicting the time evolution of corrosion using extreme value statistics.

Much of the projected goals of the original CSP project have been completed but there is still much to do. Starting in year 1999, the CSP program was converted, with much effort, to Corrosion Analyzer.

This course assumes that the user is familiar with the basic functionality of OLI Studio. Many of the calculation techniques described in the OLI Studio User Guide are also used in Corrosion Analyzer.

Thermodynamics of Corrosion

The thermodynamics of corrosion is predicted using the traditional OLI thermodynamic model along with specific enhancements required for the Corrosion Analyzer. Specifically, the thermodynamics of corrosion answers the following questions:

- 1. When are metals immune to corrosion?
- 2. When can they passivate?

The tool that answers these questions is Stability diagrams.

Kinetics of general corrosion

Once the thermodynamics of corrosion have been determined, we would like to be able to predict rate of corrosion. Extensive research has been completed by OLI

Systems, Inc. in this area and will be discussed in later chapters. Specifically the question asked is:

What is the rate of corrosion?

A large database of corrosion data has been fit for this question. The program will determine amount of material that will corrode, in a generalized setting.

Other phenomena

Several other thermodynamic properties (not required to solve the equilibrium based model) were also developed for both the stability and rate of corrosion. Some of these phenomena are:

- Electrical conductivity
- Viscosity
- Diffusivity

Real-solution stability diagrams

The design goals of real-solution stability diagrams are:

- To predict the stability of metals, metal ions, oxides, etc. as a function of T, P and solution composition.
- Draw conclusions about the ranges of immunity to corrosion, possible passivation and dissolution of metals in the presence of species that promote or inhibit corrosion.

Some of the features of a real-solution stability diagram are:

- Potential versus pH with other variables fixed (a real-solution analog of the Pourbaix diagrams)
- Potential versus concentrations of active species (either inflows or species in equilibrium)
- Predominance areas as functions of concentrations of selected species without using E as an independent variable

Assumptions

We assume that you are already familiar with the OLI Studio software. We will not go into great discussions about how to use the software unless it is related to corrosion.

20. Generating Stability Diagrams in Corrosion Analyzer

An Example

Before we go into detail on how the diagram is created and how to interpret the results, we will walk through a sample stability diagram calculation for metallic iron in pure water at 25 $^{\circ}$ C and 1 atmosphere.

We begin by double-clicking the OLI Studio icon on the desktop or by using the Start menu.

OLIAnalyzer - [AnalyzerStudio4]	
📧 File Edit Streams Calculations Chemistry Tools View Window Help	_ & ×
📋 🖙 🖬 👗 🛍 💼 🥔 💡 📢 🗍 Aq Va So 2㎡ 🛛 Re 🗄 🦉 🗄 🕌 🎬 💱	<mark>≥ 🖓 /</mark>
Navigator a x	
Analyzeroludio4	
Streams Description Object Map	
Name: Streams Dat	x 9/10/2012 💌
Description	
Actions + + X Actions	
Add Stream Add Mixer	
Add Water Add Analysis Standard E	
Add Brine Add Oil Analysis Analysis	
🗇 📥 🔢	*
Add Gas Add	
For Help, press F1	

• Click on the <u>Add Stream</u> icon.

Figure 20-1 The OLI Studio main window.

• *Click* on the <u>Description</u> tab.

The **Description** tab is similar in functionality to other OLI software products. It is recommended that the user enter descriptive information to later identify the calculation and the streams.

🎻 De:	escription 🤯 Definition 📓 Report	
Name:	Iron Example Date: 9/10/2012 💌	
Descrip	ption	
Iron	in pure water at 25 C and 1 atmosphere	<u>^</u>
	7	v
•		4

Figure 20-2 The Description tab.

- Enter some descriptive information.
- Click on the **Definition** tab.

You may use the **Tools->Names Manager** menu option to change the display of the species.

If the units are not in moles, centigrade and atmospheres, select <u>Tools->Units Manager</u> and then select the <u>Standard</u> radio button. Select <u>Metric, moles</u> from the drop down box.

Jnits Manager - Stream	? 🗙	Set: Metric (moles)
Units Manager		omatic Chemistry Model (Q (H+ ion) Databanks: Public
Metric Batch Moles		Quick List Metric, moles
Customize		Metric, concentration Metric, molar concentration Metric, mass fraction
OK Cancel Apply	Help	Metric, mole fraction SI, moles / ESP SI English, moles / ESP English
		Metric, flowing, moles / ESP Metric Metric, flowing, concentration Metric, flowing, molar concentration

Figure 20-3 Units Manager

Enter Iron, Sodium Hydroxide and Sulfuric Acid to the grid as shown in Figure 20-4⁴⁴.

⁴⁴ Depending on the settings for names manager, the displayed names may be formulas or names.

	Variable	Value
~	Stream Parameters	
	Stream Amount (mol)	55.5082
	Temperature (°C)	25.0000
	Pressure (atm)	1.00000
<	Inflows (mol)	
	H2O	55.5082
	Fe	0.0
	NaOH	0.0
	H2SO4	0.0
		-

We are now ready to add a stability diagram to the calculation.

Click on the Add Stability Diagram icon in the Explorer/Actions panel.

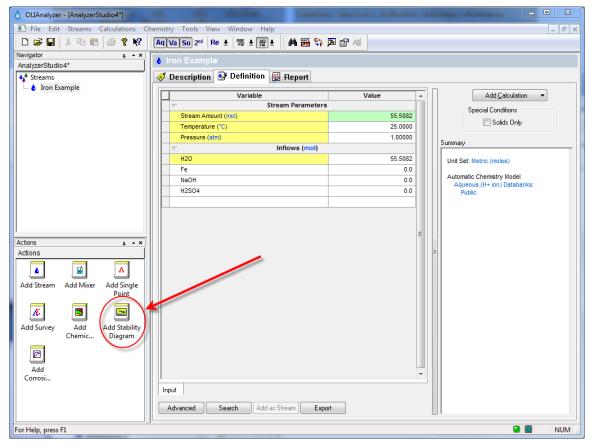


Figure 20-5 Adding a stability diagram.

Add a description if necessary by clicking on the **Description** tab. Otherwise, click on the **Definition** tab.

The diagram definition is not complete when you first enter the grid. The metal of interest (in this case iron) must be defined to the calculation as the surface metal. The pH titrants must also be defined (The defaults are HCl and NaOH)

Enter *Fe* as the <u>Contact Surface</u>

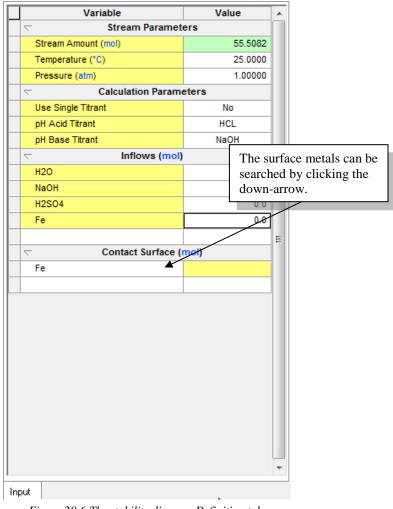


Figure 20-6 The stability diagram Definition tab.

Now we need to set up the titrants and ranges of calculations. We do not want to use HCl (hydrochloric acid) since the chloride ion complexes with both ferrous (Fe^{2+}) and ferric (Fe^{3+}) ions and will clutter our diagram.

Click on the Specs... button

The **Specs...** button has several tabs that should be reviewed.

Stability Options		? X
Category Axes Metal Activity	Display Choices Aqueous and Solid Lines Shading Shadin	
	OK Cancel Apply	Help

Figure 20-7 The X-variable Tab

Click on the <u>Axes</u> category. Choose the <u>Select</u> radio button in the <u>Titrants</u> section. This will enable the <u>pH Titrants</u> button.

X Axis	
PH Range Start 0 End 14 Titrants Auto HCI/NaOH @ Select PH Titrants	Y Axis Potential Range Start 2 V (SHE) End 2 V (SHE)
	Start 0 End 14 Titrants Auto HCI/NaOH

Figure 20-8 enabling the titrants button.

We wish to use sulfuric acid (H₂SO₄) and sodium hydroxide (NaOH) to adjust the pH.

Click on the **<u>pH Titrants</u>** button

As will other OLI applications, you can select an acid and a base.

Select Sulfuric Acid (H₂SO₄) as the acid titrant

Select Sodium hydroxide (NaOH) as the base titrant

Select Titrants	? ×
Titrants	
Hide Related Inflows	New Inflow
Acid	Base
H2O NaOH	H2O
H2SO4	NaOH H2SO4
HCI Fe	HCI Fe
re	
Select the acid and the base which v	vill be used to vary the pH
OK Car	Apply Help

Figure 20-9 Selecting sulfuric Acid and sodium hydroxide as titrants

Click on the \underline{OK} button

Click on the **Display** category. Look for the **Display Subsystems** section.

Stability Options	8 2
Category Display Axes Metal Activity	Display Choices Aqueous and Solid Lines Shading No shading Shade subsystem: Only Aqueous lines Show natural pH Show ORP Display Subsystems Chorine Iron Sodum Sufur
	OK Cancel Apply Help

Figure 20-10 Selecting displayed subsystems (using defaults)

The display of particular oxidation and reduction species and be turned on and off with the subsystems options. We want to see the various oxidation states of iron.

Check Iron and Water.

Look for the **Shading** section. Ensure that **Shade subsystems:** is selected.

The user as some control over how the stability diagram will display. In this case we will accept the defaults.

Click OK

We are now returned to the **<u>Definition</u>**. The <u>**Calculate**</u> light should now be green.

Click Calculate

The program will run for several moments and finish.

Click on the **<u>Stability Diagram</u>** tab.

The following diagram is the stability diagram for Iron in pure water at 25 centigrade and 1 atmosphere. These diagrams are also referred to as Pourbaix diagrams.⁴⁵

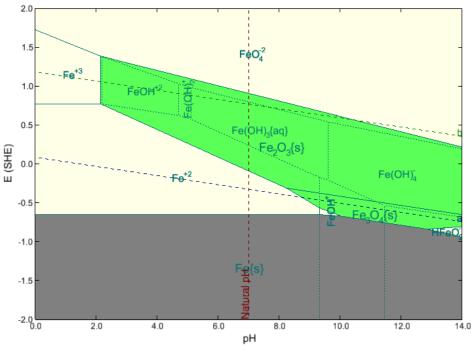


Figure 20-11 The finished stability diagram

How to Use Stability Diagrams

What is a redox subsystem?

• A set of species that contain a given element in all possible oxidation states.

Example: The iron subsystem consists of all species that contain Fe° , Fe^{2+} and Fe^{3+} .

What are the solid lines?

- Boundaries between stability areas of a solid and an aqueous species or two aqueous species.
- Boundary between an aqueous and a solid species: A solid starts to precipitate or dissolve in an aqueous phase.
- Boundary between two aqueous species: The conditions for which the activities of the species are equal.

What are the dashed lines?

• Boundaries between stability areas of two aqueous species that coexist with at least one solid phase.

⁴⁵ Marcel Pourbaix, "Atlas of Electrochemical Equilibria in Aqueous Solutions". Translated from the French by James. A. Franklin. Pergamon Press, Oxford (1965).

• They are found only within the stability ranges of solids.

What are the areas delimited by the solid lines?

- Stability fields of solid or aqueous species.
- If the conditions are within the stability field of a solid, the solid is stable and usually coexists with an aqueous phase

If the conditions are within the stability field of an aqueous species, no solid can be stable and this species is predominant in the solution.

What are the areas delimited by dashed lines?

- Stability fields of predominant aqueous species that coexist with one or more solid phases.
- Dashed lines can be found only within the stability fields of solid species.

Names of aqueous species that are predominant only in the presence of a solid phase but not in a homogeneous solution are printed with small characters. What is the line denoted by *a*?

- Equilibrium state between H^+ and H_2^0 :
 - The oxidized form (i.e., H⁺) is stable above this line;
 - The reduced form (i.e., H_2^{0}) is stable below it.

What is the line denoted by b?

- Equilibrium state between O_2^0 and O^2 -:
 - The oxidized form (i.e., $O_2^{(0)}$) is stable above this line;
 - The reduced form (i.e., O^{2-}) is stable below it.

Water (which is a combination of H^+ and O^{2-}) is stable between *a* and *b*.

Why is it useful to view a superposition of diagrams for selected subsystems?

- Corrosion is observed when oxidation of the metal of interest leads to the formation of soluble metal species and can occur simultaneously with some reduction reaction.
- Similarly, passivation is observed when the oxidation of the metal leads to the formation of a protective layer of a sparingly soluble compound.
- A line that represents a reduction reaction (e.g., reduction of atmospheric oxygen to water) must lie above the line that represents an oxidation reaction (e.g., oxidation of a metal to aqueous ions or a potentially passivating oxide).
- The corrosion potential will establish itself somewhere between the equilibrium potentials for the oxidation and reduction reactions.

• Thus, it is possible to find out whether a certain species from one subsystem can be oxidized and, simultaneously, a certain species from the other system can be reduced.

What is the range of immunity to corrosion?

Stability field of elemental metal.

What is the range of corrosion?

Stability fields of dissolved (ionic or neutral) metal species in which neither the metal nor passivating solids are stable.

What is the range of possible passivation?

Stability field of a sparingly soluble compound (usually an oxide or hydroxide or salt).

- This compound will form a layer on the surface of the metal, which may protect the metal from corrosion.
- Having determined that a layer is formed, it is necessary to verify whether it is protective or not because this depends on the crystalline structure of the sparingly soluble compound.

How to determine whether corrosion in the absence of oxygen is possible?

- In the absence of oxygen, the most common reduction reaction is the reduction of the proton to elemental hydrogen (as shown by line a)•For a corrosion process to proceed, the line a must lie above a line that corresponds to an equilibrium between the metal and metal-containing ions.
- In oxygen-containing solutions, O_2^0 can be reduced to H_2O (line **b**)
- For a corrosion process to occur, the line b must lie above a line that corresponds to an equilibrium between the metal and metal-containing ions.
- Passivation is likely if **b** lies above a line that corresponds to an equilibrium between the metal and a sparingly soluble compound.

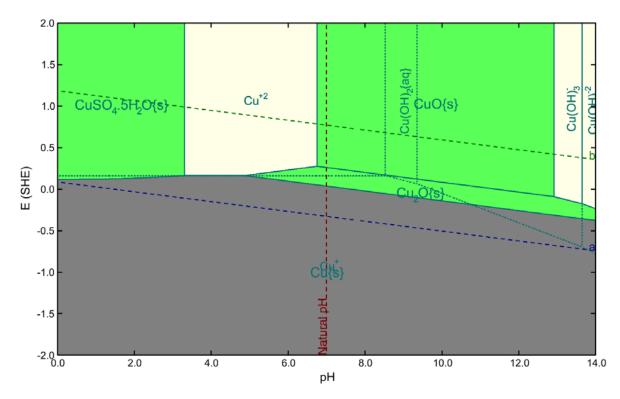


Figure 20-12 Stability diagram for Copper

Some conclusion about the copper diagram to be inserted

Features of real-solution stability diagrams

- Incorporation of solution non-ideality effects; there is no need to assume arbitrary values for the activities of species.
- Applicability to concentrated solutions.
- Applicability over wide temperature and pressure ranges.
- Usefulness for studying effects of various complexing, oxidizing and reducing agents because of OLI's comprehensive data bank.
- Facility to superimpose two or more stability diagrams to study interactions between different redox systems.
- Facility to screen various independent variables to find which one is really important.
- In contrast to the classical Pourbaix diagrams, pH variations result from adding realistic acids or bases.

You can download a worked copy of this chapter from the OLI Wiki Page

21. Generation of Stability Diagrams

Construction of real-solution stability diagrams

For each redox subsystem:

- 1. Construction of equilibrium equations.
- 2. Simulated titration to cover the whole range of independent variables.
- 3. Calculation of equilibrium lines for chemical reactions.
- 4. Calculation of equilibrium lines for electrochemical reactions.CA
- 5. Determination of predominance areas.

Construction of equilibrium equations

For each pair of species X and Y in a particular redox subsystem:

$$v_{X}X + \sum_{i=1}^{k} v_{i}A_{i} = Y + v_{e}e^{-1}$$

where: A_i – basis species

General Formula:

$$X \equiv M_{X_1} H_{X_2} O_{X_3} C_{X_4} D_{X_5} E_{X_6} \dots$$
$$Y \equiv M_{Y_1} H_{Y_2} O_{Y_3} C_{Y_4} D_{Y_5} E_{Y_6} \dots$$

M-element associated with the redox system.

Basis species: Species that contain H, O, C, D, E, etc., but do not contain M:

- (a) H⁺ is the basis species that contains H,
- (b) H₂O is the basis species that contains O,
- (c) The basis species containing C, D, E, etc. are the ones with the minimum possible number of hydrogen and oxygen atoms in addition to C, D, E...

Examples

For a system composed of Cu, NH3 and H2O:

$$X \equiv C u_{X_1} H_{X_2} O_{X_3} N_{X_4}^{-3}$$

Basis species: H⁺, H₂O, NH_{3(aq)}

For a system composed of Fe, H₂O and sulfur-bearing species:

$$X \equiv F e_{X_1} H_{X_2} O_{X_3} S_{X_4}^{-2} S_{X_5}^0 S_{X_6}^{+6}$$

Basis species: H⁺, H₂O, S²⁻, S⁰(s), SO₄²⁻

Cases when both the metal and ligands are subject to redox equilibria

- 1. Determine which basis species are stable in which area of the stability diagram.
- 2. Retain only the stable species in the basis and delete the remaining ones. The deleted species are not used for constructing the equilibrium equations.

Simulated titrations

- 1. Titrate with a selected reactant (an acid, base, complexing agent) to vary the independent variable of interest.
- 2. Equilibrium calculations at each titration point involve the simultaneous solution of chemical (acid-base and redox) equilibria as well as phase equilibria.
- 3. Calculate the equilibrium compositions and activity coefficients for each titration point.
- 4. Use the compositions and and activity coefficients to calculate equilibrium lines.

Equilibrium lines for chemical reactions

Affinity of a reaction between X and Y:

$$\frac{A}{RT} = -\frac{1}{RT} \left(\overline{G}_Y - \nu_X \overline{G}_X - \sum_{i=1}^k \nu_i \overline{G}_{A_i} \right) =$$
$$= \ln K - \left(\ln a_Y - \nu_X \ln a_X - \sum_{i=1}^k \nu_i \ln a_{A_i} \right)$$

• Construct a discrete function of the independent variable:

$$A_p = f(var_p)$$
, $p = 1...N$

• Find the root:

 $f(var_0) = 0$

Check which species are stable at var < var₀ and which at var > var₀.

Calculate equilibrium potentials for each pair of species X and Y:

$$E = E^{0} + \frac{RT}{Fv_{e}} \left(\ln a_{Y} - v_{X} \ln a_{X} - \sum_{i=1}^{k} v_{i} \ln a_{A_{i}} \right)$$
$$E^{0} = \frac{\overline{G}_{Y}^{0} - v_{X} \overline{G}_{X}^{0} - \sum_{i=1}^{k} v_{i} \overline{G}_{A_{i}}^{0}}{Fv_{e}}$$

Construct a discrete function of the independent variable:

$$E_p = g(var_p)$$
 $p=1,...N$

Approximate the function using splines.

Determination of predominance areas

For each species:

- 1) Determine the boundaries:
 - a) Upper boundaries: Equilibria with species in higher oxidation states
 - b) Lower boundaries: Equilibria with species in lower oxidation states
 - c) Right-hand side boundaries: Other species are more stable at higher independent variables
 - d) Left-hand side boundaries: Other species are more stable at lower independent variables
- 2) Find intersections between boundaries
- 3) Determine which boundaries are active

22. A Tour of Corrosion Analyzer

Overview

We will now take a brief tour of the Corrosion Analyzer. We will first study the stability diagram for iron in pure water and then the stability diagram for iron in the presence of hydrogen sulfide.

Iron in Water

Double-Click on the OLI Studio icon on the desktop or select it from the Programs menu.

After the splash screen displays you will see main screen for analyzers.

Click the Add Stream icon to begin.

Select the <u>**Definition**</u> tab of the newly created stream. This is the default view for all new streams. You can use the default name or use the <u>**Description**</u> tab to rename the stream.

- *Click* on the <u>Description</u> tab.
- Enter the name *Generic Iron*.
- Enter the description *Generic iron with H2S*.

OLIAnalyzer - [AnalyzerStudio5*]	
🔳 File Edit Streams Calculations Chemistry Tools View Window Help	- 8 ×
🗅 😂 🖬 👗 🖻 🖻 🔗 🕅 🖓 🗛 🔽 🗛 🗛 🗠 🛤 🖢 🦮 🖢 🎆 🖢 🎆 🍁 🎆 🍁	
Navigator # * & Generic Iron.	
AnalyzerStudio5"	
Streams Streams Streams	
Generic Iron.	
Name: Generic Iron. Date: 9/10/2012	
Description	
Generic iron with H2S.	^
Actions q X	
Summary	
Add Stream Add Mixer Add Single	<u> </u>
Point Unit Set: Metric (moles)	
R Automatic Chemistry Model	
Aqueous (H+ ion) Databanks: Add Survey Add Add Stability Public	
Chemic Diagram	
Add Corrosi	
	-
For Help, press F1	I NUM

Figure 22-1 The Description tab.

As in other OLI Studio modules, you may perform single point and multiple point (survey) calculations. You may also study stability diagrams and perform rate calculations.

For this tour, we will first define the stream.

• Click on the **<u>Definition</u>** tab.

Variable V Stream Parameters Stream Amount (mol) Temperature (*C) Pressure (atm) C Inflows (mol) H2O	55.5082 25.0000	Add Calculation
Stream Amount (mol) Temperature (*C) Pressure (atm) \(\nabla\)	25.0000	
Temperature (*C) Pressure (stm) C Inflows (mol)	25.0000	
Pressure (atm) C Inflows (mol)		
✓ Inflows (mol)		Solids Only
	1.00000	Summary
H20		Summary
	55.5082	Unit Set: Metric (moles)
put		Automatic Chemistry Model Aqueous (H+ ion) Databanks: Public

Figure 22-2 Default stream definition grid.

The units for this stream may not be in the set required for the tour.

• Click on the **<u>Tools</u>** menu item.

The **Tools** menu will be displayed. Select **Units Manager** the list.

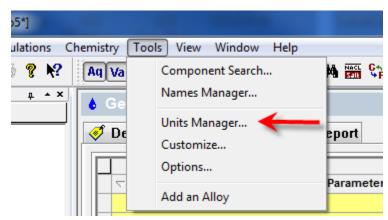


Figure 22-3 Tools Menu

We wish to use metric units. Click the down-arrow in the drop-down list box under the **Standard** radio button.

Inits Manager - Stream	×	Set: Metric (moles)
Units Manager		omatic Chemistry Model (Q (H+ ion) Databanks: Public
Metric Batch Moles Moles		Quick List
		Metric, moles
		Metric, concentration
Customize		Metric, molar concentration
Customizer		Metric, mass fraction
		Metric, mole fraction
OK Cancel Apply Help		SI, moles / ESP SI
		English, moles / ESP English
		Metric, flowing, moles / ESP Metric
		Metric, flowing, concentration
		Metric, flowing, molar concentration

Figure 22-4 Default Units Manager

Scroll down and select Metric, moles.

We now have the correct units for the tour. Enter the following species into the grid:

Fe NaOH H₂SO₄

<u>Note:</u> The display name may change these to a "Spelled out" display. You can use the <u>Names Manager</u> in the <u>Tools</u> menu to alter the display as you desire.

	Variable	Value
~	Stream Parameters	
	Stream Amount (mol)	55.5082
	Temperature (°C)	25.0000
	Pressure (atm)	1.00000
$\overline{\nabla}$	Inflows (mol)	
	H2O	55.5082
	Fe	0.0
	NaOH	0.0
	H2SO4	0.0

Figure 22-5 Stream definition in correct units.

Water is the default species and defaults to a value of 55.5082 moles.

Leave the remaining fields blank. Thus, we will simulate the behavior of iron in water at ambient conditions. Note that it is not necessary to include any Fe (i.e., iron) in the stream composition. Although it is permissible to include a corroding metal in the stream, it would not correspond to reality (e.g., a steel pipe is not a component of a stream) and would markedly increase the computation time.

We now need to verify that oxidation and reduction have been turned on in the chemistry model.

• Click on the <u>Chemistry</u> menu item and then select <u>Model Options...</u>

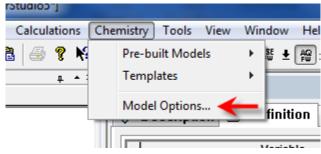


Figure 22-6 Chemistry Menu Items

This will display the model options.

• Click on the **<u>Redox</u>** tab.

Generic Iron. Chemistry Model Options				
Databanks Databanks Thermodynamic Framework Aqueous (H+ ion)				
Available Selected Geochemical Corrosion Ceramics Low Temperature Refrigerants Alloys Heat Pump Fluids MSF Geochemical				
Import Databank Databank search order is from top to bottom. Use the Up and Down arrows to change the search order.				
OK Cancel Apply Help				

Figure 22-7 Model Options

We will now verify that the iron subsystems have been selected.

Generic Iron. Chemistry Model Options
Databanks Redox Phases T/P Span
Include Subsystems
OK Cancel Apply Help

Figure 22-8 The selected redox subsystems.

Another way to make sure Redox is turned on is look at the top toolbar. Re button should be selected.

s Chemistr	/	Too	pols Vi <u>ew</u> Window Help	
N? Aq	fa (So	o 2″(Re ±) 1% ± ∰ ± ∰ ∰ \$; ⊅ 🖆 ۸∕	
д • ×	E		Stability Diagram	
		Í	🕈 Description 😻 Definition 🛍 Stability Diagram 📓 Report	
			Variable Variable	
			Variable	
				Stream Parame
			Stream Amount (mol)	
			Temperature (°C)	
			Pressure (atm)	
		\vdash		Calculation Param

Figure 22-9 Shortcut to switch Redox On

You are free to choose all redox subsystems; this will usually result in longer computation times. It is advisable to choose the redox systems that are relevant to the studied corrosion processes.

In our example, we will choose the iron and sulfur systems. This means that the program will consider all redox states of iron (i.e., 0, +2 and +3) and those for sulfur (-2 to +6). You have the ability to turn individual redox elements on or off by expanding the element tag.

For the moment, leave the sulfur subsystem unchecked. We will eventually select sulfur when we add the hydrogen sulfide.

• Click on the <u>**OK**</u> button to return to the definition.

We have now defined the stream.

Now click on the <u>Add Stability Diagram</u> Icon in the <u>Explorer/Actions</u> panel.

You can enter descriptive information if you want. Otherwise, click on the **Definition** tab.

Table 22-1Changing Conditions

Parameter	Value	Comment
Stream Amount (mol)	55.5082	Default value
Temperature (°C)	25	
Pressure (atm)	1.0	
H2O (mol)	55.5082	Default Value
Contact Surface	Fe	

< Description 🦉 Definition 🛍	Stability Diagram		Ż	Report
Variable	Value	_	٢	Type of diagram
Stream Paramet		-		Pourbaix Diagram 🔻 Specs
Stream Amount (mol)	55.5082			
Temperature (°C)	25.0000			Calculate 🥝
Pressure (atm)	1.00000			
Calculation Parame	eters			Summary
Use Single Titrant	No			Unit Set: Metric (moles)
pH Acid Titrant	HCL			
pH Base Titrant	NaOH			Automatic Chemistry Model AQ (H+ ion) Databanks:
🗢 Inflows (mol)				Corrosion
H2O	55.5082			Public
NaOH	0.0			Redox selected
H2SO4	0.0			Stability diagram: E vs pH
Fe	0.0	=		User-selected titrants
				Acid: Base: NaOH
Contact Surface (mol)			
Fe				Range on E:
				-2.00000 to 2.00000 V (SHE) Range on pH:
				0.0 to 14.0000
				Subsystems
				Water
				Alloy Activity Module: Activated
				Calculation not done
	L	-		
Input				
Advanced Search Add as St	ream Export			

Figure 22-10 Diagram Definition

We now have some work to do to set up the calculation. Although the <u>Calculate</u> button is green we need additional information before we start calculating. We need to set some additional parameters for this tour.

We need to specify our surface metal. Frequently this will be Iron, as it is in this case, but we may use other metals. We also need to specify the titrants that will adjust the pH of the solution.

The summary box displays the current information about the calculation.

• Add the species Fe to the <u>Contact Surface</u> grid (if not already added)

Description 🤮 Definition 🛍	Stability Diagram	🔯 I	Report
Variable	Value		Type of diagram
Stream Paramete	ers		Pourbaix Diagram 🔻 Specs
Stream Amount (mol)	55.5082		
Temperature (°C)	25.0000		Calc <u>u</u> late 🥝
Pressure (atm)	1.00000		Summary
Calculation Parame	eters		Summary
Use Single Titrant	No		Unit Set: Metric (moles)
pH Acid Titrant	HCL		
pH Base Titrant	NaOH		Automatic Chemistry Model AQ (H+ ion) Databanks:
√ Inflows (mol)			Corrosion
H2O	55.5082		Public Redox selected
NaOH	0.0		Redox selected
H2SO4	0.0		Stability diagram: E vs pH
Fe	0.0	=	User-selected titrants
			Acid: Base: NaOH
	mol)	>	Dase. Naon
Fe			Range on E:
		•	Range on pH: 0.0 to 14.0000 Subsystems Iron Water Alloy Activity Module: Activated Calculation not done
Advanced Search Add as St	ream Export		

Figure 22-9 Adding Fe to the Contact Surface list.

Click on the **Specs...** button to fill out the remaining information.

• Click on the <u>Axes</u> category.

Category	Plot Variables	
— Display — Axes — Metal Activity	X Axis pH Range Start 0 End 14 Titrants Auto HCI/NaOH © Select pH Titrants	Y Axis Potential Range Start 2 V (SHE) End 2 V (SHE)

Figure 22-10 Select Titrants

Choose the <u>Select</u> radio button in the <u>Titrants</u> box. This will enable the <u>pH Titrants</u> button.

We now need to select an acid and a base. Select H_2SO_4 as the acid (Sulfuric Acid) and NaOH as the base (sodium hydroxide).

Select Titrants	8 X
Titrants	
✓ Hide Related Inflows	New Inflow
Acid	Base
H2O	H2O
NaOH H2SO4	NaOH H2SO4
HCI	HCI
Fe	Fe
Select the acid and the base which w	ill be used to vary the pH.
OK Can	cel Apply Help

Figure 22-11 Choose an acid and base

• Click <u>OK</u>

The Y-Variable specifies voltage (E) as the variable; we wish to continue using it so will skip the category.

• Click on the **Display** category.

Stability Options	
Category Axes Metal Activity	Display Choices Aqueous and Solid Lines Shading Superimpose lines No Aqueous lines Only Aqueous lines Show natural pH Show ORP Display Subsystems Chorine Iron Water Sodum Sulfur
	OK Cancel Apply Help

Figure 22-12 Make sure the Sulfur subsystem is unchecked.

Notice the **Display Subsystems** list. This tab will only display the selected subsystems. In this case only iron and water will be displayed. The subsystems are still calculated if they are not checked, merely not displayed.

Accept the default entries for the other options in this category.

• Click on the *OK* button.

We are now ready to calculate. Click the Calculate button and wait for the calculation to finish.

Once the calculation has finished, click on the **<u>Stability Diagram</u>** tab.

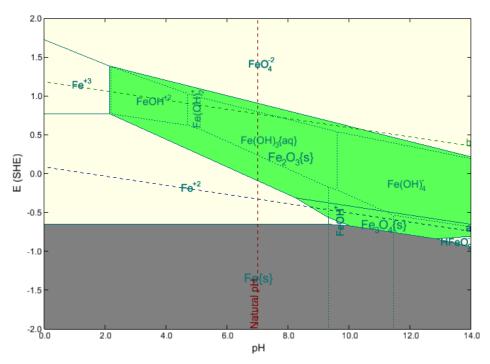


Figure 22-13 A Pourbaix diagram for iron

The obtained diagram is useful for assessing the corrosion behavior of iron. First, the equilibrium lines between elemental iron (i.e., Fe(s)) and other species can be found.

As shown in the diagram, elemental iron can be oxidized to the Fe^{2+} ions (i.e., FE+2) in acidic, neutral and weakly alkaline solutions (for pH below ca. 9.5) and to the $Fe(OH)_{3^{-1}}$ ions (i.e., FEIIOH3-1) in alkaline environments (for pH above ca. 11.5).

The oxidation of iron can be coupled with the reduction of the H⁺ ions because the H⁺/H₂^O equilibrium line (denoted by a) lies always above the lines that represent the oxidation of iron. Therefore, corrosion of iron can occur with the evolution of hydrogen and formation of soluble iron-containing ions (either Fe²⁺ or Fe(OH)₃⁻).

Adding Hydrogen Sulfide

We will now add 1.0×10^{-4} moles of H_2S to the stream.

Click on the **Definition** tab.

In the grid, add hydrogen sulfide (H₂S) to the stream at a rate of 1.0000E-04 moles.

Click on the <u>Chemistry</u> menu item and select <u>Model Options...</u>

• Click on the **<u>Redox</u>** tab.

Select *Sulfur* from the list; *Iron* should also be checked.

Stability Diagram Chemistry Model Options	\$ ×
Databanks Redox Phases T/P Span	
Include Redox Chemistry	
Include Subsystems	л II
 Hon Iron Isodium Isodium Isodium Isolium 	
OK Cancel Apply	Help

Figure 22-14 Enabling the sulfur redox subsystem.

	Variable	Value	-	
$\overline{\nabla}$	Stream Parameters		П	
	Stream Amount (mol)	55.5083		
	Temperature (°C)	25.0000	1	
	Pressure (atm)	1.00000		
$\overline{}$	Calculation Parameter	rs		
	Use Single Titrant	No		
	pH Acid Titrant	H2SO4		
	pH Base Titrant	NaOH		
$\overline{\nabla}$	Inflows (mol)			
	H2O	55.5082		
	Fe	0.0		
	NaOH	0.0		
	H2SO4	0.0		
	H2S	1.00000e-4	:	
Г	-		1	
~	Contact Surface (mo)	1	
	Fe		1	
			1	
			1	
		N	L	
		13		

Figure 22-15 Add Hydrogen Sulfide

Though calculation is set up, use the **Specs...** button to review the settings. The only change will be in the subsystems. Since we are now calculating the sulfur redox subsystems, we want to make sure that we are displaying them correctly.

Check the sulfur subsystems.

ability Options	Tama	
Category Display Axes Metal Activity	Display Choices Aqueous and Solid Lines Shading No Shade subsystem: Only Aqueous lines Show ORP Display Subsystems	
	☐ Chlorine ☑ Iron ☑ Water ☐ Sodum ☑ Sulfur	

Figure 22-16 Turn on display on for Sulfur.

• Click the <u>OK</u> button

Click the Calculate button when you are ready. When the calculation finishes, click the **Stability Diagram** Tab.

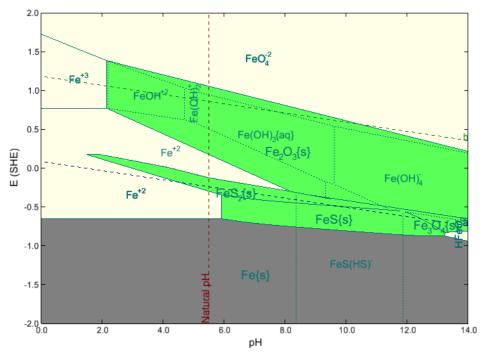


Figure 22-17 The stability diagram with Sulfur.

Inspection of the diagram reveals a profound effect of H_2S on the corrosion of iron. In addition to the species that were present in the first diagram, new stability fields of FeS and FeS₂ are observed. In particular, elemental Iron is found to be in equilibrium with FeS over for pH values ranging from ca. 6.0 to 12.5.

Since the Fe/FeS equilibrium line lies below the H^+ reduction line (a), a process consisting of the reduction of H^+ to H^0 and oxidation of Fe to FeS is likely in de-aerated environments. FeS forms a passive film and offers some protection against corrosion.

In fact, the protection due to the formation of FeS is possible over a much wider pH range than that due to the formation of Fe $_3O_4$ (magnetite) in the absence of H $_2S$. This has important implications for corrosion in refinery installations, where H $_2S$ frequently occurs.

You can download a worked example for this chapter from the OLI Wiki Page

23. Modeling the Effects of Acidity & Alkalinity on Corrosion

Overview

In this section we take a brief look at the effects of acidity and alkalinity on corrosion. You should already be familiar with many of the features and controls of the Corrosion Analyzer; thus we will not dwell on the intricate details.

In this section we will generate a stability diagram for iron in water at high temperature, simulating a high temperature boiler. We then create a stability diagram for alkaline neutralization in an oil refinery.

High Temperature Iron in Water

Using the skills you already know, create a stream and stability diagram definition for the following condition:

Table 23-1 High Temperature	Iron Example Parameters
-----------------------------	-------------------------

Parameter	Value	Comment
Stream Amount (mol)	55.5082	Default value
Temperature (°C)	300	
Pressure (atm)	150	
H2O (mol)	55.5082	Default Value
Base Titrant	NaOH	No initial value
Acid Titrant	HCl	No Initial Value
Contact Surface	Fe	

As with the previous tour, the contact surface will be iron (Fe). The titrants will be hydrochloric acid (HCl) for the acid and sodium hydroxide (NaOH) for the base. Allow for only the iron subsystem to be displayed.

The input grid should look like the following figure:

🕅 Description 🧕 Definition 📓 R	eport		
Variable	Value	10 Г	Add <u>C</u> alculation 🔹
	rs		cial Conditions
Stream Amount (mol)	55.5082	sper	
Temperature (°C)	300.000		🔲 Solids Only
Pressure (atm)	150.000	Summary	
Inflows (mol)		Summary	
H2O	55.5082	Unit Set: M	letric (moles)
Fe	0.0		0
NaOH	0.0		Chemistry Model ion) Databanks:
HCI	0.0	Corro	sion
		Public	
		2	
put			
Advanced Search Add as Strea	Export		

Figure 23-1 The stream definition.

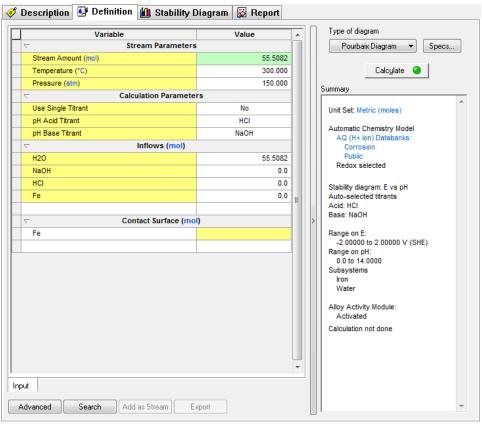


Figure 23-2: The definition grid prior to calculation.

Click the <u>Calculate</u> button. When the calculation has finished, click the <u>Stability</u> <u>Diagram</u> tab.

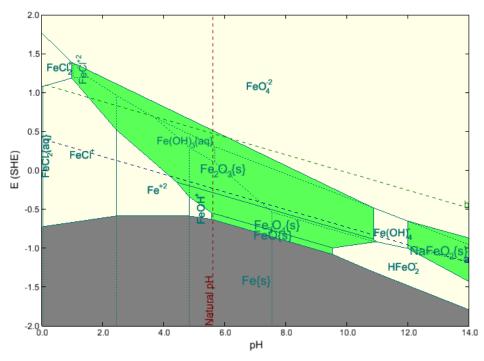
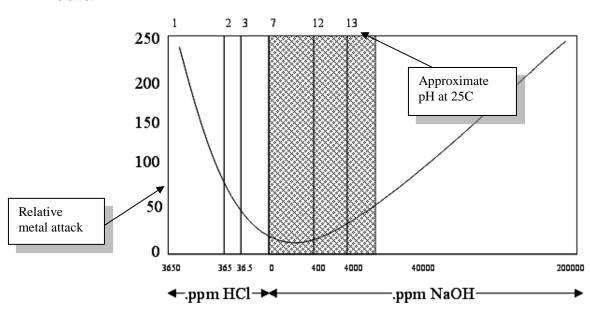



Figure 23-3 Iron in water at 300 °C and 150 atmospheres.

We can see from the diagram that passivation is only possible at moderate pH's.

How does the prediction of passivation relate to corrosion rate data?⁴⁶

The hatched area corresponds to the stability of a passivation layer. The corrosion rate is greatly reduced when a passivation layer is present.

Neutralization of Refinery Streams with Alkanolamines

Create a Stream Definition for the following conditions

Parameter	Value	Comment
Stream Amount (mol)	55.5082	Default value
Temperature (°C)	50	
Pressure (atm)	1	
H2O (mol)	55.5082	Default Value
Acid Titrant	HCl	No initial value
Base Titrant	DEA ⁴⁷	No Initial Value
C8H18 (mol)	2E-07	

Table 23-2 Alkanolamine Example

Figure 23-4 Relative metal attack v. pH and titrant concentration

⁴⁶ Relative corrosion rate data as a function of HCl and NaOH added to Solution (Partridge and Hall, Trans. Am. Soc. Mech. Eng. 1939, 61, 597)

⁴⁷ The "ESP" name for this species is DEXH, which can be used as an input to make your life easier. The formula name is: HN(C2H4OH)2

C7H16 (mol)	8E-07	
C3H8 (mol)	1.2E-04	
C4H10 (mol)	2E-05	
C5H12 (mol)	7E-6	
C6H14 (mol)	2E-6	
H2S	0.01	
Contact Surface	Fe	

The input grid should look approximately like this:

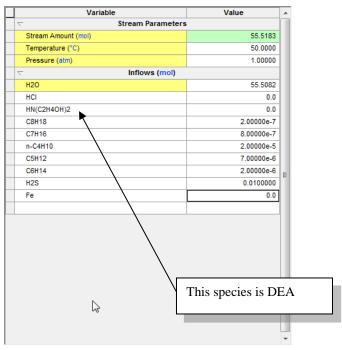
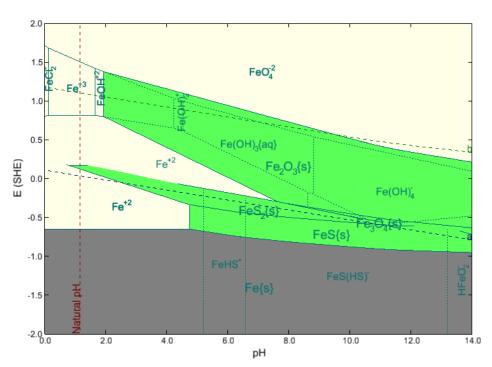


Figure 23-5 Stream input grid.

Create a stability diagram as in previous chapters

Variable	Value			Type of diagram
C Stream Parameters	5			Pourbaix Diagram 🔻 Specs
Stream Amount (mol)	55.5184			
Temperature (°C)	50.0000			Calc <u>u</u> late 🥝
Pressure (atm)	1.00000	1		Summary
Calculation Parameter	ers			
pH Acid Titrant	HCI			Unit Set: Metric (moles)
pH Base Titrant	NaOH			
Neutrals (mol)				Automatic Chemistry Model AQ (H+ ion) Databanks:
H2O	55.5082			Corrosion
HCI	0.0			Public
HN(C2H4OH)2	0.0			Redox selected
H2S	0.0100000			Stability diagram: E vs pH
C8H18	2.00000e-7	Ξ		Auto-selected titrants
C7H16	8.00000e-7			Acid: HCI Base: NaOH
C3H8	1.20000e-4			base: NaOn
C4H10	2.00000e-5			Range on E:
C5H12	7.00000e-6			-2.00000 to 2.00000 V (SHE) Range on pH:
C6H14	2.00000e-6			0.0 to 14.0000
NaOH	0.0			Subsystems
Fe	0.0			Iron Water
Contact Surface (mo				Alloy Activity Module:
Fe	70			Activated
16				Calculation not done
		4		
		Ŧ		
ut				

Figure 23-6: The stability diagram definition.


Remember to use the **Specs...** button to select the pH titrants. You are using HCL and DEA as the titrants.

Let's review the redox subsystems via Chemistry | Model Options | Redox

Make sure *Sodium* is not checked in the list of included subsystems and that Sulfur is checked in the <u>Redox</u> section of the chemistry model options.

Stability Diagram-1 Chemistry Model Options	2	x
Databanks Redox Phases T/P Span		
Include Redox Chemistry		
Include Subsystems		
in v Iron in v Isodium		
i verti sulfuri		
OK Cancel Apply	Н	elp

23-7: Selecting the redox subsystems from the chemistry model options.

Click the <u>Calculate</u> button when you are ready. When the calculation finishes, click on the <u>Stability Diagram</u> tab.

Figure 23-8 The stability of iron in DEA solutions.

You can download a worked example for this chapter from the OLI Wiki Page

24. Modeling the Effects of Complexation on Corrosion

Overview

We continue to review the Corrosion Analyzer and its capabilities in modeling corrosion. In this section we will simulate the reaction of Copper with Ammonia and Gold metal with Cyanide.

This section attempts to answer the question of how strong complexing agents affect the passivation of these metals.

Copper and Ammonia

Create a stream with the following conditions:

Table 24-1 Copper and Ammonia complexing example

Parameter	Value	Comment
Stream Amount (mol)	55.5082	Default value
Temperature (°C)	25	
Pressure (atm)	1	
H2O (mol)	55.5082	Default Value
Acid Titrant	HCl	No initial value
Base Titrant	NaOH	No Initial Value
NH3	0	No Initial Value used as a complexing agent
Contact Surface	Cu	

As with the other tours, please set the names manger to suit your personal preferences for names display.

Create a stability diagram using the above stream.

Verify that only Copper is the selected redox subsystem using the <u>Chemistry</u> menu item and <u>Model Options</u>.

The completed grid should look similar to the following figure:

Variable	Value	•	Type of diagram
C Stream Parameters			Pourbaix Diagram 🔻 Specs
Stream Amount (mol)	55.5082	2	
Temperature (°C)	25.0000		Calc <u>u</u> late 🥝
Pressure (atm)	1.00000		Summary
Calculation Parameters			
Use Single Titrant	No		Unit Set: Metric (moles)
pH Acid Titrant	HCI		Automatic Chemistry Model
pH Base Titrant	NaOH		AQ (H+ ion) Databanks:
			Corrosion
H2O	55.5082	2	Public Redox selected
HCI	0.0		Redux selected
NaOH	0.0		Stability diagram: E vs pH
NH3	0.0	⊨	Auto-selected titrants
Cu	0.0		Acid: HCI Base: NaOH
			> buse haon
Contact Surface (mol)			Range on E:
Cu			-2.00000 to 2.00000 V (SHE) Range on pH:
			0.0 to 14.0000
			Subsystems
			Copper Water
			Alloy Activity Module: Activated
			Calculation not done
			Calculation not done
		Ŧ	
ut			

Figure 24-1 The Cu-Ammonia stability diagram definition.

Click on the $\underline{Calculate}$ button when ready.

When the calculation has finished, click on the **<u>Stability Diagram</u>** tab.

The following diagram should be displayed.

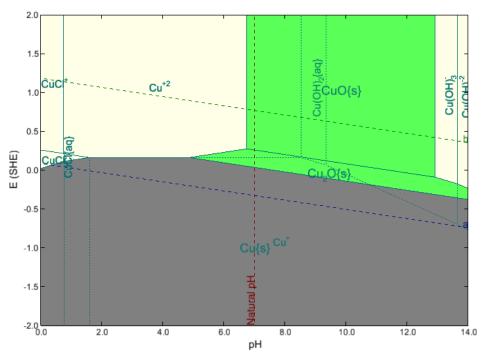


Figure 24-2 The stability diagram of Copper in the presence of Ammonia at 25° C and 1 atm.

In the absence of oxygen (looking at only the a line). We can see that the copper equilibrium line lays above the hydrogen a line. This means there is insufficient oxidizing power in the water to corrode copper metal in pure water.

We now wish to see the effects of ammonia on the stability of copper. Click on the <u>Definition</u> tab and enter 0.1 moles of NH3. The diagram should still be set up, click on the <u>Calculate</u> button to start. When the calculation has finished, click on the <u>Stability Diagram</u> tab once again.

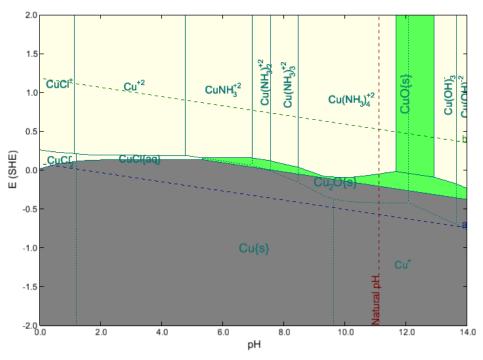


Figure 24-3 The effect of adding 0.1 moles of ammonia on the stability diagram.

A large area of corrosive liquid has appeared in the stability field for the copper oxides. This means that it is thermodynamically possible for the ammonia to break down the passivation layer of copper oxide in the presence of oxygen. Notice that in the absence of oxygen (the a line only), copper is still stable.

Now repeat the exercise with 1.5 moles of NH3.

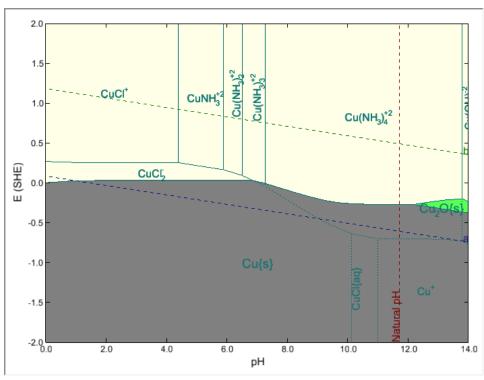
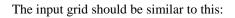


Figure 24-4 The effect of adding 1.5 moles of ammonia on the stability diagram.


At this concentration of ammonia, most, if not all the passivating copper oxide has been reacted away. Only at very high pH values are there any stable oxides.

Gold in the presence of Cyanides

Create a new stream with the following composition:

Table 24-2 Gol	'd in the	presence	of cyanide
----------------	-----------	----------	------------

Parameter	Value	Comment
Stream Amount (mol)	55.5082	Default value
Temperature (°C)	25	
Pressure (atm)	1	
H2O (mol)	55.5082	Default Value
Acid Titrant	HCI	No initial value
Base Titrant	NaOH	No Initial Value
NaCN	0	No Initial Value used as a complexing agent
Contact Surface	Au	

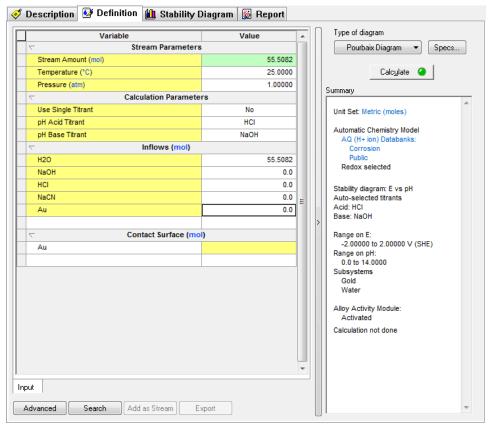


Figure 24-5 The Gold-Cyanide stability diagram definition.

Click on the <u>Calculate</u> button when you are ready. When the calculation has finished, click on the <u>Diagram</u> tab.

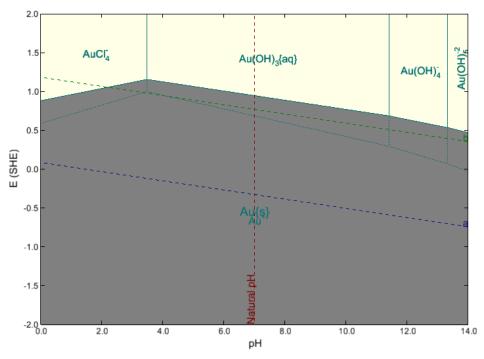


Figure 24-6 The stability diagram of Gold in the presence of Cyanide at 25° C and 1 atm.

You can see that without oxygen, gold metal is immune to corrosion. The hydrogen line a is below the gold equilibrium line. In the presence of oxygen, gold is still immune to corrosion except at very low pH.

Now repeat the exercise with 1.0E-04 moles of NaCN.

The figure should look like this:

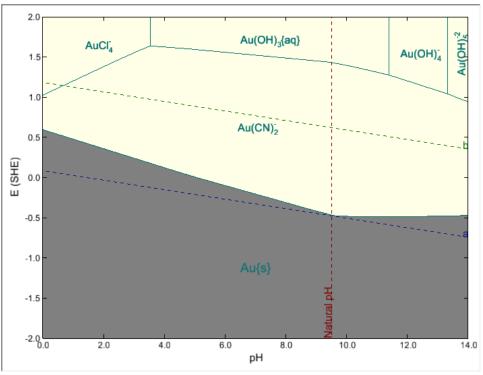


Figure 24-7 The effect of adding 1.0E-04 moles of NaCN on the stability diagram.

In the presence of oxygen, gold completely corrodes with cyanide. This is primarily due to the gold complex: $Au(CN)_2^{-1}$. You can download a worked example of this chapter from the <u>OLI Wiki Page</u>

25. Modeling the Effect of Oxidizing Inhibitors on Corrosion

Overview

In this chapter we will look at the effect of modeling corrosion inhibitors. We will do this by superimposing two stability diagrams over one another. If one solid field overlaps the corrosion range of the other system, then passivation is likely.

Iron in the presence of chromates

Create a stream with the following composition:

Parameter	Value	Comment
Stream Amount (mol)	55.5082	Default value
Temperature (°C)	25	
Pressure (atm)	1	
H2O (mol)	55.5082	Default Value
Acid Titrant	HCl	No initial value
Base Titrant	NaOH	No Initial Value
K2CrO4 (mol)	0.001	Used as an corrosion inhibitor
Contact Surface	Fe	
Contact Surface	Cr	

Table 25-1 Inhibition using chromates

Create a stability diagram using the above stream. Select both Fe and Cr oxidation and reduction subsystems. In this case, the two metals will be used in addition to water in the redox subsystems.

Use the <u>Chemistry</u> model item and <u>Model Options > Redox</u> to ensure that Chromium and Iron are selected in the <u>Included Subsystems</u> list.

Stability Diagram Chemistry Model Options	
Databanks Redox Phases T/P Span	
✓ Include Redox Chemistry	
OK Cancel Apply Help	

Figure 25-1 Selecting subsystems.

The filled out definition for the stability diagram should look like the following figure:

🦪 Description 🧕 Definition 🛍 Stability E	Diagram 🔯 Report			
Variable	Value		1	Type of diagram
Stream Parameters	•			Pourbaix Diagram 🔻 Specs
Stream Amount (mol)	55.5092			
Temperature (°C)	25.0000			Calc <u>u</u> late 🥝
Pressure (atm)	1.00000			Summary
Calculation Paramete	rs			Summary
Use Single Titrant	No			Unit Set: Metric (moles)
pH Acid Titrant	HCI			Automatic Chamistra Madel
pH Base Titrant	NaOH			Automatic Chemistry Model AQ (H+ ion) Databanks:
				Corrosion
H2O	55.5082			Public Redox selected
НСІ	0.0			
NaOH	0.0			Stability diagram: E vs pH
K2CrO4	1.00000e-3	Ξ		Auto-selected titrants
Fe	0.0			Acid: HCI Base: NaOH
Cr	0.0		>	
				Range on E: -2.00000 to 2.00000 V (SHE)
Contact Surface (mo)			Range on pH:
Fe				0.0 to 14.0000
Cr				Subsystems Chromium
				Iron
				Water
				Alloy Activity Module:
				Activated
			Calculation not done	
Input				
Advanced Search Add as Stream Export				

Figure 25-2 The filled out grid. Note that two metals are used.

We want to shade the chromium subsystem instead of the default iron subsystem. Click the **Specs...** button and then select the **Display** category.

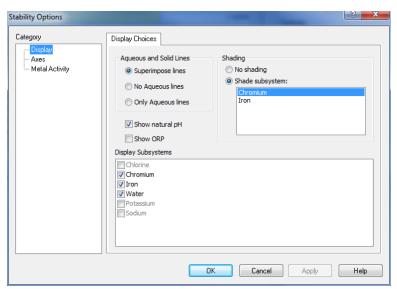


Figure 25-3 Selecting chromium to be shaded.

Click on the **OK** button, and then click **Calculate**. When the calculation has finished, click the **Stability Diagram** tab.

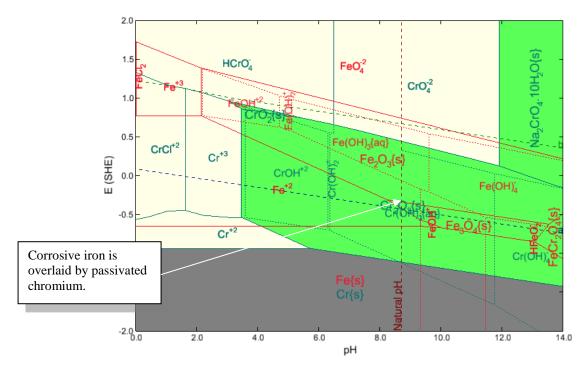


Figure 25-4 The stability diagram with both iron and chromium.

As you can see in the diagram, the shaded chrome passivating solid $(Cr(OH)_{3ppt})$ overlays the corrosive region of the iron system. This means that there is potential for passivating the metal in that region.

The $Cr(OH)_3$ field overlaps with the corrosion range of Fe in most of the pH range. This causes inhibition because of the coupling of:

Oxidation of Fe to Fe⁺², reduction of chromates to $Cr(OH)_3$, deposition of a protective layer of $Cr(OH)_3$.

Iron in the presence of arsenates

Create a stream with the following composition:

Table 25-2 Inhibition using arsenates

Parameter	Value	Comment
Stream Amount (mol)	55.5082	Default value
Temperature (°C)	25	
Pressure (atm)	1	
H2O (mol)	55.5082	Default Value
Acid Titrant	HCl	No initial value
Base Titrant	NaOH	No Initial Value
Na3AsO4 (mol)	0.001	Used as an corrosion inhibitor
Contact Surface	Fe	
Contact Surface	As	

Create a stability diagram using the above stream. Select both *Fe* and *As* oxidation and reduction subsystems. In this case, the two metals will be used in addition to water in the subsystems.

The stability diagram definition should look similar to this:

4	٦ ا	Description 🔯 Definition 🚻 Stability D)iagram <u> </u> Report			
Γ		Variable	Value		1	Type of diagram
		Stream Parameters		h		Pourbaix Diagram 👻 Specs
		Stream Amount (mol)	55.5092			
		Temperature (°C)	25.0000			Calc <u>u</u> late 🥥
		Pressure (atm)	1.00000			
		Calculation Parameter	rs			Summary
		Use Single Titrant	No			Unit Set: Metric (moles)
		pH Acid Titrant	HCI			
		pH Base Titrant	NaOH			Automatic Chemistry Model AQ (H+ ion) Databanks:
		√ Inflows (mol)				Corrosion
		H2O	55.5082			Public
		HCI	0.0			Redox selected
		NaOH	0.0			Stability diagram: E vs pH
		Na3AsO4	1.00000e-3	=		Auto-selected titrants
		Fe	0.0			Acid: HCI
		As	0.0			Base: NaOH
						Range on E:
	Contact Surface (mol)					-2.00000 to 2.00000 V (SHE) Range on pH:
		Fe				0.0 to 14.0000
		As				Subsystems
						Arsenic
						Water
						Alloy Activity Module: Activated
						Calculation not done
· · · · · · · · · · · · · · · · · · ·						
	Inp	ut				
	Advanced Search Add as Stream Export					

Figure 25-5 Input for Iron/Arsenate diagram

Use the **Specs...** button and select the **Display** category to select **Arsenic** as the subsystem to shade.

Click the <u>Calculate</u> button when ready. Click on the <u>Stability Diagram</u> tab when finished.

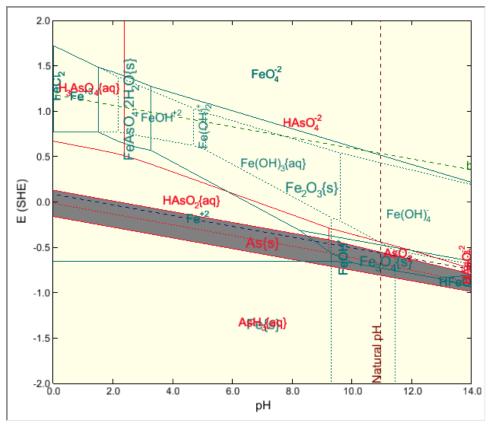


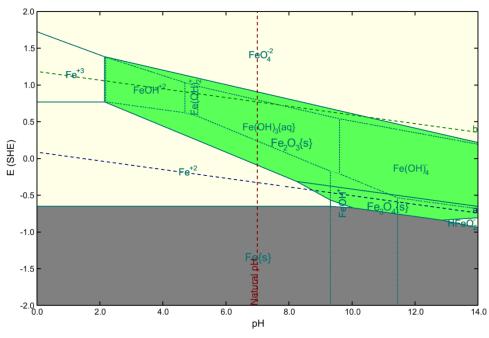
Figure 25-6 Iron with arsenates, arsenates are shaded

The elemental arsenic field overlaps with the corrosion range of Fe in most of the pH range provided that the conditions are reducing (absence of oxygen). This promotes inhibition because of the coupling of:

Oxidation of Fe to Fe^{+2} , reduction of arsenates to elemental As, deposition of a protective layer of As. This can only work in reducing environments; otherwise the protective layer of As will oxidize and dissolve.

You can download a worked example of this chapter from the OLI Wiki Page

26. Implications of Stability Diagrams on Cathodic Protection


Overview

Cathodic protection works by shifting the potential of the metal into its immunity range. Stability diagrams can answer the questions:

• What is the potential range that ensures that the metal stays in the immunity range?

What is the effect of environmental variables on the immunity domain?

Figure 26-1 Iron in water at 25 °C and 1 Atm.

In the whole pH range, cathodic protection will require shifting the potential to moderately negative values.

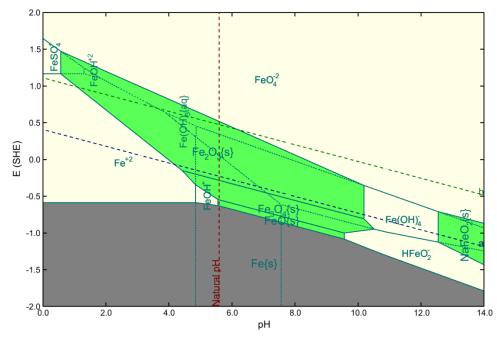


Figure 26-2 Iron in water at 300 °C and 100 Atm.

The immunity range in acidic and neutral solutions is weakly affected by temperature. However, the immunity range in alkaline solutions is shifted to much lower potentials which makes cathodic protection much more difficult.

27. Selective Oxidation and Reduction Chemistry

Overview

Occasionally the user may want to remove a particular oxidation state for an element in the simulation. There are a variety of reasons to perform such an activity, one being that a particular oxidation state may be kinetically unavailable for the reaction. Another case is that perhaps a user needs to compare and contrast two systems. That is what we have here in this example.

Creating the default oxidation case

In this example we will create a Stability diagram for iron in water at ambient conditions. See 22 for details on how to create this stream. In Figure 27-1 we have created the input for our standard Iron stability diagram.

OLI Studio - [CA Chapter 26.oad*]	e 1 111		
File Edit Streams Calculations Chemistry Tools View W			_ & ×
🗅 🗃 🔚 👗 🖶 🗂 🦪 🥐 🕺 🗛 Va So 2** Re 🛨	🎬 🛨 🍘 🛨 💏 🎬 🛨 💱 🔊 😭 🎸		
Navigator # *	Stability Diagram		
CA Chapter 26.0ad*			
🍓 Streams	< Description 🛃 Definition 🛍 Stability E)iagram 📡 Report	
E Stream	Variable	Value	Type of diagram
Stability Diagram	Stream Parameters		Pourbaix Diagram
	Stream Amount (mol)	55.5082	- Foundam Pragram
	Temperature (°C)	25.0000	Calculate 🥝
	Pressure (atm)	1.00000	
	Calculation Paramete	rs	Summary
	Use Single Titrant	No	Unit Set: Metric (moles)
	pH Acid Titrant	H2SO4	
	pH Base Titrant	NaOH	Automatic Chemistry Model AQ (H+ ion) Databanks:
	C Inflows (mol)		Corrosion
	H2O	55.5082	Public Redox selected
	H2SO4	0.0	Redux selected
	NaOH	0.0	Stability diagram: E vs pH
	Fe	0.0	Auto-selected titrants
Actions a * *	_		Acid: H2SO4 Base: NaOH
Actions	Contact Surface (mo)	
	Fe		Range on E: -2.00000 to 2.00000 V (SHE)
			Range on pH:
			0.0 to 14.0000
			Subsystems
			Water
			Alloy Activity Module:
			Activity module.
Plot Template Manager			Calculation not done
		*	
	/ 		
	Input		
	Advanced Search Add as Stream Es	sport	
Save			
For Help, press F1			

Figure 27-1 Generating a standard Stability Diagram for Iron

Calculate this diagram as you have done in previous examples. Figure 27-2 is the result of the standard diagram. This diagram is frequently referred to as a Pourbaix diagram⁴⁸.

⁴⁸ Named after Marcel Pourbaix, who in the 1960's created a series of such diagrams. The latest reference is: Pourbaix, M., Atlas of electrochemical equilibria in aqueous solutions. 2d English ed. 1974, Houston, Tex.: National Association of Corrosion Engineers

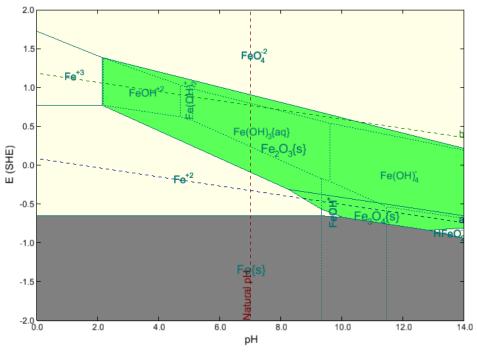


Figure 27-2 Standard OLI E-pH diagram for Iron

The issue here is that Pourbaix did not consider the FeO_4^{2-} ion in his work. This is iron in the +6 oxidation state for which there was little thermodynamic data available in the1960s. To reproduce his work we will need to remove the redox subsystem that pertains to Fe(+6).

Selective Redox, removing an undesired oxidation state.

To remove the undesired Fe(+6) oxidation state for this example we need to enter the model options for this diagram. To do that

Chemistry | Model Options...

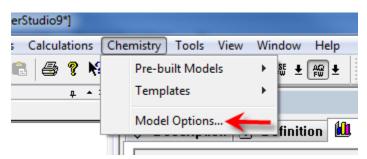


Figure 27-3 Selecting Chemistry | Model Options

Next select the **Redox** Tab.

Stability Diagram Chemistry Model Options	? 💌
Databanks Redox Phases T/P Span	
Include Redox Chemistry Include Subsystems	
OK Cancel Apply	Help

Figure 27-4 Selecting subsystems

Figure 27-4 shows the standard subsystems (collection of oxidation states) for each element. Please note that Hydrogen and Oxygen are automatically included and cannot be removed.

Expand the iron subsystem by clicking on the "+" next to the Iron subsystem.

Stability Diagram Chemistry Model Options	? 🛛
Databanks Redox Phases T/P Span	
Include Redox Chemistry Include Subsystems □····································	
OK Cancel Apply	Help

Figure 27-5 Expanding the individual oxidation states

This has expanded the iron subsystem. You can see in our example that we have all the oxidation states from Fe(0) to Fe (+6).

Uncheck the Fe(+6) oxidation state to remove it from consideration. Note that if you have an inflow component with this oxidation state it will remain in the calculation.

Stability Diagram Chemistry Model Options	? ×
Databanks Redox Phases T/P Span	
V Include Redox Chemistry	
Include Subsystems	
OK Cancel Apply	Help

Figure 27-6 Unchecking the Fe(+6) oxidation state

Click the **OK** button to save your changes.

Rerun the calculation for the diagram. You can always press the F9 key to calculate the object that you are currently viewing.

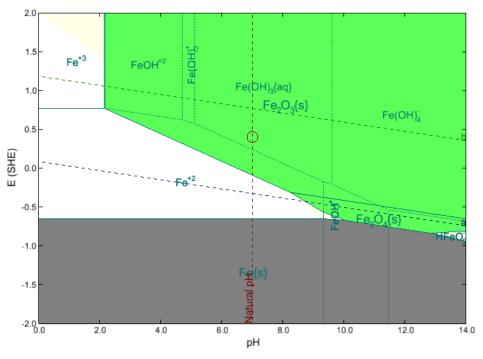


Figure 27-7 A more traditional Pourbaix diagram

Here you can see in Figure 27-7 that the region dominated by the FeO_4^{2-} ion is not present.

You can download a worked example of this chapter from the OLI Wiki Page

28. Introduction to Rates of Corrosion

Chemistry	
	The rates of corrosion use a subset of the OLI chemistry ⁴⁹ and is currently only available with the AQ thermodynamic framework.
Neutral Species	
	H ₂ O, O ₂ , CO ₂ , H ₂ S, N ₂ , Cl ₂ and all inert gases, SO ₂ and NH ₃ , and organic molecules that do not undergo electrochemical reactions.
Anions	
	OH^- , Cl^- , Br^- , I^- , HCO_3^- , CO_3^{2-} , HS^- , S^{2-} , SO_4^{2-} , HSO_4^- , NO^{2-} , MoO_4^{2-} , ClO^- , ClO_4^- , $Cr(VI)$ anions, $As(III)$ anions, $P(V)$ anions, $W(VI)$ anions, and $Si(IV)$ anions.
Cations	
	H ⁺ , alkali metals, alkaline earth metals, Fe(II) cations, Fe(III) cations, Al(III) cations, Cd(II) cations, Sn(II) cations, Zn(II) cations, Pb(II) cations and NH4 ⁺ .

Calculation types

Single Point

The single point calculation will determine the rates of corrosion at only a single temperature and pressure.

The system may be flowing or static. If the system is flowing, only a single flowrate will be considered. Flowing systems also require the specification of diameter for the pipe or rotating cylinder.

pH Survey

This calculation is analogous to the pH Survey found in other OLI Studio components. The specification requires a titrant acid and base.

⁴⁹ These species are subject to change with time, most-likely to increase in number

Temperature Survey	
	A survey in temperature can be performed. The default range is from 25 to 100 degrees Centigrade. Any range may be used by changing the <u>Range</u> option.
	The user should consider that some points in the survey may not converge due to phase changes (e.g., boiling off of aqueous liquids).
Composition Survey	
	A single titrant can be added to the solution and the effects of corrosion determined. The range of the component defaults to 0 to 1 mole with an increment of 0.1 moles. This range can be changed via the <u>Range</u> option.
	Care should be taken when adding salts that can form hydrates (e.g., CaCl ₂ .6H ₂ O). When these hydrated salts begin to precipitate from solution, large amounts of water may be complexed with the crystal. The solution may desiccate and non-convergence may be the result.
Pressure Survey	
	The pressure of solution may be varied. The default range can be changed via the <u>Range</u> option.
	Care should be taken when working at very low pressures since the solution may inadvertently boil off the liquid and non-convergence may results.
Flow Velocity Survey	
	In systems that are flowing, the flowrate of the stream can be varied.

Metal Chemistry

The default metal is the generic mild steel (G10100). The user can select from several classes of metals:

Iron/Mild Steels

- Fe (Zone Refined)
- Fe (Pure)
- Fe (ARMCO)
- Carbon Steel A212B
- Carbon Steel A216
- Carbon Steel 1018
- Carbon Steel G10100 (Generic)

300/400 Stainless

- Stainless Steel 304
- Stainless Steel 316
- Alloy 254SMO
- Duplex Stainless 2205

• 13% Cr

Aluminum

- Aluminum 1199 (Pure)
- Aluminum 1100

Nickel Based

- Ni
- Alloy 600
- Alloy 690
- Alloy 825
- Alloy 625
- Alloy C-276
- Alloy C-22

Copper

- Cu
- CuNi 9010
- CuNi 7030

Flow conditions

There are five flow conditions:

- Static Conditions
- Pipe Flow
- Rotating Disk
- Rotating Cylinder

Complete Agitation

Static Conditions

The solution is not flowing in this calculation.

Pipe Flow

The fluid is flowing through a pipe. The pipe diameter and flow velocity must be defined.

The default pipe diameter is **0.1 meters** and the default flow velocity is **2** meters/second.

Rotating disk	
	This reproduces a type of experiment that is used quite frequently. A disk is rotated to bring fluid to the surface of the electrode in a predictable manner. The diameter of the disk is specified as well as the revolutions per minute (RPM).
	The default diameter is 0.01 meters and the default RPM is 5000 RPM .
Rotating Cylinder	
	This reproduces a type of experiment that is used quite frequently. A cylindrical rotor is rotated to bring fluid to the surface of the electrode in a predictable manner. The diameter of the rotor is specified as well as the revolutions per minute (RPM).
	The default diameter is 0.01 meters and the default RPM is 5000 RPM .
Complete Agitation	
	In this calculation, the liquid phase is completely agitated and no mass transfer limitations apply.

Kinetics of general corrosion

Elements of the approach:

- Electrode processes under activation control (Butler-Volmer kinetics)
- Reaction orders according to plausible reaction mechanisms
- Limiting current densities due to diffusion processes and homogeneous reactions in solution
- Effects of adsorption
- A model for the passive current density and the active-passive transition
- Effect of solution species on corrosion in the passive state

Synthesis of the partial processes to obtain a total polarization curve and, hence, corrosion rate

Butler-Volmer kinetics

$$i = i_o \exp \left[\alpha F \left(E - E_o \right) / RT \right]$$

Exchange current density depends on concentrations of active species:

$$i_o = i^* a_K^k a_L^l a_M^m \dots$$

Reaction orders depend on various mechanisms

$$E_0 = E_0^0 + (RT/zF) \Pi a_i^{\nu i}$$

Activities of species that participate in the reaction:

$$a_i \ (i = 1, 2 \dots)$$

Parameters that result from reaction mechanism:

Electrochemical transfer coefficients Reaction orders with respect to active species.

Parameters that depend only on the metal:

- Exchange current density after factoring out the chemical contribution (i.e., i^{*}).
- Temperature dependence of i^{*}, i.e., the activation energy.

Limiting current density due to the diffusion of species X to the interface:

$$i_{lim} = z k_m F a_{X, bulk}$$

- The mass transfer coefficient km depends on:
- Diffusivity of species X
- Viscosity
- Flow geometry (pipe, rotating cylinder, etc.)
- Flow velocity

29. Rates of General Corrosion – A Tour

Overview

In this tour we will simulate the corrosion rate of generic mild steel in a carbon dioxide containing brine. This is representative of a fluid recovered from oil production.

At this point you should be very familiar with entering data into OLI Studio. We will now focus on the rates of corrosion.

The Rates of Corrosion

Create a stream with the following composition.

Table 29-1 Introduction to rates of corrosion example

Parameter	Value	Comment
Stream Amount (mol)	55.5082	Default value
Temperature (°C)	20	
Pressure (atm)	30	
H2O (mol)	55.5082	Default Value
CO2 (mol)	1.0	
NaCl (mol)	1.0	No Initial Value
Contact Surface	Fe (Pure)	

Verify that only iron is selected in the redox subsystems list using the <u>Chemistry</u> menu item in the <u>Model</u> <u>Options/Redox</u> item. The definition grid of the stream should look similar to the following figure:

6 Stream				
🛷 Description 🔯 Definition 📓 Report				
Variable	Value	<u> </u>	Add <u>C</u> alculation 🔻	
Stream Parameters			Special Conditions	
Stream Amount (mol)	57.5082		Solids Only	
Temperature (°C)	20.0000		Solids Only	
Pressure (atm)	30.0000		Summary	
□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □			Commany	
H2O	55.5082		Unit Set: Metric (moles)	
C02	1.00000			
NaCl	1.00000		Automatic Chemistry Model Aqueous (H+ ion) Databanks:	
Fe	0.0		Public	
Input		E ·		
Advanced Search Add as Stream Expo	rt			

Figure 29-1 The stream definition.

Notice that there are no titrants for this type of diagram. We also have not specified any alloys. This will be done in the rates calculations. We did have to specify a base metal of iron.

With the above stream selected in the tree view, double-click on the <u>Add Corrosion Rates</u> icon in the <u>Actions/Explorer</u> pane.

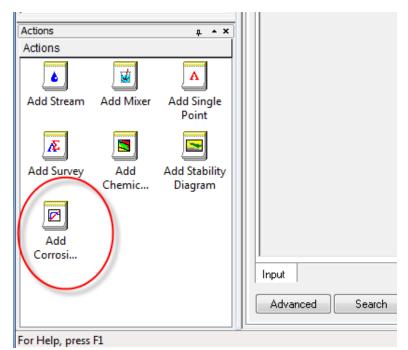


Figure 29-2 Click on the Add Corrosion Rates icon.

Click on the Add Corrosion Rates icon in the Actions pane.

Click on the **Definition** tab.

Setting up the calculation

We will first perform a temperature survey. Change the *Survey By* button to <u>Temperature</u>. We will then change the default temperature range to 0 to 200 $^{\circ}$ C in 10 $^{\circ}$ C increments.

The contact surface is specified in the definition grid. For this tour we will consider the mild steel - *Carbon Steel G10100 (generic)*.

We will simulate in static conditions. The current default **Flow Condition** (which is "Static") is acceptable.

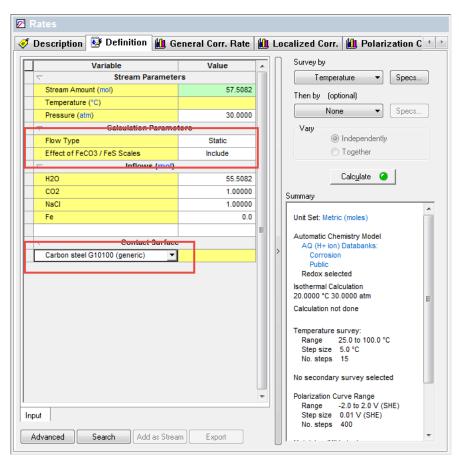


Figure 29-3 Specifying contact surface and flow conditions.

Click on the **Specs...** button. Select the *Var. 1 – Temperature* category.

Temperature Rates Calculation		la statistica de la st
Category Var. 1 - Temperature Polarization Curve Calculation Type Calculation Options	Survey Range Temperature Range Selected Range 0.0 to 200.0 in 20 steps of 10.0	Unit: °C v New Delete
	Linear Linear Log End Points Start C End 200 Step Size	Point List
	Increment 10 Number Steps 20	 Select one, the other is Select and the other is
	OK	Cancel Apply Help

Figure 29-4 Specifying temperature range for the survey.

This dialog is analogous to the range display in the other OLI Studio modules. Set the <u>Start</u> temperature to 0° C, the <u>End</u> temperature to 200° C and the increment to 10° C.

Click on <u>**OK**</u> then click the <u>**Calculate**</u> button.

When finished, click on the General Corr. Rate tab.

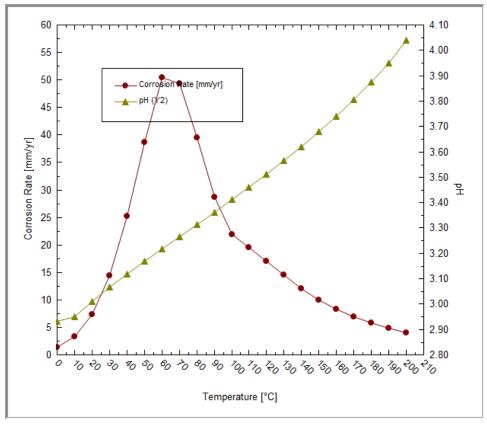


Figure 29-5 The rate of corrosion versus temperature plot.

This diagram shows that the rate of corrosion increases with increasing temperature till about 80 °C. Then the rate decreases. Further analysis would reveal that the solid $FeCO_3$ (Siderite) has precipitated and has formed a passivating layer.

Now click on the **<u>Report</u>** Tab. (You may have to use the scroll-arrow to see this tab)

📶 General Corr. Rate	📶 Localized Corr.	🛍 Polarization Cury	e 📓 Report 🕚
	0.00	🛐 View Data Cur	ves Options

Figure 29-6 Locating Scroll Arrows

General Corr. np to: Calculated	1-	•	Polarization Cur	ve 😡 Report	Depletion Pr	
Iculated Rate	<u>s</u>					
Temperature	Corrosion Rate	Corrosion Potential	Repassivation Potential	Corrosion Current Density	Maximum Pit Current Density	
°C	mm/yr	V (SHE)	V (SHE)	µA/sq-cm	µA/sq-cm	
0.0	1.38834	-0.389749	-0.458808	119.731	18.8012	
10.0000	3.35022	-0.392064	-0.476797	288.925	32.2228	
20.0000	7.29087	-0.395332	-0.494786	628.768	51.2614	
30.0000	14.3450	-0.396545	-0.512831	1237.12	85.7332	
40.0000	25.2348	-0.395237	-0.530906	2176.26	152.422	
50.0000	38.6392	-0.390523	-0.548993	3332.26	294.832	
60.0000	50.4148	-0.384211	-0.567081	4347.79	572.855	
70.0000	49.3319	-0.378745	-0.585163	4254.40	998.967	
80.0000	39.4644	-0.375069	-0.603233	3403.43	1427.39	
90.0000	28.6588	-0.371059	-0.621287	2471.55	1604.88	
100.000	21.8251	-0.365629	-0.639318	1882.20	1354.84	
110.000	19.5936	-0.355629	-0.657321	1689.76	938.254	
120.000	17.0714	-0.346094	-0.675286	1472.25	581.663	
130.000	14.4887	-0.337242	-0.693199	1249.51	353.222	
140.000	12.1046	-0.328676	-0.711037	1043.90	216.740	
150.000	10.0461	-0.320350	-0.728766	866.378	135.436	
160.000	8.36997	-0.312560	-0.746337	721.829	86.1979	
170.000	6.96261	-0.304836	-0.763671	600.458	55.8815	
180 000	5 78251	-0 297180	-0 780648	498 686	36 8252	

Figure 29-7 Tabulated results

The report displays the tabulated results. You may have to scroll down to see the same information as displayed above.

Now click on the **Polarization Curve**

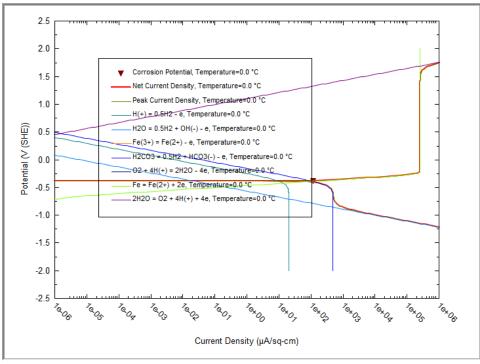


Figure 29-8 Polarization Curve at 0° C

The curve displayed corresponds to 0°C. The customize button can be used to display the polarization curve at a different temperature.

The \checkmark symbol represents the mixed potential point. It is this point that determines the rates of corrosion calculation. The \checkmark appears to be on the "3" and "2" lines. This means that carbon dioxide and water is controlling the rates of corrosion. If the \checkmark appeared on a vertical line, then we could say that the current had reached a limiting or passivating amount.

Flow survey

We will now repeat our calculations but only at 20 °C. This time we will perform a flow survey. We will simulate the movement of a fluid through a pipe. We will need to specify the diameter of the pipe and the fluid flow.

Click on the **Definition** tab (you may need to use the scroll arrows)

Click on the Types of rates calculation and select Pipe Flow.

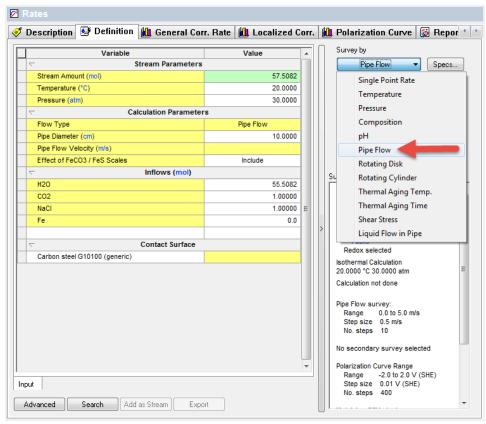


Figure 29-9 Selecting Pipe Flow

The flow specifications entered in the Corrosion Values section of the definition grid.

2 Rates				
🛷 Description 🔯 Definition 🛍 General Cor	r. Rate 🚻 Localized C	orr.	🛍 Polarization Curve 📓 Repor 🛀	
Variable Value		*	Survey by	
C Stream Parameters			Pipe Flow	
Stream Amount (mol)	57.5082		Then by (optional)	
Temperature (°C)	20.0000			
Pressure (atm)	30.0000		None Specs	
Calculation Parameter	s		Vary	
Flow Type	Pipe Flow		Independently	
Pipe Diameter (cm)	10.0000		 Together 	
Pipe Flow Velocity (m/s)				
Effect of FeCO3 / FeS Scales	Include		Calculate 🥝	
□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □			Summary	
H2O	55.5082			
C02	1.00000		Unit Set: Metric (moles)	
NaCl	1.00000	Ξ	Automatic Chemistry Model	
Fe	0.0		Automatic Chemistry Model AQ (H+ ion) Databanks:	
			Corrosion	
Contact Surface			Public Redox selected	
Carbon steel G10100 (generic)			Isothermal Calculation	
			20.0000 °C 30.0000 atm	
			Calculation not done	
			Pipe Flow survey:	
			Range 0.0 to 5.0 m/s	
			Step size 0.5 m/s No. steps 10	
			No secondary survey selected	
			Polarization Curve Range	
1			Range -2.0 to 2.0 V (SHE)	
Input			Step size 0.01 V (SHE) No. steps 400	
Advanced Couch Add as Shores Course	-t		No. steps 400	
Advanced Search Add as Stream Expo			UI	

Figure 29-10 Specifying the Pipe Flow Diameter.

We will use the default *Pipe Diameter* of 10 cm (0.01 m). The Flow velocity will be adjusted by the **Specs** > **Survey Range** tab.

Flow Conditions Rates Calcula	tion ? 💌
Category Var. 1 - Pipe Flow Velocity Polarization Curve Calculation Type Calculation Options	Survey Range
	Pipe Flow Velocity Range Unit: m/s Selected Range 0.0 to 20.0 in 20 steps of 1.0 New
	Delete
	● Linear ◯ Log ◯ Point List
	End Points
	Start 0.0
	End 20.0000
	Step Size
	Increment 1.00000 Select one, the other is
	Number Steps 20 🔊 🖉 calculated
4 III +	
	OK Cancel Apply Help

Figure 29-11 Range setting

The range of values indicates the lowest and highest velocity. The radio buttons in the **<u>Step Size</u>** section allow the user to perform quick conversion.

The **<u>Increment</u>** option allows for the starting and ending values to be entered along with the number of steps and then the increment between points will be automatically determined.

Optionally, the user may specify the <u>Number of Steps</u> by selecting the appropriate radio button, in which case the increment value will be calculated automatically.

We will enter a **Start** value of 0 and an **End** value of 20. The **Increment** will be 1.0.

Click on the **OK** button then click on the **Calculate** Button.

Click on the General Corrosion Rate tab when the calculation completes.

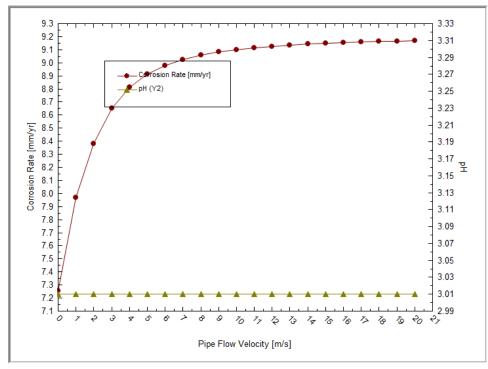


Figure 29-12 The flow survey

The asymptotic behavior of the rate is due to mass-transfer phenomena. At low flow rates, there is sufficient time for the corrosive agents to reach the pipe. At higher flows, a steady-state condition exists.

You can download a worked example of this chapter from the OLI Wiki Page

30. Thermal Aging and Variations in Alloy Composition Introduction

What can be simulated?

Localized corrosion of engineering alloys is a complex function of metallurgical factors and environmental conditions. Among metallurgical factors, effects of thermal instabilities are of interest for assessing the performance and expected service life of industrial components fabricated from nominally corrosion-resistant stainless steels and nickel-base alloys. Fabrication processes such as heat treatment and welding are known to introduce microstructural changes that may affect both the mechanical and corrosion performance of an alloy. In particular, thermal instability of stainless steels and nickel-base alloys may lead to the formation of complex metal carbides of the type M₃C₂, M₇C₃, M₆C, or M₂₃C₆ in which the metallic component M represents Cr, Mo, W, and Fe. The carbide is chromium- or molybdenum-rich depending on the carbide type, which in turn depends on the alloy composition and temperature. Also, various chromium-rich intermetallic phases can form in many alloys. Precipitation of such phases may occur at temperatures ranging from 500 to 900 °C depending on alloy composition. Formation of grain boundary carbides often results in the depletion of chromium and, possibly, molybdenum in the vicinity of the grain boundary because of the slow diffusion of substitutional elements such as chromium relative to the interstitial carbon. Similarly, the corrosion resistance of welded components may be affected by the segregation of alloying elements and precipitation of intermetallic phases, carbides or nitrides in the solidified weld and unmixed zones as well as the precipitation of carbides and other phases in the heataffected zone adjacent to the weld.

Sensitization of Fe-Ni-Cr-Mo alloys and its effects on intergranular attack and intergranular stress corrosion cracking is the most directly observed effect of Cr depletion. It may result in intergranular attack and intergranular stress corrosion cracking. Localized corrosion can be also affected by Cr and Mo depletion.

Corrosion Analyzer contains the following technology that can help address these issues:

- A grain boundary microchemistry model for predicting the chromium and molybdenum depletion in the vicinity of grain boundaries as a result of carbide formation;
- (2) An electrochemical model for calculating the repassivation potential of Fe-Ni-Cr-Mo-W alloys as a function of alloy composition and environmental

conditions including temperature and concentrations of aqueous solution species;

(3) A procedure for calculating the observable repassivation potential that corresponds to macroscopic localized corrosion by applying the electrochemical model to the depletion profiles and performing suitable integration.

More details about this technology are described by Anderko et al. (2008), Tormoen et al. (2009), Anderko et al. (2009), and Sridhar et al. (2009).

Alloy Chemistry

Simulations can be performed, in general, for alloys that belong to the Fe-Ni-Cr-Mo-W-N-C family (i.e., for stainless steels and nickel-base alloys).

Depletion profiles in the vicinity of grain boundaries and depletion parameters can be obtained for austenitic alloys (including stainless steels and Ni-base alloys). Also, the effect of Cr and Mo depletion on localized corrosion can be calculated. This effect can be examined using the repassivation potential, which provides a threshold potential for the stabilization of localized corrosion (Anderko et al., 2009).

For other alloys from the Fe-Ni-Cr-Mo-W-N-C family, the repassivation potential can be calculated if the alloy composition is known. This also includes experimental alloys and separate phases that may be formed as a result of various forms of heat treatment (Sridhar et al., 2009).

Calculation types

Thermal aging is an additional phenomenon that can be simulated within the framework of corrosion kinetics. All calculations types and, in particular, survey types, that are supported for corrosion kinetics are also supported in conjunction with the study of thermal aging.

If it is desired to make calculations on a thermally aged sample, the thermal aging temperature and time need to be specified in the <u>Calc Parameters</u> section in the <u>Definition</u> tab. The default values are 399 °C for the thermal aging temperature and 0.0 hours for the thermal aging time. If either of these default values is used, no thermal aging effects will be predicted. Thus, by default, Corrosion Analyzer performs calculations on samples that have not been thermally aged.

Thermal Aging Temperature Survey

This calculation makes it possible to vary the thermal aging temperature within a certain range. A fixed value of thermal aging time is assumed as specified by the user. Typically, the temperatures for which thermal aging effects can be observed range from ~500 °C to ~900 °C, with the effects being most pronounced in the middle of this range.

Thermal Aging Time Survey

This calculation can be used to examine the effect of aging time at a fixed thermal aging temperature.

Output specific to thermal aging

The following output can be generated:

- (1) Chromium and molybdenum depletion profiles, i.e., the variation of Cr and Mo concentration within the grain as a function of grain boundary
- (2) The depletion parameter, which provides compact information on the extent to which the depletion process reduces the grain boundary concentration below a certain critical value of, which can be defined by well-known criteria for maintaining passivity (e.g. $x_{Cr}^* = 0.11$ or 0.12). This parameter can be calculated

as the area of the depletion profile below the threshold concentration x_{Cr}^{*} ,

divided by bulk Cr concentration, x_{Cr}^0 :

$$\delta(x_{Cr}^{*}) = \frac{1}{x_{Cr}^{0}} \int_{0}^{z} \left(x_{Cr}^{*} - x_{Cr}(z) \right) dz$$

where z^* is the distance from the grain boundary that corresponds to the threshold concentration x_{Cr}^* .

(3) The repassivation potential, which is a key parameter for determining whether localized corrosion can occur, may be affected by thermal aging in a rather complex way.

31. Thermal Aging and Variations in Alloy Composition

Overview

In this tour we will show examples of simulating the effects of thermal aging on Fe-Ni-Cr-Mo-W-C-N alloys (i.e., stainless steels and nickel-base alloys). Specifically, we show how to predict:

- Chromium and molybdenum depletion profiles in the vicinity of grain boundaries, which result from heat treatment of austenitic alloys;
- Depletion parameters for sensitized austenitic alloys, which provide an indicator of whether the alloy is susceptible to intergranular corrosion
- Effect of thermal aging on the repassivation potential of austenitic alloys, which provides a threshold condition for localized corrosion (pitting or crevice corrosion)
- The repassivation potential of alloys with compositional variations that may or may not result from thermal aging. This facility can also be used for bulk alloys that are not in the database or to hypothetical or experimental alloys as long as they belong to the Fe-Ni-Cr-Mo-W-C-N family. An example will be given for a duplex ally, either annealed or thermally treated.

At this point you should be very familiar with entering data into OLI Studio. Also, you need to know the foundations of the use of the repassivation potential to predict the occurrence of localized corrosion (Anderko et al., 2004 and papers cited therein).

Example 1: Thermal aging of alloy 600

We will be studying the behavior of thermally aged alloy 600 in a dilute aqueous solution of sodium chloride. Therefore, click on <u>Add Stream</u> and start by creating a stream with the following conditions:

Temperature	60	°C
Pressure	1	Atmospheres
H2O	55.5082	moles
NaCl	0.04	moles

The definition grid of the stream should look similar to the following figure:

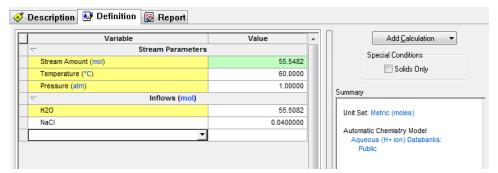


Figure 31-1: The stream definition.

With the above stream selected in the tree view, double-click on the <u>Add Corrosion</u> <u>Rates</u> icon in the <u>Actions/Explorer</u> pane. Even though the thermal aging simulation facilities do not predict corrosion rates per se, they belong to the category of corrosion kinetics and, therefore, they are included in the Corrosion Rates section of the Corrosion Analyzer.

Then, click on the **<u>Definition</u>** tab.

Setting up the calculation

We will be simulating how the time of thermal aging affects a*lloy 600* at a fixed thermal aging temperature of 700 °C. For this purpose:

Select Alloy 600 from the drop-down Contact Surface menu.

In the <u>Calc Parameters</u> section, replace the default value for the <u>Thermal Aging</u> <u>Temperature</u> with 700 °C.

Note that the default value for the <u>Thermal Aging Temperature</u> is 399 °C, which is a low value so that, in the default case, no effects of thermal aging will be calculated.

Then, from the **Survey By** button select Thermal Aging Time.

The definition grid for the Corrosion Rates should look similar to the following figure. The key specifications are highlighted using red squares:

Figure 31-2 Specifying contact surface, thermal aging temperature and type of calculations.

Now, click on the **Specs...** button. **The Survey Range** category allows you to specify the range for the thermal aging time survey. Change the range from 0 to 10 hours with a step of 2.0 hours.

Rates Calculation	? <mark>×</mark>
Category	Survey Range
- Var. 1 - Thermal Aging Time - Polarization Curve - Thermal Aging - Calculation Type - Calculation Options	Thermal Aging Time Range Unit: hr Selected Range 0.0 to 10.0 in 5 steps of 2.0 New Delete Delete
	Linear Log Point List End Points Start D End 10 Step Size
<	Increment 2
	OK Cancel Apply Help

Figure 31-3 Default Thermal Aging Survey Range

Then, click on the **<u>Thermal Aging</u>** category.

Category	Thermal A	aina				
Var. 1 - Thermal Aging Time Polarization Curve Thermal Aging Calculation Type	Erp Dir Alloy Ci	ectly from Correlati omposition wt%: 8.534				75.032
- Calculation Options	Mo+W			0.026	N	
		Stoichiometry:	C	0.020	14	0
	Fe		Cr	7	Ni	0
	Mo+W	0	С	3	N	0
	Carbide	Thermochemistry:	А	-405190	В	-25.765
	Cr Diffu	sion Coefficient:	DO	4.4016e-006	Q	-243000
	Mo, W	Diffusion Coefficie	nt: D0	0	Q	0
	Cr Sen:	sitization Threshold	wt%:	11 (Grain	Size: 123
				Rev	ert to	Default
4 III +						
		ОК		Cancel	Арр	ly Help

Figure 31-4 Thermal Aging Parameters

In this category, you can change all parameters that are necessary for calculating chromium and (if applicable) molybdenum depletion profiles. You can change:

- The alloy composition (for example, to analyze the effect of a different carbon content);
- The stoichiometry of the carbide phase that may form at the grain boundary; the typical carbide stoichiometry is M_7C_3 or $M_{23}C_6$ (where M = Cr, Mo) but can be adjusted

- The parameters that define the equilibrium constant for the formation of the carbide
- The diffusion coefficient of Cr and, if applicable, Mo
- The threshold concentration of Cr for sensitization. This threshold concentration is used for calculating the depletion parameter.
- The average grain size, which affects the process of healing of chromium depletion as a function of time

Also, you can indicate whether the repassivation potential (E_{rp}) should be calculated directly from the correlation developed by Anderko et al. (2008), which expresses E_{rp} as a function of alloy composition or not. If it is not calculated directly, then the repassivation potential is calculated first using the alloy-specific parameters for the alloy of interest and only the decrement of E_{rp} (i.e., E_{rp} , thermally aged – $E_{rp, bulk alloy}$) is obtained from the correlation. This decrement is then added to the alloy-specific E_{rp} value. This option is set by default to "No" because this maximizes the accuracy of calculations for alloys that are already in the database.

For now, we will accept the default settings but we will return to them later in the tour. Therefore, click **OK** to close this window.

Then click the **<u>Calculate</u>** button.

Analyzing the results

When the calculations are finished, click on the <u>**Depletion Profile**</u> tab⁵⁰. You will see a plot of concentrations of chromium and molybdenum within a grain as a function of the distance from the grain boundary (in μ m). You will see that, for each condition, there are four lines:

Cr weight % : concentration of Cr in weight %

Mo+W weight % : sum of the concentrations of molybdenum and tungsten in weight %

Corrected Cr weight % - concentration of Cr corrected for beam scattering and related effects so that it can be directly compared with experimental results. The procedure for calculating the correction is described by Anderko et al. (2009).

Corrected Mo+W weight % sum of the concentrations of Mo and W corrected in the same way as those for Cr.

Since alloy 600 does not contain any molybdenum, the molybdenum curves will always be equal to zero. The plot will look similar to the following one:

⁵⁰ Remember to use the scroll-arrows if necessary

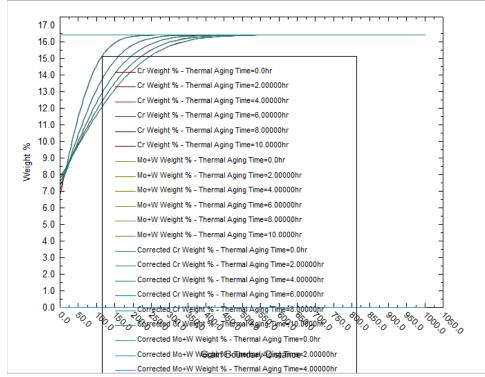


Figure 31-5 The plot of predicted depletion profiles for alloy 600 thermally aged at 700 °C as a function of time.

Let us customize the plot now by clicking on the **Options** button.

Since alloy 600 does not contain Mo or W, let us eliminate the Mo+W curves. To do this, select the <u>Curves</u> category from the left-hand side pane (**NOTE: this is not the same as the Curves Button!**)

Customize Plot		x
Customize Plot Category General Legend Y Axis Curves	Curves Curves CrWeight 3:- Thermal Aging Time=2.0000hr CrWeight 3:- Thermal Aging Time=2.00000hr CrWeight 3:- Thermal Aging Time=8.00000hr CrWeight 3:- Thermal Aging Time=8.00000hr CrWeight 3:- Thermal Aging Time=2.0000hr Mo+WWeight 3:- Thermal Aging Time=2.0000hr Mo+WWeight 3:- Thermal Aging Time=2.0000hr Mo+WWeight 3:- Thermal Aging Time=4.0000hr Mo+WWeight 3:- Thermal Aging Time=0.0hr Weight 3:- Thermal Aging Time=0.0hr Weight 3:- Thermal Aging Time=0.0hr Weight 3:- Thermal Aging Time=0.0hr Mo+WWeight 3:- Thermal Aging Time=0.0hr M	
	Auto Symbol V Auto Scaling Factor Hidden	
	OK Cancel Apply H	lelp

Figure 31-6 Plot Options / Curves Category

Then, highlight the Mo+W weight % curves by pressing the Shift key and moving the cursor. After highlighting these curves, check the <u>Hidden</u> button. The <u>Customize Plot</u> portion of the screen will look as follows:

Customize Plot		? X
Customize Plot Category General Legend -Xavis -YAvis Durves	Curves Curves C: Weight & - Themal Aging Time=6.00000hr C: Weight & - Themal Aging Time=8.00000hr C: Weight & - Themal Aging Time=10.0000hr Mo-v: Weight & - Themal Aging Time=2.00000hr Mo-v: Weight & - Themal Aging Time=4.0000hr Corrected C: Weight & - Themal Aging Time=4.0000hr Corrected C: Weight & - Themal Aging Time=4.0000hr Mo-v: Weight & - Themal Aging Time=4.0000hr Corrected C: Weight & - Themal Aging Tim	
	Auto Symbol V Auto Scaling Factor V Hidden	
	OK Cancel Apply	Help

Figure 31-7 The window for customizing the display of depletion profiles.

After *hiding* the Mo+W weight % curves, do the same for the Corrected Mo+W weight % curves. Then, press OK. The plot will look as follows:

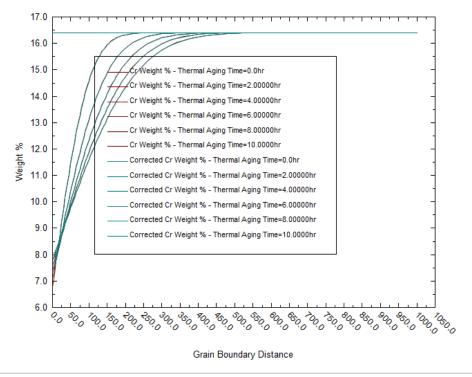


Figure 31-8 A customized depletion profile plot that shows only Cr depletion profiles

Now, let us focus on the differences between the uncorrected and corrected depletion profiles. To have a clear picture of the difference between them, let us focus on only one depletion profile – for 2 hours. For this purpose, click on **Options** again, then select the **Curves** category. Highlight all curves except the ones labeled

Cr Weight % - Thermal Aging Time = 2.00000 hr, and

Corrected Cr Weight % - Thermal Aging Time = 2.00000 hr

Check the Hidden box. Then, you will see a plot that looks like the following one:

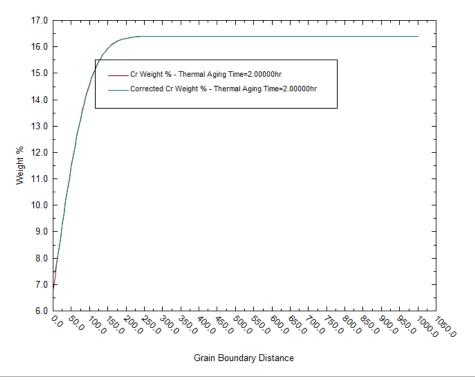


Figure 31-9 A customized depletion profile plot that shows uncorrected and corrected Cr depletion profiles only for 2 hours of thermal aging

In the obtained plot, you can see the difference between the two curves for small distances from the grain boundary (roughly below 30 μ m). The corrected concentration is much more rounded in the vicinity of the minimum because instrumental measurement effects. At larger distances from the grain boundary, there is no difference between the two curves.

After analyzing the depletion profiles, let us focus on the effects of Cr depletion on corrosion. We will do it by analyzing two parameters – the depletion parameter and the repassivation potential.

To have more meaningful results, let us expand the range of thermal aging time and reduce the interval for calculations. To do it, go back to the **<u>Definition</u>** tab and click on **<u>Specs</u>**. In the **<u>Thermal Aging Time</u>** category, change the <u>**End**</u> to 60 hours and the **<u>Increment</u>** to 1 hour. The screen should look like the following one:

Rates Calculation	2 X
Category	Survey Range
- Var. 1 - Thermal Aging Time - Polarization Curve - Thermal Aging - Calculation Type - Calculation Options	Thermal Aging Time Range Unit: hr
	Linear C Log Point List End Points
	Start 0
	End 60
	Step Size
	Increment 9 Select one, the other is
	Number Steps 60 💿 🗲 calculated
4	
	OK Cancel Apply Help

Figure 31-10 Changing the survey range for thermal aging.

After making the change, click OK.

Then, click Calculate.

After the calculations are complete, click on the **Localized Corr.** tab. By default, this tab will show a plot of the corrosion potential and repassivation potential.

Let us add a new parameter – the depletion parameter to the plot. To do this, click on <u>**Curves**</u>. A new window titled "Select Data to Plot" will appear. Under <u>**Corrosion Values**</u> in the left-hand side pane, highlight <u>**Depletion Parameter**</u> and click on the >> button under <u>**Y2 Axis**</u>. The screen will look like:

Select Data To Plot	
Curves	
Survey Variables	X Axis
Stream Parameters Calculation Parameters	>> Thermal Aging Time
Corrosion Values Corrosion Rate Current Density	>>> Y1 Axis Repassivation Potential Corrosion Potential
	<<
Additional Stream Parameters Aqueous Vapor	Y2 Axis
Solid ⊕ Molecular Totals	>>>
Scaling Tendencies Pre-scaling Tendencies Gibbs Free Energy	
Gibbs Free Energy Standard State	Z Axis
< >	- Select -
☑ Hide Zero Species	
ОК	Cancel Apply Help

Figure 31-11 Including the depletion parameter in the plot on the Y2 axis.

Click <u>**OK**</u>. You will see a plot that should look like:

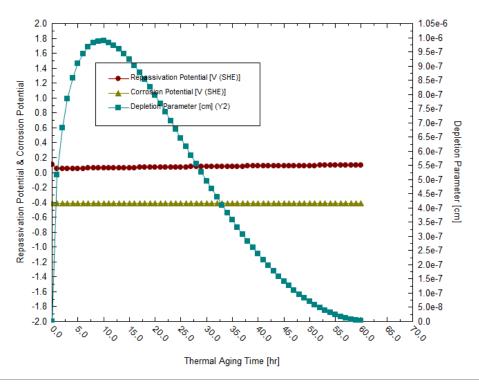


Figure 31-12 A plot of the repassivation potential and depletion parameter for thermally aged alloy 600 as a function of aging time.

It is clear that the depletion parameter reaches a maximum for aging time of about 10 hours. Since the depletion parameter is a measure of the susceptibility of an alloy to intergranular corrosion, we can expect that the alloy will be most susceptible to intergranular corrosion at intermediate aging times. When the depletion parameter is zero, intergranular corrosion or intergranular stress corrosion cracking are unlikely. The decrease of the depletion parameter as a function of time is a manifestation of the phenomenon of healing of Cr depletion.

The repassivation potential shows a minimum as a function of aging time. This indicates that the tendency of the alloy to undergo localized corrosion is enhanced as a result of thermal aging. However, the effect of thermal aging on the repassivation potential of alloy 600 is small (cf. Tormoen et al., 2009, Anderko et al., 2009). The repassivation potential shows a minimum at low aging times (ca. 1-2 hours). Therefore, the susceptibility to localized corrosion is enhanced the most for these aging times. It is noteworthy that the maximum in the depletion parameter does not coincide with the minimum in the repassivation potential. This is due to the fact that intergranular corrosion (which is related to the depletion parameter) and localized corrosion (which is controlled by the repassivation potential) are subject to different mechanisms. A general discussion of these differences is given by Tormoen et al. (2008).

In general, the alloy will be susceptible to localized corrosion if the corrosion potential exceeds the repassivation potential. In the above example, the corrosion potential is low because we have no oxidizing agents in the system. Therefore, the alloy will not undergo localized corrosion at the conditions of this example. However, a rise in the corrosion potential due to the presence of oxidizing agents may cause localized corrosion. We will return to this topic later in this chapter.

Example 2: Thermal aging of alloy 825

In the second example, we will be studying the behavior of thermally aged alloy 825. Alloy 825 is appreciably different from alloy 600 because it contains molybdenum and, also, substantially more chromium in addition to other alloying elements. To make this simulation, click on <u>Add Stream</u> and create a stream with the following conditions:

Temperature	95	°C
Pressure	1	Atmospheres
H2O	55.5082	moles
NaCl	2.846e-3	3 moles

The definition grid of the stream should look similar to the following figure:

_	Thermal aging of alloy 825 Description Definition						
	Variable	Value	~	Add <u>C</u> alculation 👻			
Ш	Stream Parameters	3		Special Conditions			
Ш	Stream Amount (mol)	95.0000					
Ш	Temperature (°C)	25.0000		Solids Only			
Ш	Pressure (atm)	1.00000		Cumment			
	☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐			Summary			
	H2O	55.5082		Unit Set: Metric (moles)			
	NaCl	2.84600e-3					
				Automatic Chemistry Model Aqueous (H+ ion) Databanks: Public			

Figure 31-13 Stream definition for studying the effect of thermal aging on alloy 825.

Double-click on the Add Corrosion Rates icon in the Actions/Explorer pane.

Then, click on the **<u>Definition</u>** tab.

Setting up the calculation

In this example, we will simulate how the temperature of thermal aging affects alloy 825 at a fixed thermal aging time of 15 hours. For this purpose:

Select alloy 825 from the drop-down Contact Surface menu.

In the <u>Calc Parameters</u> section, replace the default value for the **Thermal Aging Time** with 15 h.

Note that the default value for the **Thermal Aging Temperature** is 0, which means that no thermal aging is considered by default.

Then, from the Type of rates calculation drop-down menu, select <u>Thermal Aging</u> <u>Temperature</u>.

The definition grid for the Corrosion Rates should look similar to the following figure. The key specifications are highlighted using red ovals:

🦪 I	Description 🤮 Definition 🛍 General	Corr. Rate 🛍 Localiz	zed	l Co	rr. 🛍 Polarization Curve 📓 F 🚹
Π	Variable	Value		1 [Survey by
	Stream Parameter	S			Thermal Aging Temp.
	Stream Amount (mol)	95.0000			
	Temperature (°C)	25.0000			Then by (optional)
	Pressure (atm)	1.00000			None 🔻 Specs
	Calculation Parameter	ers			Vary
	Flow Type	Static			Independently
	Thermal Aging Temperature (°C)	399.000			 Together
	Thermal Aging Time (hr)	15.0000	D		
	Ignore Influence of Scales		1		Calculate 🥥
	Inflows (mol)				Summary
	H2O	55.5082			
	NaCl	2.84600e-3	-		Unit Set: Metric (moles)
	Ni	0.0	Ξ		Automatic Chemistry Model
					Aqueous (H+ ion) Databanks:
	Contact Surface			ľ	Corrosion Public
	Alloy 825				Redox selected
					Stream amount overridden: 95.0000 mol
					Isothermal Calculation 25.0000 °C 1.00000 atm
					Calculation not done
			•		Thermal Aging Temp. survey: Range 700.0 to 900.0 °C Step size 50.0 °C No. steps 4
Inp	Input				No secondary survey selected
Á	Advanced Search Add as Stream Export				

Figure 31-14 Specifying the type of calculation, thermal aging time, and contact surface.

Then, click on **Specs** to define the survey range.

In the <u>Thermal Aging Temp.</u> category, specify the start of the survey as **550** °C, the end of the survey as **900** °C, and the increment as 50 °C. The <u>Rates Definition</u> screen should look as follows:

Rates Calculation	8 8
Category	Survey Range
Var. 1 - Thermal Aging Tempe Polarization Curve Thermal Aging Calculation Type Calculation Options	Thermal Aging Temperature Range Unit: "C Selected Range 550.0 to 900.0 in 7 steps of 50.0 New Delete
	Linear O Log O Point List End Points
	Start 550 End 900
	Step Size
	Number Steps 7
4	
	OK Cancel Apply Help

Figure 31-15 Defining the range for a thermal aging temperature survey.

Click **OK** to close this window. We will keep the other parameters at their default values. Then, click **Calculate**.

Analyzing the results

When the calculations are finished, click on the **Depletion Profile** tab.

Since alloy 825 contains Mo in addition to Cr, you will see the depletion profiles for both Cr and Mo. For clarity, customize the plot by removing the corrected depletion profiles and leaving only the uncorrected (or directly calculated) ones.

For this purpose, click on **Options**, select the **Curves** category, highlight the Corrected curves and check the hidden box as described in the previous example. The resulting plot should look similar to the following one:

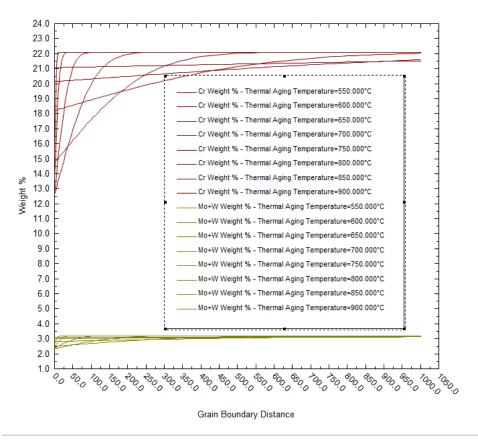


Figure 31-16 Predicted Cr and Mo depletion profiles for alloy 825 as a function of thermal aging temperature.

As shown in this plot, the depletion profile is very narrow at the lowest temperature, i.e., 550 °C. On the other hand, it becomes flat at high temperatures and it has a high minimum. The high minimum value is particularly important because it indicates that the local depletion of Cr and Mo is much less severe at high temperatures (due to much faster diffusion of substitutional elements and subsequent healing).

It should be noted that the Mo profile qualitatively parallels the Cr profile but has somewhat different slopes because of differences in diffusion coefficients of Cr and Mo.

To look at the effect of Cr and Mo depletion on corrosion, click on the <u>Localized</u> <u>Corrosion</u> tab and add the **Depletion Parameter** to the plot as described in the previous example. The plot should look similar to the following one:

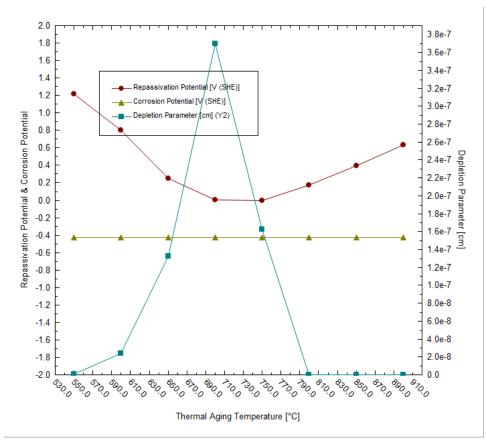


Figure 31-17 Calculated repassivation potential and depletion parameter for alloy 825 as a function of thermal aging temperature.

It is evident that both the depletion parameter and repassivation potential show their extreme values at intermediate temperatures of thermal aging. In the case of the depletion parameter, it is a maximum and, in the case of the repassivation potential, it is a minimum. This is in agreement with experimental data (Anderko et al., 2009). Non-zero values of the depletion parameter indicate the possibility of intergranular corrosion. A depression in the repassivation potential indicates an increased tendency for localized corrosion.

Example 3: Localized corrosion of annealed and thermally aged duplex alloy 2205

In the first and second tour, we used the Corrosion Analyzer's capabilities to predict the Cr and Mo depletion profiles for austenitic stainless steels and nickel-base alloys. However, we are not limited to such calculations. We can also use the Corrosion Analyzer to predict the localized corrosion behavior of other alloys and other phases, including those that are not stored in the database. This facility is based on a generalized correlation for predicting the repassivation potential of Fe-Ni-Cr-Mo-W-N alloys as a function of alloy composition (Anderko et al., 2008). This correlation can be applied to both bulk alloys that are not in the database and to phases that may result from thermal aging.

In this example, we will make two simulations:

- First, we will predict the tendency for localized corrosion for the duplex alloy 2205 in an aerated chloride solution. Alloy 2205 is not in the database, so the repassivation potential will be calculated from the generalized correlation (Anderko et al., 2008). The corrosion potential will be calculated for a similar alloy because the corrosion potential does not differ much for many Fe-Cr-Ni-Mo alloys in the passive state in neutral solutions.
- Second, we will predict the localized corrosion tendency for alloy 2205 after thermal aging. Thermal aging of duplex steels in the temperature range of 900°C to 600°C leads to the formation of various phases χ , σ , M₂₃C₆-type carbide, and secondary austenite (γ_2). The secondary austenite phase is primarily responsible for the increased tendency of the alloy for localized corrosion. This is due to a very significant depletion of chromium in the secondary austenite over relatively wide spatial areas (Sridhar et al., 2009). Since the composition of the secondary austenite cannot be predicted at present, we will use experimental microstructural data (Sridhar et al., 2009) in conjunction with the generalized correlation for the repassivation potential.

Click on Add Stream and create a stream with the following conditions:

heres

The oxygen and nitrogen have been added to simulate the presence of air.

The definition grid of the stream should look similar to the following figure:

Variable	Value	<u> </u>	Add <u>C</u> alculation 🛛 🔻
Stream Parameters	5		pecial Conditions
Stream Amount (mol)	55.6082		Solids Only
Temperature (°C)	60.0000		Solids Unly
Pressure (atm)	1.00000	Summary	
Inflows (mol)		Summary	
H2O	55.5082	Unit Set: I	Metric (moles)
NaCl	0.0		0
02	0.0200000		: Chemistry Model us (H+ ion) Databanks:
N2	0.0800000	Publi	

Figure 31-18 Stream composition for simulating localized corrosion of alloy 2205.

Double-click on the Add Corrosion Rates icon in the Actions/Explorer pane.

Then, click on the **Definition** tab.

Setting up the calculation

Since alloy 2205 is not available in the database, we will select stainless steel 316 as the contact surface. This will ensure that the predicted corrosion potential is very similar to that for alloy 2205.

Select 316 Stainless Steel from the drop-down Contact Surface menu.

Unlike in the previous examples, do not make any changes in the <u>Calc Parameters</u> section. We will not make Cr depletion calculations; rather, we will be specifying the compositions of the phases.

From the Type of rates calculation drop-down menu, select Composition.

The definition grid for the Corrosion Rates should look similar to the following figure. The key specifications are highlighted using red ovals:

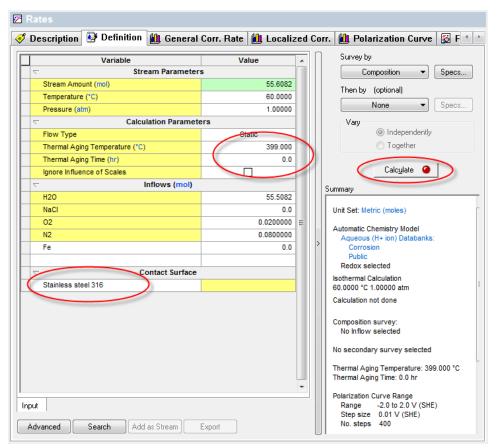


Figure 31-19 Selection of contact surface and survey type.

We will be running a composition survey to see how the concentration of NaCl affects the propensity for localized corrosion. To define the survey type, click on **Specs**.

Composition Rates Calculation		x
Category - Var. 1 - Composition - Polarization Curve - Thermal Aging - Calculation Type - Calculation Diptions	Component Survey Range Component Inflows Image: Component Inflows Image: Component Inflow Re H20 N2 Nac: Component Inflows O2 Select a component inflow which will be varied over the specified range.	
	OK Cancel Apply Help	

Figure 31-20 Selecting the component for the survey (NACL)

In the <u>Var. 1 – Composition</u> category, select Sodium Chloride in the <u>Component</u> tab.

Then, click on the Survey Range tab and enter:

Start 0.0001

End

Number of steps 20

Click the "Log" radio button

The screen should look similar to:

6

Composition Rates Calculation	
Category	Component Survey Range
Var. 1 - Composition Polarization Curve	Composition Range Unit: mol 👻
Thermal Aging Calculation Type	Selected Range
Calculation Options	1.0e-4 to 6.0 in 20 steps of 0.299995 New
	Delete
	💿 Linear 💿 Log 💿 Point List
	End Points
	Start 0.0001
	End 6
	Step Size
	Increment 0.299995 🔿 🕽 Select one, the other is
	Number Steps 20 💿 🗲 calculated
	OK Cancel Apply Help

Figure 31-21 Defining the survey range for the NaCl concentration survey.

Then, click on the **<u>Thermal Aging</u>** category on the left-hand side pane. The screen will be populated with default parameters for type 316 stainless steel.

First, click on the Yes button next to Erp directly from correlation.

Composition Rates Calculation						? ×
Composition Rates Calculation	Thermal A Erp Dir Alloy Cr Fe Mo+W	ectly from Correlatin omposition wt%: 69.466 2.17 Stoichiometry: 0	Cr C Cr	 No ● Ye 17.4 0.054 19.74 6 	Ni N Ni	10.91
	Cr Diffu	Thermochemistry: sion Coefficient: Diffusion Coefficier	DO	41221 0.00016818 7.93e-005	B Q Q	-966 -289000 -274000
	Cr Sen:	itization Threshold	wt%:			Size: 100 Default
		OK		Cancel	Арр	ly Help

Figure 31-22 Thermal Aging Parameters

This is necessary because no parameters for alloy 2205 are stored in the databank and we have to rely exclusively on the correlation to predict the repassivation potential.

Then, enter the composition of alloy 2205 by replacing the default values for alloy 316.

Enter the following composition of alloy 2205:

Fe	68.319	wt. % (which is the balance that includes many minor elements)
Cr	22.5	wt. %
Ni	5.8	wt. %
Mo+W	3.2	wt. %
С	0.017	wt. %
Ν	0.164	wt. %
Th	: :	

The remaining parameters in the Thermal Aging screen can remain the same because we will not be using them in this example (i.e., we will not be calculating any depletion profiles). After entering the values, the screen should look as follows:

Composition Rates Calculation						() X
Category	Thermal A	ging				
Var. 1 - Composition Polarization Curve <mark>Thermal Aging</mark> Calculation Type		ectly from Correlation	on:	🔘 No 🛛 💿 Yes	1	
Calculation Options	Fe	68.319	Cr	22.5	Ni	5.8
	Mo+W	3.2	С	0.017	N	0.164
	Carbide	Stoichiometry:				
	Fe	0	Cr	19.74	Ni	0
	Mo+W	3.26	С	6	N	0
	Carbide	Thermochemistry:	А	41221	в	-966
	Cr Diffu	sion Coefficient:	DO	0.00016818	Q	-289000
	Mo, W	Diffusion Coefficier	nt: D0	7.93e-005	Q	-274000
	Cr Sens	itization Threshold	wt%:	12	Grain	Size: 100
				Rev	ert to	Default
		ОК		Cancel	Арр	ly Help

Figure 31-23 Defining the composition of alloy 2205 and specifying the direct use of the correlation for predicting the repassivation potential.

Click **OK** to accept the changes.

Then, click Calculate.

Analyzing the results

When the calculations are finished, click on the Localized Corrosion tab.

The same results can be also viewed in a numerical form by clicking on the **<u>Report</u>** tab. You will see a plot of the corrosion and repassivation potentials as a function of

NaCl concentration. To visualize the results better, change the horizontal axis to a logarithmic scale.

For this purpose, click on <u>**Options**</u>, select the <u>**X** Axis</u> category, check the <u>**Logarithmic Scale**</u> box and click <u>**OK**</u>. Then, the plot should look similar to the following one:

Customize Plot			? ×
Category	Scale Format Title	e	
Caregory Caregory - Cargend - XAxis - Curves	Scale Format Title Auto Ø Minimum Ø Maximum Ø Major Unit Ø Minor Unit Ø Logarithmic scale	00 63 50 0	
		OK Cancel Apply	Help

Figure 31-24 Changing the X-Axis to Log

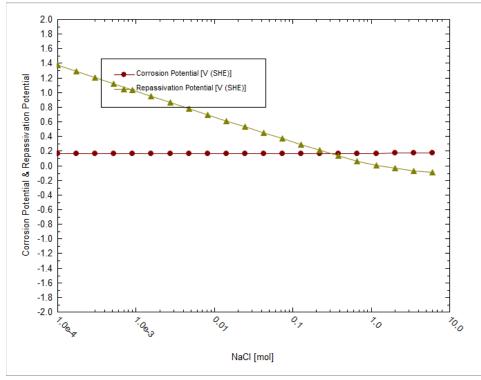


Figure 31-25 Predicted repassivation potential and corrosion potential for alloy 2205.

The plot indicates that alloy 2205 is susceptible to localized corrosion in aerated solutions when the chloride concentration exceeds ca. 0.3 molal. Above this concentration, the repassivation potential drops below the corrosion potential and, therefore, localized corrosion can be stabilized at these conditions.

Setting up the calculation

Now, we will perform the same calculations for thermally aged alloy 2205. We will use the experimental data of Sridhar et al. (2009), which show that the formation of a chromium-depleted secondary austenite phase is responsible for a much increased tendency for localized corrosion. This phase was identified after aging at 700 °C for 24 hours.

To make this simulation, click on the stream name that you used in the previous simulation. Then, double-click on the <u>Add Corrosion Rates</u> icon in the <u>Actions/Explorer</u> pane and click on the <u>Definition</u> tab.

As in the previous simulation, select **316 Stainless Steel** from the drop-down **Contact Surface** menu.

We will run the same concentration survey as in the previous case so that we can compare the results for bulk alloy 2205 with those for a heat-treated sample. To define the survey type, click on <u>Specs</u>. In the <u>Var. 1 – Composition</u> category, select **Sodium Chloride** in the <u>Component</u> tab. Then, click on the <u>Survey Range</u> tab and enter:

Start 0.0001

6

End

Number of steps 20

The screen should look similar to Figure 31-20 Selecting the component for the survey (NACL)

Then, click on the <u>Thermal Aging</u> category on the left-hand side pane. The screen will be populated with default parameters for type 316 stainless steel.

Click on the <u>Yes</u> button next to <u>Erp directly from correlation</u> because we will be running calculations for a completely new phase.

Then, enter the composition of the secondary austenite phase by replacing the default values for alloy 316. For more details how these compositions were determined, see the paper of Sridhar et al. (2009). Enter the following values:

Fe 80.774 wt.% (which is the balance that includes many minor elements)

- Cr 12.512 wt.%
- Ni 5.134 wt.% Mo+W 1.399 wt.%
- C 0.017 wt.%
- N 0.164 wt.%

After entering the values, the screen should look as follows:

Category	Thermal A	ging				
 Var. 1 - Composition Polarization Curve Thermal Aging Calculation Type 		ectly from Correlatio	ın:	🔿 No 🛛 🔍 Y	es	
Calculation Options	Fe	80.774	Cr	12.512	Ni	5.134
	Mo+W	1.399	С	0.017	N	0.164
	Carbide	e Stoichiometry:				
	Fe	0	Cr	19.74	Ni	0
	Mo+W	3.26	С	6	N	0
	Carbide	e Thermochemistry:	Α	41221	В	-966
	Cr Diffu	ision Coefficient:	DO	0.00016818	Q	-289000
	Mo, W	Diffusion Coefficier	it: D0	7.93e-005	Q	-274000
	Cr Sen:	sitization Threshold	wt%:	12	Grain	Size: 100
				R	evert to	Default

Figure 31-26 Entering the composition of secondary austenite phase in a heat-treated sample of alloy 2205.

Click **OK** to save this information.

Then, click Calculate.

Analyzing the results

When the calculations are finished, click on the <u>Localized Corrosion</u> tab. You will see a plot of the corrosion and repassivation potentials as a function of NaCl concentration. As in the previous example, change the horizontal axis to a logarithmic scale. For this purpose, click on <u>Options</u>, select the <u>X Axis</u> category, check the <u>Logarithmic Scale</u> box and click <u>OK</u>. Then, the plot should look similar to the following one:

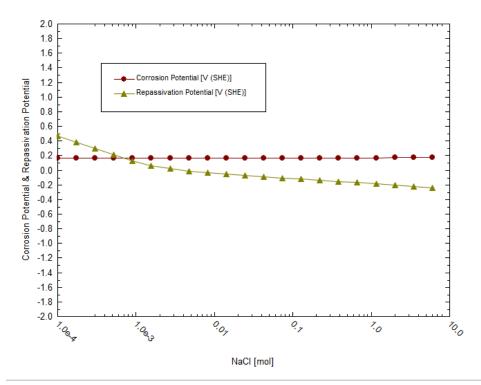


Figure 31-27 Predicted repassivation potential and corrosion potential for thermally aged alloy 2205. The calculations were made using the composition of the secondary austenite phase.

The obtained plot shows that the repassivation potential is much lower than that for bulk alloy 2205 (cf. Figure 31-25). Because of the strong depression of the repassivation potential, the corrosion potential exceeds the repassivation potential at chloride concentrations of ca. 0.0007 m. Thus, localized corrosion is predicted to be possible at concentrations above 0.0007 m. This indicates a very strong increase in the propensity for localized corrosion compared with bulk alloy 2205, for which the predicted threshold is ca. 0.3m.

In general, you can use this facility to predict the repassivation potential for any alloys, including unknown and experimental ones, as long as they belong to the Fe-Ni-Cr-Mo-W-N-C family.

You can download a worked example of this chapter from the OLI Wiki Page

32. Extreme Value Statistics for Predicting Pitting Damage – Intro

Extreme Value Statistics

Engineering systems may have a large number of pits and corroded areas of varying degree of severity. The first perforation, whose time and location will be a matter of probability, may cause the failure of the construction. Accordingly, the probability of such failure must be known as accurately as possible.

Extreme value statistics (EVS) is one of the most powerful statistical techniques that have been used extensively to extrapolate damage (maximum pit depth) from small samples in the laboratory to larger area samples in the field (see, for example, Eldridge G. 1957, Shibata T. et al. 1988, Kowaka et al. 1994). Thus, it was shown (Shibata T. et al. 1988) that probability of failure of a construction, P_f , i.e. the probability that at least one pit reaches the critical dimension, d, (for example wall thickness) in the system with area S is described by the equation:

$$P_{f} = 1 - \exp\{-\exp[-d - (u + \alpha \ln(S/s))]/\alpha\}$$
⁽¹⁾

where location parameter, u, and scale parameter, α , are measured by using small samples with constant area, s. Equation (1) is to extrapolate corrosion damage from a small reference area, such as a coupon to a larger operation area, S. This is the classical use of Extreme Value Statistics. Experimental studies demonstrate that both the shape and location parameters are time-dependent. However, those dependencies must be established empirically and since no theory contained within classical EVS is available for the functional forms of u(t) and $\alpha(t)$, it is necessary to know answer (prediction) in advance for predicting the damage at long times. This has proven to be a severe constraints of the applicability of classical EVS.

This problem can be overcome by applying damage function analysis (DFA) method that considers propagation of corrosion damage by drawing an analogy between the growth of a pit and the movement of a particle (Engelhardt and Macdonald, 2004). In many cases DFA yields an analytical expression for u and α in terms of time of the hyperbolic form:

$$u = \frac{a_1 t}{1 + a_2 t} \quad \text{and} \quad \alpha = a_3 t \tag{2}$$

where a_1 , a_2 , and a_3 are readily determined by calibration from short term data in order to predict damage over the longer time. Namely, equations (2) are used now by OLI software for predicting damage in corroding systems. It must be noted that a different (power) form of such dependencies has been used by Laycock et al. 1990.

Input and Output

For applying this technique the user has to provide a set of experimental data (x_i, t_i, s_i) , i = 1, 2, ..., N, where x_i is the depth of the deepest pit over area s_i , of a metal exposed to corrosion attack. The separate area, s_i , could be distinct coupons

from a designed experiment or random samples at various times from different locations in the system. Experiments must be performed for at least two different times.

The output of the code yields the probability of failure as a function of time for a large system with area S. The code also allows the user to answers on several engineering questions, for example, what service life, t, will have the pipe with the width, d, and length L in order to ensure acceptable performance (probability of failure, P_f).

Advantages and Disadvantages of EVS

The advantage of this approach is self-evident. The prediction of corrosion damage for long times will be done by using experimental data for short times without requiring the explicit determination of any information about the kinetic parameters of the system. However, such approach has evident disadvantages, as follows:

- a) The results of the analysis cannot be transferred for predicting corrosion damage to other systems (for example pipelines) due to the different technological and environmental conditions that generally exist. The results cannot be used for predicting damage in the same system if technological and environmental conditions change.
- b) We can expect that when the depth of the pit increases some critical value, the nucleation of cracks can occur. It is clear that a purely statistical method cannot predict such a transition. This method also cannot predict any catastrophic event.
- c) This method cannot be used for design of new constriction, because it relies upon calibration upon a pre-existing system.

33. Extreme Value Statistics for Predicting Pitting Damage – A Tour

Overview

In this tour, we will show examples of applications of Extreme Value Statistics for predicting pitting damage. Specifically, we will show how to predict

- The depth of the deepest pit in the engineering structure or laboratory systems as a function of time and the surface area of the system;
- Probability of failure for a given penetration depth and the area of the system as a function of observation time.
- Probability of failure for a given observation time and the area of the system as a function of penetration depth.
- Probability of failure for a given penetration depth and observation time as a function of the area of the system.

At this point you should be very familiar with entering data into OLI Studio. Also, you need to know the foundation of Extreme Value Statistics (Aziz, 1956, Kowaka et al. 1994, Laycock et al. 1990, Engelhardt and Macdonald, 2004).

Example 1: Corrosion of aluminum alloy in tap water

In this example, we will consider the classical data for pitting corrosion (Aziz, 1956). In this paper, we can find particularly the experimental data for the maximum pit depths developed on Alcan 2S-O coupons with area s \approx 129 cm² immersed in Kingston tape water at 25 ^oC (see **Table 33-1**).

Coupon #	One Week	One Month	Three Months	Six Month	One Year
1	180	460	480	620	640
2	266	500	578	620	680
3	290	510	610	620	700
4	306	580	610	680	760
5	334	580	610	680	800
6	340	640	660	720	810
7	340	654	690	740	820
8	410	680	718	740	840
9	410	692	760	760	840
10	545	692	798	760	900

Table 33-1 Maximum pit depth (in μ m) developed on Alcan 2S-O coupons with immersed in Kingston tape water for different observation time

Double-Click the Add Standard EVS Calculation icon

Streams			
Actions			д ▲ Х
Actions			
			-
Add Stream	Add Mixer	Add Water Analysis	Ш
evs	.	65	
Add EVS	Add Brine	Add Oil	
Calculation	Analysis	Analysis	
<u></u>		1.5	*
Plot Template Ma	anager		д ▲ Х
			Save

Figure 33-1 Starting EVS

Click on **Definition** tab and start by inputting experimental data.

Because all samples have the same area $s = 129 \text{ cm}^2$ we input this value into **Default Value Area**. Other possible unit for area is m². The default value of pit depth is chosen to be in μ m. Other possible units are Å, mm, ft, m, ft.

Because, in the first step, we will predict propagation of pitting damage in the same system (for the same coupons) we choose $S = s = 0.0129 \text{ m}^2$.

The definition grid of the system should look like Figure 33-2.

Description 🕺 Definition 🛍 Plot 🔯 Report						
Description	Pit Depth (µm)	Area (sq-cm)				
Calculation Parameters						
Surface Area		1.0000				
Experiment Start (day)	0					
Default Value		12 <mark>9.00</mark>				
Sample Group 01 (day)	6407.1					

Figure 33-2: The system definition.

There are experimental data for 5 different times (5 groups). Click on the button inside the red oval (see Figure 33-2) and type time 7 days in empty space below Elapsed (Figure 33-3).

EVS Sample Group Info Editor	? ×
Title:	
Sample Group 01	
Elapsed: (day) 기	
Included for Calculation	
ок	Cancel

Figure 33-3: Drop down-table for adding groups.

Insert data from the second column in Table 33-1 into the Sample Group 01. Group 01 is representing 1 week.

After that, click on **Add Group** button (inside green oval), and in blank space type elapsed time = 30 days and insert all data from the third column for Sample Group 02. After inserting the data from Table 1 (from columns 1 and 3) the definition grid for EVS calculations should look like Figure 33-4.

Description	Pit Depth (µm)	Area (sq-cm)	•	
Calculation P	arameters			│
Surface Area		1.00000		
Experiment Start (day)	0			Calc <u>u</u> late 🥝
Default Value		129.000		Summary
Sample Group 01 (day)	7.0			
	180.000	129.000	Ε	EVS Calculation Type: Pit Depth
2	266.000	129.000		Prediction
3	290.000	129.000		Calculation Parameter(s):
1	306.000	129.000		Surface Area 1.00000 sq-cm
5	334.000	129.000		
3	340.000	129.000		Experiment Start: 01/01/2000
7	340.000	129.000		Range 0.0 to 730.0 day
3	410.000	129.000		Step size 5.0 day
9	410.000	129.000		No. steps 146
10	545.000	129.000		> Default Area Value: 129.000
Sample Group 02 (day)	30.0			
\sim	460.000	129.000		
2	500.000	129.000		
3	510.000	129.000		
1	580.000	129.000		
i	580.000	129.000		
3	640.000	129.000		
7	654.000	129.000		
3	680.000	129.000		
)	692.000	129.000		
10	692.000	129.000		

Figure 33-4: Specifying experimental data for depths of deepest pits (not completed)

Note the following:

- Here for the description of different experiments we simply used the number of the corresponding row in Table 1. However this description can be done in an arbitrary form.
- For each group, the order of samples relative depth can be arbitrary (not necessary in ascending order as in Table 1 or Figure 33-4).
- If coupons have different areas each area must be specified in the column Area.
- Radio button **Elapsed** (red ellipse in Figure 33-4) means the time after corrosion attack is used in calculations and namely this time is used usually in scientific publication. However it is possible to use also Actual Time of the experiments.

Enter the remaining data from Table 33-1 as new groups (columns 4 & 5), make sure the "Include boxes" are unchecked.

Description	Pit Depth (µm)	Area (sq-cm)	
Calc	Calculation Parameters		
Surface Area		1.00000	
C Experiment Start (day	/) 0		
Default Value		0.129000	
Sample Group 01 (day	/) 7.0		
1	180.000	0.129000	
2	266.000	0.129000	
3	290.000	0.129000	
4	306.000	0.129000	
5	334.000	0.129000	
6	340.000	0.129000	
7	340.000	0.129000	
8	410.000	0.129000	
9	410.000	0.129000	
10	545.000	0.129000	
Sample Group 02 (day	/) 30.0		
	460.000	0.129000	
2	500.000	0.129000	
3	510.000	0.129000	
pup 03 was entered but by un-checking	580.000	0.129000	
box we are not considering it in the	580.000	0.129000	
culation.	640.000	0.129000	
7	654.000	0.129000	
8	680.000	0.129000	
9	692.000	0.129000	
10	692.000	0.129000	
	002.000	0.120000	
Sample Group 03 (day	/) 90.0		
1	480.000	0.129000	
2	578.000	0.129000	
3	610.000	0.129000	
4	610.000	0.129000	
5	610.000	0.129000	
6	660.000	0.129000	
7	690.000	0.129000	
8	718.000	0.129000	
9	760.000	0.129000	
10	798.000	0.129000	
Sample Group 04 (day	/) 180.0		
Sample Group 04 (day	100.0		

Figure 33-5 Adding more data, un-checking groups not to be considered in the calculation

Setting up the calculation (Pit depth prediction)

We will simulate the results of Aziz's experiments assuming that only data for short-time experiments (for 1 week and 1 month) are available. To include these data into calculations we must mark the boxes (black ovals in Figure 33-4). It can be done also by using the drop-down menu for adding groups (see Figure 33-4). All others group (Groups 03 - 05) must not be marked.

Since we will predict corrosion on the samples with the same area, the value of 129 cm^2 must be inserted into the property window Surface Area.

1	Description 🤡 Definition 🛍 Plot 📓	Report	
Г	Description	Pit Depth (µm)	Area (sq-cm)
	Calculation Para	meters	
	Surface Area		129.000
	Experiment Start (day)	0	
	Default Value		129.000
	Sample Group 01 (day)	7.0	

Figure 33-6 Setting Surface Area

In the drop-down menu for the Type of calculations (inside the blue oval) we choose **Pit Depth Prediction**. Now, click on the **Specs...** button.

	Pit	Depth Prediction Specs
	<	Pit Depth Prediction
		Fail Probability: Depth
Su		Fail Probability: Life
		Fail Probability: Area
I I F	Predic	tion

Figure 33-7 Selecting the type of calculation

The Survey Range category allows you to specify the range for the pit depth prediction survey. The default range is from 0 to 365 days that corresponds the available experimental data (Groups 01-05).

Then click Calculate button.

Analyzing the results

When the calculations are finished, click on the Plot tab.

You will see a plot of the predicted mean value of the depth of the deepest pit, x_m and the plots of values $x_m - \sigma$ and $x_m + \sigma$, where σ is the standard deviation of x_m .

It is important to note that only data for short term experiments (for 1 week and 1 month) denoted by black circles are included in calculations. Other data, denoted by red diamonds are shown only for demonstrating the accuracy of prediction. Of course, these additional data may be included in calculations by marking the corresponding boxes.

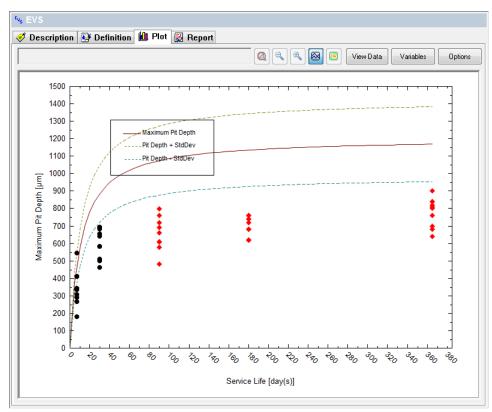


Figure 33-7: Predicted depth of the deepest pit. The experimental data for t = 1 week and 1 month are included into consideration. $S = 129 \text{ cm}^2$.

Of course, the accuracy of prediction increases when additional group of experiments are included into consideration. Click back on the **Definition** tab.

Include (check) 90 days so that you now have 7 days (1 week), 30 days (1 month) and 90 days (3 months).

Click Calculate

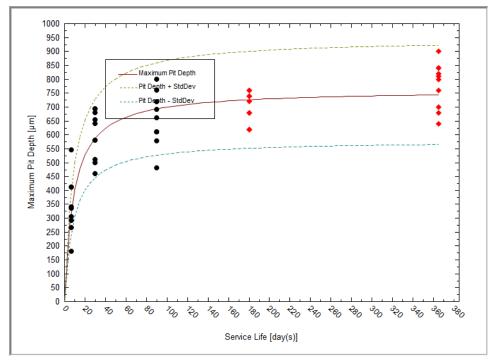


Figure 33-8:Predicted depth of the deepest pit. The experimental data for t = 1 week, 1 month, and 3 months are included into consideration. $S = 129 \text{ cm}^2$.

For predicting depth of the deepest pit in the system with a substantially larger area (say, 10 m^2) for the period of observation time of 2 years we have to input S = 10 (m^2) into **Surface Area** window and to specify the range [0, 2] (years) for observation time by clicking on **Specs...** button.

1	Description 🤒 Definition 🛍 Pla	ot <u> </u> Report	\frown	_			
Γ	Description	Pit Depth (µm)	Area (sq-m))^	Π		
Г	Calculation Para	ameters				Pit Dep	th Prediction 🔻 Specs
	Surface Area		10.0000			·	
	Experiment Start (day)	0					Calculate 🥝
	Default Value		0.0129000			_	
	Sample Group 01 (day)	7.0				Summary	
		400.000					

Figure 33-9 Changing the surface area, note the unit change from sq-cm to sq-m

EVS Calculation Options	? ×
Survey Range	
Pit Depth Prediction Range Unit: day	
Selected Range	
0.0 to 730.0 in 146 steps of 5.0	New
	Delete
🖲 Linear 💿 Log 💿 Point List	
End Points	
Start 0	
End 730	
Step Size	
Increment 5 💿 🐧 Select one,	the other is
Number Steps 146 💿 🗲 calculated	
OK Cancel Apply	Help

Figure 33-10 Changing the end time to 2 years (730 days)

The results of calculations are shown below.

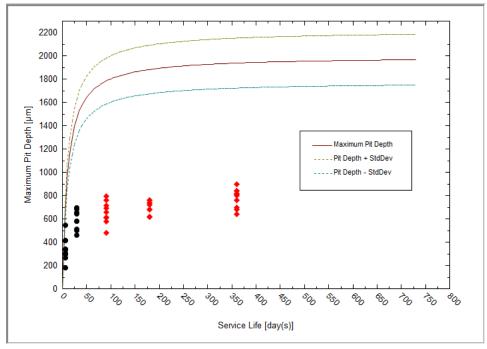


Figure 33-11: Predicted depth of the deepest pit. $S = 10 m^2$.

Setting up the calculations for engineering tasks

Here for the given system we consider some important engineering tasks.

First task:

Which thickness, d, does an the aluminum pipe with the area of S (say, 1 m²) have to have in order to ensure acceptable performance (probability of failure, P_f , say, $P_f < 5\%$) at design service life, t_s, (say, 5 years)?

In order to do so we have to choose in drop-down menu **Fail Probability: Depth**, and insert into the window **Surface Area**, $S = 1 (m^2)$ and insert into the window **Service Life**, t = 5 (years).

The definition grid for calculating the acceptable pipe wall width should look like Figure 33-18

	Description	Pit Depth (µm)	Area (<mark>sq-m</mark>)	A	
	Calculation I	Parameters			Fail Probability: Depth 🔻 Specs
Surface A	Area		1.00000		
Service L	ife (yr)		5.00000		Calculate 🥥
$\overline{\nabla}$	Experiment Start (yr)	0			
Default V	alue		0.0129000		Summary
$\overline{\mathbf{v}}$	Sample Group 01 (yr)	0.0191781		=	EVS Calculation Type: Failure Probability
1		180.000	0.0129000		Critical Depth Based
2		266.000	0.0129000		Calculation Parameter(s):
3		290.000	0.0129000		Surface Area 1.00000 sq-m
4		306.000	0.0129000		Service Life 5.00000 yr
5		334.000	0.0129000		Even eximant Starts 04/04/2000
6		340.000	0.0129000		Experiment Start: 01/01/2000
7		340.000	0.0129000		Range 0.0 to 2000.0 µm
8		410.000	0.0129000		Step size 10.0 µm No. steps 200
9		410.000	0.0129000		No. steps 200
10		545.000	0.0129000		Default Area Value: 129.000
$\overline{\mathbf{v}}$	Sample Group 03 (yr)	0.0821918			
1		460.000	0.0129000		
2		500.000	0.0129000		
3		510.000	0.0129000		
4		580.000	0.0129000		
5		580.000	0.0129000		
6		640.000	0.0129000		
7		654.000	0.0129000		
8		680.000	0.0129000		
9		692.000	0.0129000		
10		602.000	0.0120000	T	

Figure 33-12: Specifying data for calculating probability of failure as a function of the width of the wall at given observation time and area of the pipe.

Then click Calculate button.

When the calculations are finished, click on the **Plot** tab. You will see a plot of predicted probability of failure

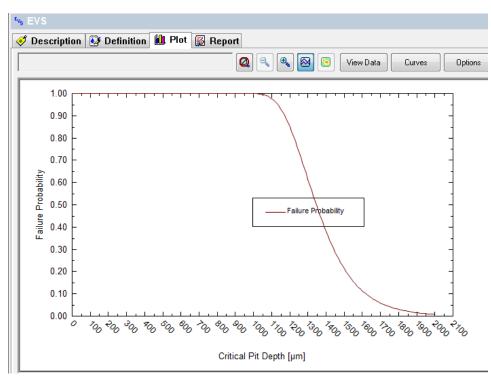


Figure 33-13: Probability of failure as a function of the width of the wall at given observation time and area of the pipe.

Click on the tab Report. From the Table: "Calculation Results" you can conclude that acceptable performance is reached at $d > 1950 \mu m$.

Second Task:

What service life, t, will have the aluminum pipe with the width, d, (say, 2300 μ m), with area S (say, 10 m²) in order to ensure acceptable performance (probability of failure, P_f, say P_f< 5 %).

In order to do so we have to choose in drop-down menu **Fail Probability: Life**, and insert into the window **Surface Area**, $S = 10 \text{ (m}^2)$ and insert into the window **Critical Pit Depth**, $d = 2300 \text{ (}\mu\text{m}\text{)}$.

We also wish to cover a sufficient period of time for the simulation. Click the **Specs...**button and change the range to 3 years in 0.2 year increments.

Also we need to deselect Groups 04 and 05 so un-check the appropriate group boxes.

EVS Calculation Options	x
Survey Range	
Failure Probability - Service Life Based Unit: yr	-
Selected Range	
0.0 to 3.0 in 15 steps of 0.2 New	,
Delet	e
Linear O Log O Point List	
End Points	—
Start 0	
End 3	
Step Size	
Increment 0.2 Select one, the other is	
Number Steps 15 💿 🥤 calculated	
OK Cancel Apply H	lelp

Figure 33-14 Changing the time to 3 years. Note the change in units from days to years

Click OK

The definition grid for calculating the acceptable pipe wall width should look similar to Figure 33-15

Calculation Parameters Surface Area 10.0000 Critical Pit Depth Calculation Parameters Calculation Parameters Calculation Parameters Calculation Parameters Calculation Parameters Calculation Parameters Calculation Type: Failure Probability Calculation Type: Failure Probability Summary EVS Calculation Type: Failure Probability Summary Calculation Type: Failure Probability Summary Calculation Parameter(s): <th colspan<="" th=""><th></th><th>Description</th><th>Pit Depth (µm)</th><th>Area (sq-m)</th><th></th></th>	<th></th> <th>Description</th> <th>Pit Depth (µm)</th> <th>Area (sq-m)</th> <th></th>		Description	Pit Depth (µm)	Area (sq-m)	
Critical Pit Depth 2300.00 Experiment Start (yr) 0 Default Value 0.0129000 ✓ Sample Group 01 (yr) 0.0191781 ✓ Sample Group 03 (yr) 0.0821918 ✓ Sample Group 02 (yr) 0.246575 1 480.000 0.0129000 Calculation Parameter(s): 2 578.000 0.0129000 Calculation Parameter(s): 3 610.000 0.0129000 Critical Pit Depth 2300.00 µm 5 610.000 0.0129000 Range 0.0 to 3.0 yr 5 610.000 0.0129000 Range 0.0 to 3.0 yr 5 718.000 0.0129000 Range 0.0 to 3.0 yr 9 760.000 0.0129000 Default Area Value: 129.000 9 760.000 0.0129000 Default Area Value: 129.000		Calculation P	arameters		Fail Probability: Life 🔻 Specs.	
Experiment Start (yr) 0 Default Value 0.0129000 ✓ Sample Group 01 (yr) 0.0191781 ✓ Sample Group 03 (yr) 0.0821918 ✓ Sample Group 02 (yr) 0.246575 1 480.000 0.0129000 2 578.000 0.0129000 3 610.000 0.0129000 4 610.000 0.0129000 5 610.000 0.0129000 5 610.000 0.0129000 6 660.000 0.0129000 7 690.000 0.0129000 8 718.000 0.0129000 9 760.000 0.0129000 10 798.000 0.0129000 10 798.000 0.0129000 10 798.000 0.0129000	Surface A	rea		10.0000		
Default Value 0.0129000 ✓ Sample Group 01 (yr) 0.0191781 ✓ Sample Group 03 (yr) 0.0821918 ✓ Sample Group 02 (yr) 0.246575 1 480.000 0.0129000 2 578.000 0.0129000 3 610.000 0.0129000 44 610.000 0.0129000 5 610.000 0.0129000 5 610.000 0.0129000 6 660.000 0.0129000 7 690.000 0.0129000 8 718.000 0.0129000 9 760.000 0.0129000 10 798.000 0.0129000 10 798.000 0.0129000 10 798.000 0.0129000 10 798.000 0.0129000 10 798.000 0.0129000 10 798.000 0.0129000 10 798.000 0.0129000 10 798.000 0.0129000	Critical Pit	Depth	2300.00		Calc <u>u</u> late 🥝	
Construction Construction<	∇	Experiment Start (yr)	0			
✓ Sample Group 03 (yr) 0.0821918 ✓ Sample Group 02 (yr) 0.246575 1 480.000 0.0129000 2 578.000 0.0129000 3 610.000 0.0129000 44 610.000 0.0129000 5 610.000 0.0129000 5 610.000 0.0129000 6 660.000 0.0129000 7 690.000 0.0129000 8 718.000 0.0129000 9 760.000 0.0129000 10 798.000 0.0129000 10 798.000 0.0129000 0.000 0.0129000 Default Area Value: 129.000		lue		0.0129000	Summary	
Sample Group 02 (yr) 0.246575 1 480.000 0.0129000 2 578.000 0.0129000 3 610.000 0.0129000 44 610.000 0.0129000 5 610.000 0.0129000 5 610.000 0.0129000 6 660.000 0.0129000 7 690.000 0.0129000 8 718.000 0.0129000 9 760.000 0.0129000 10 798.000 0.0129000 6 0.0129000 9 760.000 0.0129000 10 798.000 0.0129000 9 760.000 0.0129000 0.0129000 0.0129000 0.0129000		Sample Group 01 (yr)	0.0191781		EVS Calculation Type: Failure Probability	
1 480.000 0.0129000 2 578.000 0.0129000 3 610.000 0.0129000 44 610.000 0.0129000 5 610.000 0.0129000 5 610.000 0.0129000 6 660.000 0.0129000 7 690.000 0.0129000 8 718.000 0.0129000 9 760.000 0.0129000 10 798.000 0.0129000 10 798.000 0.0129000 10 798.000 0.0129000		Sample Group 03 (yr)	0.0821918			
1 480.000 0.0129000 2 578.000 0.0129000 3 610.000 0.0129000 4 610.000 0.0129000 5 610.000 0.0129000 5 660.000 0.0129000 7 690.000 0.0129000 8 718.000 0.0129000 9 760.000 0.0129000 10 798.000 0.0129000 5 0.0129000 0.0129000 9 760.000 0.0129000 10 798.000 0.0129000		Sample Group 02 (yr)	0.246575		Calculation Parameter(a):	
3 610.000 0.0129000 4 610.000 0.0129000 5 610.000 0.0129000 6 660.000 0.0129000 7 690.000 0.0129000 8 718.000 0.0129000 9 760.000 0.0129000 10 798.000 0.0129000 Sample Group 04 (yr) 0.493151	1		480.000	0.0129000		
4 610.000 0.0129000 5 610.000 0.0129000 6 660.000 0.0129000 7 690.000 0.0129000 8 718.000 0.0129000 9 760.000 0.0129000 10 798.000 0.0129000 Sample Group 04 (yr) 0.493151	2		578.000	0.0129000	Critical Pit Depth 2300.00 µm	
4 610.000 0.0129000 5 610.000 0.0129000 6 660.000 0.0129000 7 690.000 0.0129000 8 718.000 0.0129000 9 760.000 0.0129000 10 798.000 0.0129000 Sample Group 04 (yr) 0.493151	3		610.000	0.0129000	Experiment Start: 01/01/2000	
6 660.000 0.0129000 7 690.000 0.0129000 8 718.000 0.0129000 9 760.000 0.0129000 10 798.000 0.0129000 Sample Group 04 (yr) 0.493151	4		610.000	0.0129000		
Solution 0.0125000 No. steps 15 7 690.000 0.0129000 Default Area Value: 129.000 9 760.000 0.0129000 Default Area Value: 129.000 10 798.000 0.0129000 Default Area Value: 129.000 Sample Group 04 (yr) 0.493151 Default Area Value: 129.000	5		610.000	0.0129000		
Sample Group 04 (yr) 0.493151	6		660.000	0.0129000		
Sample Group 04 (yr) 0.493151	7		690.000	0.0129000		
10 798.000 0.0129000 Sample Group 04 (yr) 0.493151	8		718.000	0.0129000	Default Area Value: 129.000	
Sample Group 04 (yr) 0.493151	9		760.000	0.0129000		
	10		798.000	0.0129000		
Sample Group 05 (yr) 1.0		Sample Group 04 (yr)	0.493151			
		Sample Group 05 (yr)	1.0			

Figure 33-15: Specifying data for calculating probability of failure as a function of the width of the wall at given observation time and area of the pipe.

Then click Calculate button.

When the calculation is finished, click on the **Plot** tab. You will see a plot of predicted probability of failure (Figure 33-16). (You may need to change the axis ranges via the **Options Button**)

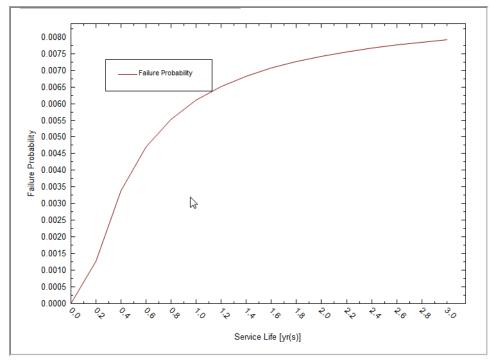


Figure 33-16: Probability of failure as a function of service life for a given width of the wall and given area of the pipe.

Click on the tab Report. From the Table: "Calculation Results" you can conclude that acceptable performance is reached at t < 657 days.

Third Task:

What area, S, can have the aluminum pipe with the width, d, (say, 2000 μ m), and service life, t, (say, 5 years) in order to ensure acceptable performance (probability of failure, P_f, say, P_f< 5 %).

In order to do so we have to choose in the drop-down menu **Fail Probability: Area**, and insert into the cell *Critical Pit Depth* the value 2000 (μ m) and into cell *Service Life*, 5 (years).

We need to set the range for the area from 0 to 100 sq-m in 0.1 sq-m increments. Click the **Specs...** button.

EVS Calculation Options	? X
Survey Range	
Failure Probability - Surface Area Based Unit: sq-m	
Selected Range	
0.0 to 100.0 in 1000 steps of 0.1	New
	Delete
Linear O Log O Point List	
End Points	
Start 0	
End 100	
Step Size	
Increment 0.1 💿 🔪 Select one,	the other is
Number Steps 1000 💿 🗲 calculated	
OK Cancel Apply	Help

Figure 33-17 Setting the area range for Failure Probability

The definition grid for calculating the acceptable pipe wall width should look similar to Figure 33-18.

Description	Pit Depth (µm)	Area (<mark>sq-m</mark>)			
Calculation F	Parameters				Fail Probability: Area 🔻 Specs
Critical Pit Depth	2000.00				
Service Life (yr)		5.00000			Calculate 🥥
Experiment Start (yr)	0				
Default Value		0.0129000			ummary
Sample Group 01 (yr)	0.0191781		=		EVS Calculation Type: Failure Probability
1	180.000	0.0129000			Surface Area Based
2	266.000	0.0129000			
3	290.000	0.0129000			Calculation Parameter(s): Critical Pit Depth 2000.00 µm
4	306.000	0.0129000			Service Life 5.00000 yr
5	334.000	0.0129000			Experiment Start: 01/01/2000
6	340.000	0.0129000			Range 0.0 to 100.0 sq-m
7	340.000	0.0129000			Step size 0.1 sq-m
8	410.000	0.0129000			No. steps 1000
9	410.000	0.0129000		>	Default Area Value: 129.000
10	545.000	0.0129000			
Sample Group 03 (yr)	0.0821918				
1	460.000	0.0129000			
2	500.000	0.0129000			
3	510.000	0.0129000			
4	580.000	0.0129000			
5	580.000	0.0129000			
6	640.000	0.0129000			
7	654.000	0.0129000			
8	680.000	0.0129000			
9	692.000	0.0129000			
10	602.000	0.0100000	Ψ.		

Figure 33-18: Specifying data for calculating probability of failure as a function of area of the pipe at given width of the wall and given service life.

For this simulation we will only be using Group 01 and Group 02. Un-check the remaining groups.

Then click Calculate button.

When the calculation is finished, click on the **Plot** tab. You will see a plot of predicted probability of failure (Figure 33-19).

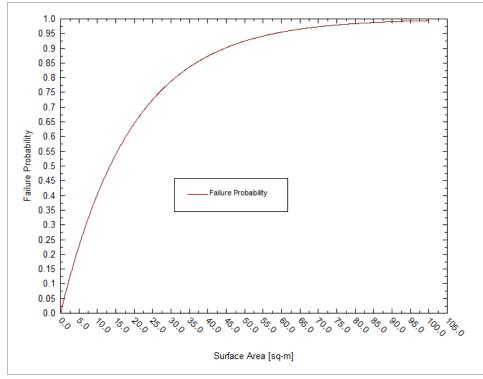


Figure 33-19: Probability of failure as a function of the area of the pipe at given width of the wall and given service life.

Click on the tab Report. From the Table: "Calculation Results" you can conclude that acceptable performance is reached at $S < 14000 \text{ cm}^2 = 1.4 \text{ m}^2$.

Example 2: Corrosion in Pipelines.

By using this example we would like to demonstrate that in some cases reliable prediction of corrosion damage can be done by using a very limited number of experimental points.

In Figure 33-21 you can see the results of direct measurements of the depth of the deepest pits in the pipeline between Samara and Moscow [Zikerman, 1972]. The data has been inserted, by the way, as was described in Example 1.

	Group 1	Group 2	Group 3	Group 4	Group 5	Group 6	Group 7	Group 8
Sample	1440 hrs	5040 hrs	5760 hrs	8959 hrs	12624 hrs	17688 hrs	28032 hrs	28272 hrs
1	0.1			1.4	1.7	1.9		2.1
2		0.49		1.95	2.1	2.08		2.25
3	0.3	1.6		1.8				
4	0.4			1.6	1.65	1.88		
5	0.9		1.57	2.1	2.21	2.4	2.4	
6	0.3		1.2	1.4	1.4	1.55	1.71	

Table 33-2 Pit depths(mm) for pipeline between Samara and Moscow

We would like to simulate for 30,000 hours so we need to change the **Specs...**button.

Start 0.0 hrs

End 30000 hrs

Increment 2000 hrs

EVS Calculation Options	? X
Survey Range	
Pit Depth Prediction Range Unit: hr	
Selected Range	
0.0 to 30000.0 in 15 steps of 2000.0	New
	Delete
🖲 Linear 💿 Log 💿 Point List	
End Points	
Start 0	
End 30000	
Step Size	
Increment 2000 💿 🚶 Select one, the	other is
Number Steps 15 💿 ∫ calculated	
OK Cancel Apply	Help

Figure 33-20 Setting the range to 30,000 hours, Note the units for time

	Description	Pit Depth (mm)	Area (sq-cm)			
	Calculation	Parameters				Pit Depth Prediction 👻 Specs.
Surface A	rea		1.00000			
$\overline{\nabla}$	Experiment Start (hr)	0				Calc <u>u</u> late 🥝
Default Va	lue		1.00000		_	
$\overline{\mathbf{v}}$	Sample Group 01 (hr)	1440.0				ummary
1		0.100000	1.00000			EVS Calculation Type: Pit Depth Prediction
3		0.300000	1.00000			
4		0.400000	1.00000	=		Calculation Parameter(s):
5		0.900000	1.00000			Surface Area 1.00000 sq-cm
6		0.300000	1.00000			Experiment Start: 01/01/2000
$\overline{\mathbf{v}}$	Sample Group 02 (hr)	5040.0				Range 0.0 to 8760.0 hr Step size 120.0 hr
2		0.490000	1.00000			No. steps 73
3		1.60000	1.00000			Default Area Value: 1.00000
$\overline{\mathbf{v}}$	Sample Group 03 (hr)	5760.0				
5		1.57000	1.00000			
6		1.20000	1.00000			
	Sample Group 04 (hr)	8959.0				
1		1.40000	1.00000	1		
2		1.95000	1.00000			
3		1.80000	1.00000			
4		1.60000	1.00000			
5		2.10000	1.00000			
6		1.40000	1.00000			
_	Sample Crown 05 (br)	40604.0		-		

Figure 33-21: Specifying experimental data for depths of deepest pits for corrosion in pipelines. Only 3 observation times are used

Because the area of the pipelines metal was not changed with time the information about this area is not needed for extrapolation of corrosion damage in time. That is why all data for Area in Figure 33-21 are arbitrary.

Check only Groups 1 through 3 are used.

Click the Calculate button.

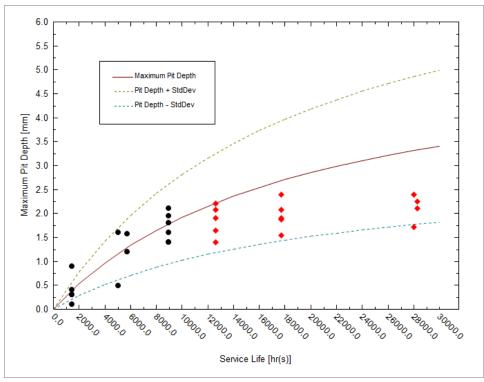


Figure 33-22: Predicted depth of the deepest pit with calibration on three observation times.

Click on the **Definition** tab and **Check** Groups 1 through 5. Recalculate the diagram.

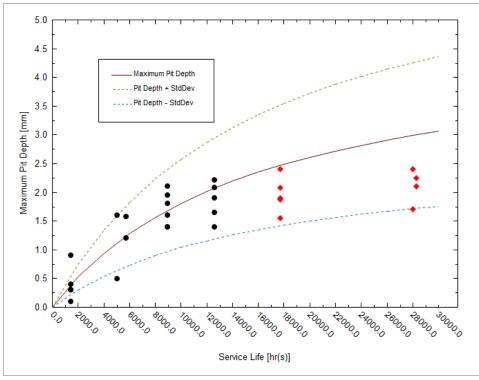


Figure 33-23: Predicted depth of the deepest pit with calibration on five observation times.

Figure 33-22 and Figure 33-23 show how the predicted results improved with increasing number of subsequent inspections. As previously, only points in black were used for predicting propagation of corrosion damage and other data, denoted by red diamonds, are shown only for demonstrating the accuracy of prediction

The predictions can be substantially improved if they were obtained on the same part of the pipe where conditions are approximately the same (see Figure 33-25and Figure 33-26).

Time (hours)	Pit depth (mm)
1440	0.9
5040	
5760	1.57
8959	2.1
12624	
17688	2.21
28032	2.4
28272	

Table 33-3Pit depth from measurements a single location.

Description	Pit Depth (mm)	Area (sq-cm)	
Calculation	Parameters		Pit Depth Prediction 👻 Specs.
Surface Area		1.00000	
Experiment Start (hr)	0		Calculate 🥝
Default Value		1.00000	
Sample Group 01 (hr)	1440.0		Summary
5	0.90000	1.00000	EVS Calculation Type: Pit Depth Prediction
Sample Group 02 (hr)	5040.0		Calculation Parameter(s):
			Surface Area 1.00000 sq-cm
Sample Group 03 (hr)	5760.0		Experiment Start: 01/01/2000
5	1.57000	1.00000	
			Range 0.0 to 30000.0 hr Step size 2000.0 hr
Sample Group 04 (hr)	8959.0		No. steps 15
5	2.10000	1.00000	Default Area Value: 1.00000
Sample Group 05 (hr)	12624.0		
5	2.21000	1.00000	
Sample Group 06 (hr)	17688.0		
5	2.40000	1.00000	
Sample Group 07 (hr)	28032.0		
5	2.40000	1.00000	
Sample Group 08 (hr)	28272.0		

Figure 33-24: Specifying experimental data for depths of deepest pits for corrosion in pipeline. Experimental data are taken from one location on the pipe.

Only Groups 1 and 3 were used in the calculation.

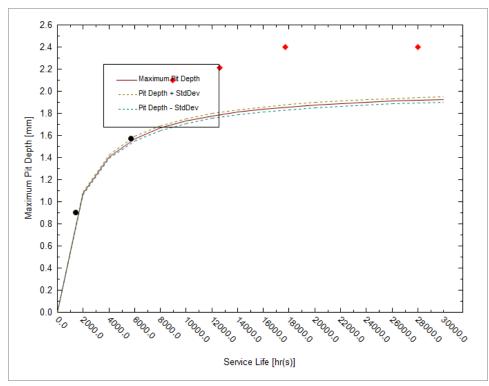


Figure 33-25: Predicted depth of the deepest pit with calibration on two observation times. Data are taken from one location on the pipe.

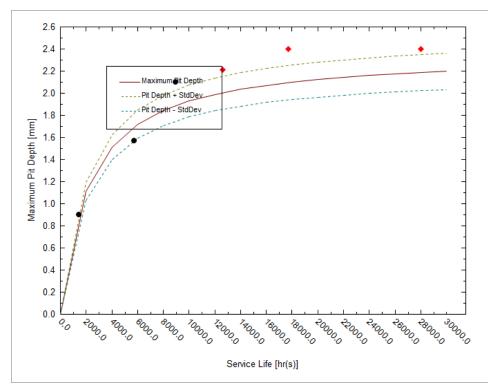


Figure 33-26: Predicted depth of the deepest pit with calibration on three observation times (groups 1,3 and 4). Data are taken from one location on the pipe.

Figure 33-27: Predicted depth of the deepest pit with calibration on four observation times(groups 1, 3, 4, and 6). Data are taken from one location on the pipe.

Example 3: Possible Case of Insufficient Data

In some cases the data that provided by the user may be insufficient for reliable prediction of corrosion damage. Thus Figure 15-20 shows a part of experimental data that can be found in the paper (Laycock et al. 1990) for depths of the deepest pits that were measured on 316L coupons (2x2x1/2 in. thick) in a 10% ferric chloride solution at 50 °C. The full set of data from this paper is seen in Figure 33-28, which shows the predicted maximum pit depth for this system by using measurements at first three observation times.

Sample	Grp 1	Grp 2	Grp3	Grp 4	Grp 5	Grp 6	Grp 7	Grp 8	Grp 9
	40.5 hrs	144.1 7 hrs	215.3 3 hrs	292.5 hrs	331.0 hrs	378.5 hrs	453.2 5 hrs	477.0 hrs	528.0 hrs
1	775	1326	1036	912	1361	1613	2101	1722	1714
2		1176	1199	1173	1534	1641	2024	1798	1767
3								1496	1775

Table 33-4 Pit depth data for 25.8 sq-cm, depth in micrometers

Description	Pit Depth (µm)	Area (sq-cm)		
Calculation P	arameters			Pit Depth Prediction 👻 Specs.
Surface Area		25.8000		
Experiment Start (hr)	0			Calculate 🥥
Default Value		25.8000		
Sample Group 01 (hr)	40.5			Summary
1	775.000	25.8000		EVS Calculation Type: Pit Depth Prediction
Sample Group 02 (hr)	144.1			Calculation Parameter(s):
1	1326.00	25.8000	=	Surface Area 25.8000 sq-cm
2	1176.00	25.8000		Experiment Start: 01/01/2000
Sample Group 03 (hr)	215.3			Range 0.0 to 8760.0 hr Step size 120.0 hr
1	1036.00	25.8000		No. steps 73
2	1199.00	25.8000		Default Area Value: 25.8000
Sample Group 04 (hr)	292.5		1	
1	912.000	25.8000		
2	1173.00	25.8000		
Sample Group 05 (hr)	331.0			
1	1361.00	25.8000		
2	1534.00	25.8000		
Sample Group 06 (hr)	378.5			
1	1613.00	25.8000		
2	1641.00	25.8000		
- Sample Crown 07 (br)	452.05		-	

Figure 33-28: Specifying experimental data for depths of deepest pits for corrosion of 316L coupons in 10% ferric chloride solution.

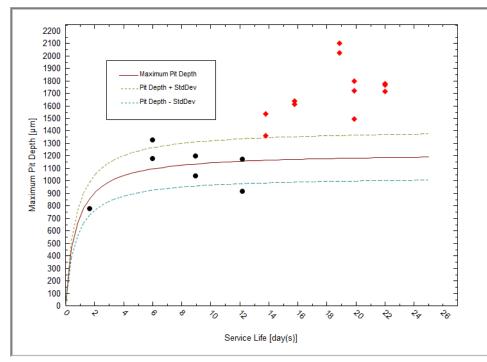


Figure 33-29: Predicted depth of the deepest pit on the stainless steel with calibration on the first four observation times (groups 1 through 4)

We see that in this case the prediction cannot be considered satisfactory. The reason is that for the second, third and fourth observation times the observed mean value of deepest pit decreases. Obviously such behavior of maximum pit depth has no physical foundation. Generally speaking such situation is the results of an insufficient numbers of experiments (used coupons) for given observation times. Accordingly, we can expect that after increasing the number of used coupons the situation can improve.

All of this does not mean that a full set of already available data cannot be used for predicting propagation of corrosion damage. Thus Figure 33-30 shows that the results of approximation of the full set of available experimental data from (Laycock et al. 1990) can be reasonably approximated by using EVS approach.

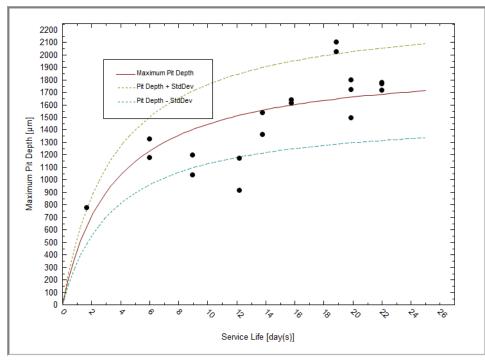


Figure 33-30: Predicted depth of the deepest pit on the stainless steel with calibration on full set of available data.

It means that sometimes the insufficient number of coupons (measurements at given observation times) can be compensated by increasing numbers of observation at different times.

You can download all the examples for this chapter from the OLI Wiki Page or from the support site

34. Petroleum Fraction Thermodynamic Methods

Distillation Methods of the ASTM

ASTM D86	
	Used for light and medium petroleum products and is carried out at atmospheric pressure. The results are converted internally in the OLI model generator to a TBP (True Boiling Point Curve). This curve is then fit to a spline to smooth the curve. The cuts are taken from the spline.
ASTM D1160	
	Used for heavier petroleum products and is often carried out under vacuum. Sometimes as low as 1 mm Hg. The results are converted internally in the OLI model generator to a TBP (True Boiling Point Curve). This curve is then fit to a spline to smooth the curve. The cuts are taken from the spline
ASTM D2887	
	Uses gas chromatography to produce the distillation curve and is applicable to a wide range of petroleum products. The results are always reported on a volume percent basis. The results are converted internally in the OLI model generator to a TBP (True Boiling Point Curve). This curve is then fit to a spline to smooth the curve. The cuts are taken from the spline
TBP	This is the true boiling point curve. These curves, in practice, are difficult to obtain. The other methods are usually used instead.
Average Bully Density	

Average Bulk Density

Specific Gravity	Unitless, relative to pure water (H ₂ O) at 15 $^{\rm o}\text{C}$ which has a density of 1.0 g/mL
API Gravity	Degrees API (°API). This is calculated via the following equation:

$$^{o}API(60F) = \left(\frac{141.5}{SG(60F)}\right) - 131.5$$

Equation 34-1

SG is the specific gravity at 60 °F.

Watson K The Watson K has no units but is calculated via:

$$K = \left(\frac{NBP^{1/3}}{SG}\right)$$

Equation 34-2

Where NBP is the normal Boiling point and SG is the specific gravity.

Thermodynamic Methods

API	Uses the specific gravity to estimate the critical parameters. The specific gravity, if not entered, can be estimated from the API gravity or the Watson K. The boiling points are taken from the assay data. API version 5 (API-5) and API version 8 (API-8) are currently supported.
Cavett	This method uses the API gravity method to determine the critical properties. The API gravity, if not entered can be estimated from the actual specific gravity or the Watson K. The boiling points for the pseudo-components are taken from the assay.
Lee-Kesler	This method uses the Watson K and the specific gravity (which can be estimated via the Watson K) to determine the critical parameters.

35. How to create Chemical Diagrams

The OLI Analyzers have a feature that is seldom used which allows for a user to create a stability map for species based on concentration and other parameters such as pH. A contour map is created showing the user where some solids are stable and where others are not.

For this example we are reproducing work found in a paper that was published in *Materials Research Innovations*, Volume 14, Number 1, February 1010 pp 9-15 by T. Andelman, M.C. Tan, and R.E. Riman. Specifically we are going to investigate the stability fields where lanthanum acetate - $La(C_2H_3O_2)_3$ and potassium phosphate - K_3PO_4 are precursors to the plot.

To begin we start the OLI Analyzers and select a New Stream

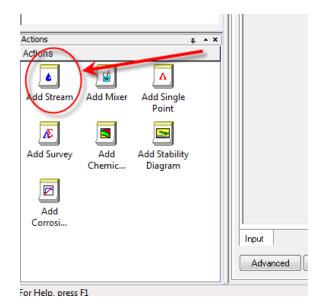


Figure 35-1 Selecting a new stream

We will not enter the conditions of the stream at this point. Don't worry, we can make modifications to the stream conditions later. For the moment we are using the display name for the species. Enter the names "Lanthanum(III) acetate", "Potassium orthophosphate(V)", "Nitric Acid", and "Sodium Hydroxide".

The initial temperature and pressure will be the default values of 25 °C and 1 atmosphere. We will also use the default value for water of 55.5082 moles (which is 1 Kg)

The inflow amounts of the two precursor species will be set to 0.1 moles each. This keeps the molar ratio 1:1.

OLIAnalyzer - [AnalyzerStudio7*]	and the second se	Ť	
E File Edit Streams Calculations Chemistry	Tools View Window Help	Ą	- & ×
🗅 🚅 🖬 👗 🗈 💼 🎒 🌾 🕅 🗛	So 2nd Re 🛨 🏁 🛨 🍘 🛨 🚧 🚟 🛟 🎘		
Navigator			
AnalyzerStudio7*	Stream		
	🛷 Description 🔮 Definition 📓 Report		
Stream	Variable	Value	Add Calculation 👻
	Stream Parameter		
	Stream Amount (mol)	55.7082	Special Conditions
	Temperature (°C)	25.0000	Solids Only
	Pressure (atm)	1.00000	Summary
	C Inflows (mol)		
	Water	55.5082	Unit Set: Metric (moles)
	Lanthanum(III) acetate	0.100000	Automatic Chemistry Model
	Potassium orthophosphate(V) Nitric acid	0.100000	Aqueous (H+ ion) Databanks:
	Sodium hydroxide	0.0	Public
1		E	
Actions a * X			
Actions			
Δ 👿 Λ			
Add Stream Add Mixer Add Single			
Point			
Add Survey Add Add Stability			
Chemic Diagram			
Add			
Corrosi	1	-	
	Input		
		5	
	Advanced Search Add as Stream	Export	
For Help, press F1			

Figure 35-2 Entering starting conditions

As a side note, you could have also entered the chemical formula names for the species. The formula names are:

Variable	Value		
Stream Parame	Stream Parameters		
Stream Amount (mol)	55.7082		
Temperature (°C)	25.0000		
Pressure (atm)	1.00000		
	i)		
H2O	55.5082		
La[C2H3O2]3	0.100000		
K3PO4	0.100000		
HNO3	0.0		
NaOH	0.0		

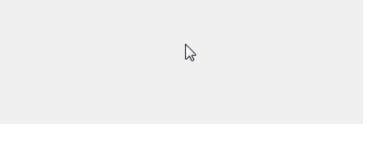
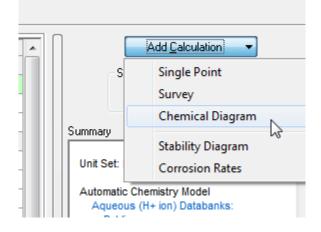
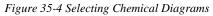




Figure 35-3 Switching the names to Formula view

As you press the enter key or click a new cell, the name changes to the display name.

After entering the required values, click the Add Calculation button and select Chemical Diagram

This will display a new object below the stream. Notice that all the stream values have been copied to this new object.

A chemical diagram requires the user to make some choices. Please click the **Specs...** button to start the selection process.

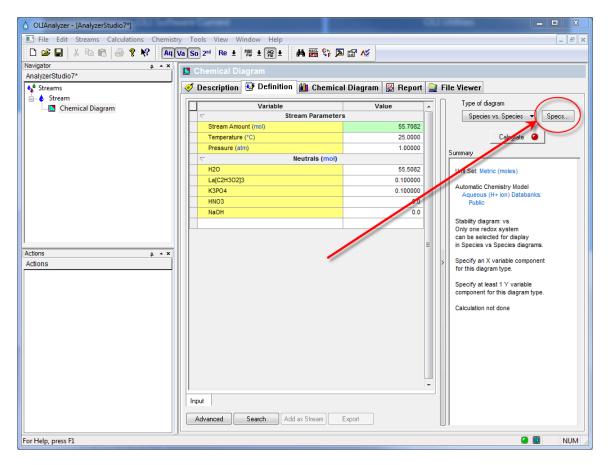


Figure 35-5 Selecting the Specs... button

The initial specification option is the *Display Dialog*. For this demonstration we only want to display the boundaries between the solid phases and the liquid phases. We do not want to see both the solid phase boundaries and the boundaries between liquid species. <u>Click here to see what the diagram looks like with aqueous lines enabled</u>.

Click the **No Aqueous Lines** radio button. Also keep the **Shade selected subsystem** button selected. Finally we need to tell the program which chemical subsystem to plot. We can plot more than one but it gets very complicated. Since we are only interested in the lanthanum species, click the **Lanthanum Check Box.** Only one subsystem may be selected at a time.

Chemical Diagram Options			- 1	8	23
Category Display	Display Choices				
L Display	Aqueous and Solid Line Superimpose ines No Aqueous line Display Subsystem Protassum V Lenthanum Sodium Ntrogen Phosphorus	>	Shading No sha Shade	ding selected subsystem	
] [ОК	Cancel	Apply He	lp

Figure 35-6

Now click on the Axes category. The dialog changes to display the X Axis.

To reproduce the diagram in the above paper, we need to change the X axis to be based on pH. Click the pH radio button.

When pH is selected, we need to choose our titrants. We previously entered nitric acid and sodium hydroxide. We now need to tell the program to use these species.

Chemical Diagram Options		? X
Category	X Axis Y Axis Variable Species Amount PH Titrants Species Inflow - Select	
	OK Cancel Apply	Help

Click on the **Titrants** button.

Figure 35-7

The *Select Titrants* dialog is displayed. All of the inflows are displayed in both the *Acid* and *Base* selections. The reason that this occurs is that at this point in time the OLI Analyzer does not know if the species listed will act as an acid or a base. While it is true that nitric acid always acts as an acid, the same cannot be said of weak acids such as many organic acids.

Weak acids function like an acid when the concentration results in pH's less than the pKa of the acid. Conversely, weak acids function like a base when the pH is greater than the pKa. Thus, we display all the available species in both columns since we don't know the solution pH.

Select nitric acid (HNO₃) in the Acid column and sodium hydroxide (NaOH) in the Base column.

Select Titrants	8	x		
Titrants				
✓ Hide Related Inflows	New Inflo	w		
Acid	Base			
H2O HNO3 K3PO4 La[C2H3O2]3 NaOH	H2O HNO3 K3PO4 La[C2H3O2]3 NaOH			
Select the acid and the base which will be used to vary the pH.				
OK Can	Apply He	lp		

Figure 35-8

Click the **OK** button to close the dialog. We now have to decide on the pH range to cover. The default is 0 to 14. This is acceptable for this demonstration.

We are now ready to specify the Y axis. Click the Y Axis tab.

Variable		Species	
Species Amou	unt	Inflow(s)	maximum of 4
Temperature		(P2O5)2	
Inflow Range		2NaOH.NaNO3	E
Start 1e-014	mol/hr	C4H8O4	
End 1	mol/hr	H3PO4	
🔽 Log so	cale	H5P3O10	
		K[C2H3O2]	
		K2HPO4 K2HPO4.3H2O	
		K2HPO4.6H2O	
		K3PO4	
		K3PO4.3H2O	-

Figure 35-9

We will be adjusting the inflow species lanthanum acetate - La(C₂H₃O₂)₃ and potassium phosphate - K₃PO₄.

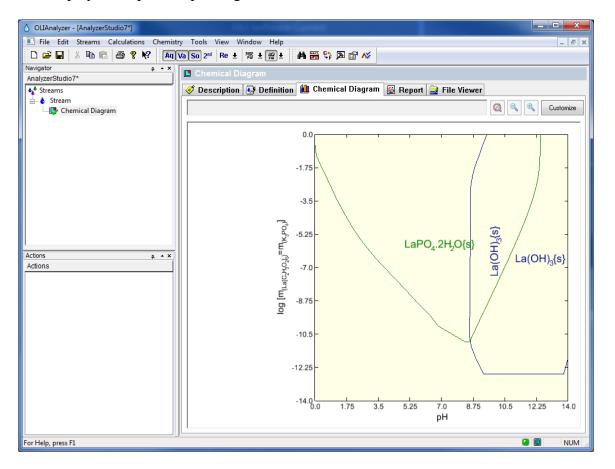
Since we specified the initial concentrations at 0.1 moles each, the ratio of the species will be 1:1. We must now select these species from the scroll box. We are keeping the default concentration range from 1E-14 to 1.0 moles on a log scale. This means we will have initially 1.0E-14 moles of $La(C_2H_3O_2)_3$ and 1.0E-14 moles of K_3PO_4 increasing equally until we have 1.0 moles of each.

Chemical Diagram Options		? ×
Category	X Axis Y Axis Variable Species Amount Temperature Inflow Range Start 1e-014 mol End 1 mol Volume Log scale	Species (maximum of 4) Inflow(s) V Hide Related Inflows H2O H033 V (SPO4 V (
	OK	Cancel Apply Help

Figure 35-10

Scroll down and check the box next to lanthanum(III) acetate - or $La(C_2H_3O_2)_3$

Continue to scroll down to find potassium phosphate - K₃PO₄ and check that box.


We are now done, click the **OK** button to exit the Specifications for this calculation.

The calculation is now ready to start. Click the **Calculate** button.

When the calculation is complete, click the Chemical Diagram tab.

🛷 Description 🔯 Definition 🏦 Chemical Diagram 📓 Report 🔜 File Viewer								
Γ	Variable	Value		Π	Type of diagram			
	Stream Parameters				Species vs. Species 🔻 Specs			
	Stream Amount (mol)	55.7082						
	Temperature (°C)	25.0000			Calc <u>u</u> late 🥝			
	Pressure (atm)	1.00000			Summary			
	Calculation Daramotor	~	1		Juninary			

This displays the Species - pH diagram for this calculation.

This diagram is very similar to the diagram in the above paper. It does different slightly since the author of the paper made some changes to the chemistry model that is not reflected here.

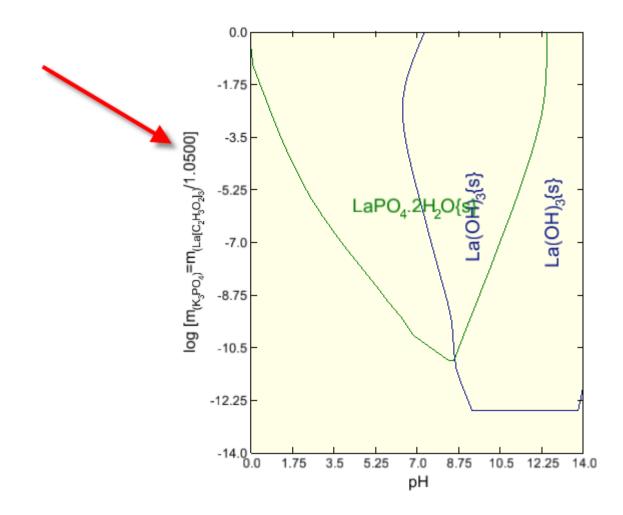
We can change the ratio of the precursor species very easily. For the second example we will use the same calculation except we will be adding 5 % more to the lanthanum acetate species. To do this click back on the **Definition** tab and change the inflow amount for lanthanum acetate from 0.1000 to 0.10500.

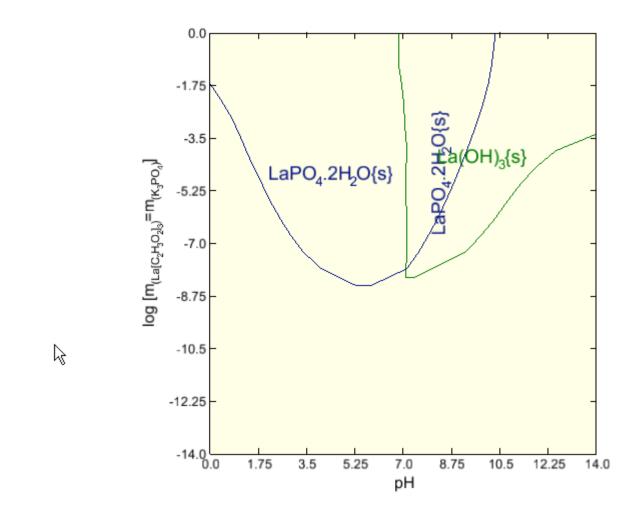
		Variable	Value		
	Stream Parameters				
		Stream Amount (mol)	55.7132		
		Temperature (°C)	25.0000		
		Pressure (atm)	1.00000		
	$\overline{\nabla}$	Calculation Paramete	ers		
•		pH	0.0		
0		pH Acid Titrant: HNO3			
0		pH Base Titrant: NaOH			
	√ Neutrals (mol)				
		H2O	55 5082		
		La[C2H3O2]3	0.105000		
		КЗРО4	0.100000		
		pH Acid Titrant: HNO3	0.0		
		pH Base Titrant: NaOH	0.0		

Figure 35-11

Re-Calculate and then click on the Chemical Diagram tab again.

Notice that the diagram is essentially the same. The Y axis label has changed to reflect the increased amount of the lanthanum acetate.




Figure 35-12

We can also run at different temperatures quite easily. Return to the **Definition** tab and change the temperature to 200 °C and 25 atmospheres. We have also reset the Lanthanum Acetate value back to 0.1 moles.

		Variable	Value	*
Г	$\overline{\nabla}$	Stream Parameter	s	
		Stream Amount (mol)	55 7082	
		Temperature (°C)	200.000	
		Pressure (atm)	25.0000	2
	$\overline{\nabla}$	Calculation Paramet	ers	1
•		pH	0.0	
0		pH Acid Titrant: HNO3		
0		pH Base Titrant: NaOH		
	$\overline{\nabla}$	Neutrals (mol)		
		H2O	55.5082	
		La[C2H3O2]3	0.100008	
		K3P04	0.100000	2
		pH Acid Titrant: HNO3	0.0	Ξ
		pH Base Titrant: NaOH	0.0	
				Ŧ
In	out			

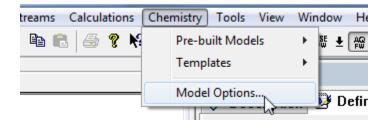
Figure 35-13

Re-calculate and then click on the **Chemical Diagrams** tab. You can see that the diagram is significantly different reflecting the change in solubility with respect to temperature.

This concludes the demonstration.

36. Managing Private Databases in the OLI Analyzer

Selecting Databases


Data bases are OLI's store house of thermodynamic data. Not all the data is suitable for every calculation. Therefore the data is compartmentalized into many databases. In addition, data service work provided by OLI Systems, Inc. may also be a database.

There is architecture to using databases in the Analyzers. If you want a database to be used in all streams and calculations, you must specify the database at the topmost stream of the software. The top level dialog is displayed below. To use a database in only a stream or calculation, specify the database only in that object. The PUBLIC database is automatically specified and cannot be changed.

♦ OLIAnalyzer - [AnalyzerStudio8*]	OLI Suffware Carrent		- • ×
File Edit Streams Calculations Chemistry	Tools View Window Help		_ & ×
🗋 🗅 🚅 🔜 🕺 🛍 💼 📾 🤶 😵 🛛 🗛 📢	a So 2nd Re 🛨 🏁 🛨 🎲 💆	1 🗗 🔏	
Navigator g • ×	stream		
AnalyzerStudio8*			
Streams	🦪 Description 🔮 Definition 📓 Report		
Stream	Variable	Value 🔺	Add Calculation
	Stream Parameter		Special Conditions
	Stream Amount (mol)	55.5082	Solids Only
	Temperature (°C) Pressure (atm)	25.0000	
	□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	1.00000	Summary
	H2O	55.5082	Unit Set: Metric (moles)
			Automatic Chemistry Model Aqueous (H+ ion) Databanks:
			Public
J		=	
Actions			
Actions			
Add Stream Add Mixer Add Single			
Point			
R S			
Add Survey Add Add Stability Chemic Diagram			
Add		-	
Corrosi	, lund		
	Advanced Search Add as Stream	Export	
East late area 51			
For Help, press F1			

Click on the **Chemistry** menu item.

This will display the chemistry options. Select Model Options...

The currently loaded databases will be displayed as well as the current thermodynamic framework (AQ or MSE)

Stream Chemistry Model Options	? X
Databanks Redox Phases T/P Span	
Databanks Thermodynamic Framework Aqueous (H+ ion)	
Available Selected	
Geochemical Corrosion Ceramics Low Temperature Refrigerants Alloys Heat Pump Fluids MSE Geochemical Import Databank Unload Databank Databank search order is from top to b Use the Up and Down arrows to change search order.	
OK Cancel Apply	Help

Highlight Geochemical

Stream Chemistry Model Options	×
Databanks Redox Phases T/P Span	
Databanks	
Themodynamic Framework Aqueous (H+ ion)	
Available Selected	
Geochemical Public Corrosion E Ceramics E Low Temperature Figerants Alloys Heat Pump Fluids MSF Geochemical Import Databank Import Databank Databank search order is from top to bottor Unload Databank search order.	
OK Cancel Apply	Help

When the desired database is highlighted, click the right arrow to select it. We are also selecting the Corrosion Database for example purposes.

Stream Chemistry Model Options	8	X
Databanks Redox Phases T/P Span		
⊂ Databanks Thermodynamic Framework Aqueous (H+ ion)		
Available Selected Ceramics Low Temperature Refrigerants Alloys Heat Pump Fluids MSE Geochemical Surface Complexation C Surface Complexation C Surface Complexation C Unload Databank Databank search order is from top to bu Use the Up and Down arrows to change search order.		
OK Cancel Apply	Hel	p

Databases have priority. If a species exists in both of these selected database, then only the thermodynamic properties found in the first database will be used. You can change the priority of the database by highlighting it and clicking the up button.

Stream Chemistry Model Options
Databanks Redox Phases T/P Span
Databanks
Themodynamic Framework
Aqueous (H+ ion)
Available Selected
Ceramics Low Temperature Refrigerants Alloys Heat Pump Fluids MSE Geochemical Surface Complexation C Surface Complexation C Corrosion Geochemical Public Corrosion Geochemical Public Corrosion Co
Import Databank Databank search order is from top to bottom. Use the Up and Down arrows to change the search order.
OK Cancel Apply Help

Click the down-arrow to reorder the list:

Stream Chemistry Model Options	8	<u>×</u>
Databanks Redox Phases T/P Span		
- Databanks Thermodynamic Framework		
Aqueous (H+ ion)		
Available Selected Ceramics Low Temperature Refrigerants Alloys Heat Pump Fluids MSE Geochemical Surface Complexation C Surface Complexation C	†	
Import Databank Databank search order is from top to b Unload Databank Unload Databank		
OK Cancel Apply	Help	p

You can remove a database if it is not required. This does not delete the data from the program but makes it unavailable. Select the database and click the left arrow.

Stream Chemistry Model Options
Databanks Redox Phases T/P Span
Databanks
Thermodynamic Framework
Aqueous (H+ ion)
Available Selected
Ceramics Low Temperature Refrigerants Alloys Heat Pump Fluids MSE Geochemical Surface Complexation C Surface Complexation C Surface Complexation C
Import Databank Databank search order is from top to bottom. Use the Up and Down arrows to change the search order.
OK Cancel Apply Help

Click the left-arrow and the Corrosion database will not be used in this calculation.

Stream Chemistry Model Options	8	X
Databanks Redox Phases T/P Span		
Databanks Thermodynamic Framework Aqueous (H+ ion)		
Available Selected Ceramics Import Databank Aloys Import Databank Surface Complexation C Import Databank Import Databank Databank search order is from top to b Unload Databank Selected		
OK Cancel Apply	Help	•

The database has been removed. Click the Apply button and then OK to continue.

How to load a private database into the OLI Analyzers

Currently OLI Systems, Inc. only supplies user databases (formerly known as private databases) in the OLI/ESP format. This is not directly usable by the OLI/Analyzers. These databases are normally compressed using a program such as WinZip. Please decompress (unzip) the file into a working folder.

You will then need to load and convert the supplied database. Fortunately there is a tool to do this for you. Please follow these steps:

Start the Analyzers

Select the Chemistry Menu Item

Select Model Options

		Name: Streams Date: 4/18/201	4 💌
	ſ	Default Chemistry Model Options	
		Databanks Redox Phases T/P Span	
Water Halysis	PV Add Calcu Ac Satu	Databanks Thermodynamic Framework Aqueous (H+ ion) Available Geochemical Corrosion Ceramics Low Temperature Alloys Exchange Surface Complexation C Surface Complexation C Surface Complexation C Surface Complexation C Unition Databank Databank search order is from top to bottom. Use the Up and Down arrows to change the search order.	
Mixing	Add Fa	OK Cancel Apply Help	

You can load both Aqueous databases and MSE databases from the same screen.

Click the Import Databank button.

databank into the current Analyzer d Please select a private ESP databan name for the databank. Private Databank Information Dictionary file for the private ESP data Display Name:	nk to convert.	/copy and su	upply a display
Dictionary file for the private ESP data	abank:		
[abank:		
Display Name:			
enepiney manner			Browse

If you know the exact location of the ESP "dic" file, you can enter the location directly. It is usually easier to browse for this file. Click the **Browse** button

	ases 🕨	Amine databank			- - 4 9	Search Amine databa	nk
Organize 🔻 🛛 New f	older						
🔆 Favorites	^ N	ame	Date modified	Туре	Size		
🧮 Desktop	_	abcdeb.dic	10/17/2013 2:25 PM	Text Document	36 KB		
퉬 OLI Systems		AMINEHCL.DIC	5/31/2013 2:36 PM	Text Document	34 KB		
퉬 My Cases							
鷆 Downloads							
📃 Recent Places							
Documents							
🎍 Aspen Plus V8.4							
词 Libraries							
Documents							
Documents Music							
🍶 Music							
 J Music E Pictures E Videos 							
 Music Pictures Videos Computer 	Ŧ						
Music Pictures Videos Computer Computer	₹	AMINEHCL.DIC			•	ESP Databank (*.dic)	

Locate the folder that has the decompressed ESP format file.

Click to select.

The available database will be displayed. The DIC file (short for dictionary) is the file required. Click the file in the open dialog and then click the Open button.

Databar	nk Converter
	This wizard will lead you through the process of importing a private ESP databank into the current Analyzer database. Please select a private ESP databank to convert/copy and supply a display name for the databank.
	ivate Databank Information ictionary file for the private ESP databank:
	:\Users\mimkar.OFFICE\Desktop\My Cases\Amine databank\ Browse
_	MI Databank
	< Back Next > Cancel

The full path of the "Dic" file is displayed along with the display name of the database. You can rename this database if you desire. It is recommended that for most uses that the default name be used.

Click the **Next** button.

Databank Converter	×	
Progress		
	Updating ESP databank to current version	
	Opening Analyzer database	
	Checking consistency of ESP databank	
	Copying ESP databank to Analyzer database	
	Updating indexes	
✓ ✓	Cleaning up	
✓ ✓	Completed	
Progre	ss of current operation:	
	Finish Cancel	

The process of converting and uploading the file starts.

If all the lines are checked, then click the **Finish** button

	Default Chemistry Model Options
	Databanks Redox Phases T/P Span
	Databanks
	Thermodynamic Framework
	Aqueous (H+ ion)
	Aqueous (H+ion)
	Available MSE (H3O+ ion)
	Geochemical Public Corrosion Ceramics
	Low Temperature Alloys
1	Exchange Surface Complexation D
	Import Databank Databank search order is from top to bottom. Use the Up and Down arrows to change the
	Unload Databank search order.
	OK Cancel Apply Help

Your imported database is now ready for use. If your database was for the MSE framwork, as it is in this example, you will need to switch Thermodynamic Framework to use the database. Click the drop-down arrow.

If your database is in the MSE framework, select MSE

The newly imported MSE framework database is displayed.

Default Chemistry Model Options	? X				
Databanks Redox Phases T/P Span					
Databanks					
Thermodynamic Framework					
MSE (H3O+ion)					
Available Sciected					
MSE Corrosion MSE (H3O+ ion)					
GEM Databank					
	₽				
Import Databank Databank search order is from top to b	ottom				
Use the Up and Down arrows to chan					
Unload Databank search order.					
OK Cancel Apply	Help				

ſ	Default Chemistry Model Options	8 ×
L	Databanks Redox Phases T/P Span	
L	Databanks	
L	Thermodynamic Framework	
L	MSE (H3O+ ion)	
	Available Selected	
1	MSE Corrosion MSE (H3O+ion) GEM Databank	
	AMI Databank	
V d		Ţ.
	<	
c	Import Databank Databank search order is from top to Use the Up and Down arrows to char	
h	Unload Databank search order.	
۲		
а	OK Cancel Apply	Help

Click it to select it. Then click the right-arrow.

Default Chemistry Model Option:	IS	8 ×
Databanks Redox Phases T	Г/Р Span	
Databanks		
Thermodynamic	: Framework	
MSE (H3O+ ion	n) 🔻	
Available	Selected	
MSE Corrosion GEM Databank	AMI Databank MSE (H3O+ ion)	1
4		
	×	
Unload Databank	Databank search order is from top to bo Use the Up and Down arrows to chang search order.	
ОК	K Cancel Apply	Help

Click the OK button to continue.

AnalyzerStudi	03*				Name: Streams		Date: 4 /18/2014	•	
					Description				
									-
Actions Actions			+	^ ×	<				+
Add Stream	Add Mixer	Add Water Analysis	evs Add EVS Calculation	-	Summary Automatic Chemistry Model				
	86	\odot	-	=	MSE (H3O+ ion) Databanks: AMI Databank				
Add Brine Analysis	Add Oil Analysis	Add Gas Analysis	Add Saturator		MSE (H3O+ ion) Using Helgeson Direct				
	0	Υ.	부는						-
Add Scale	Add Scale	Add Mixing	Add Facilities	-					
×					× Calci	ulating Chamical	Diagram 95%		

The newly imported database is now being used as indicated in the Summary window.

How to unload a database from the OLI Analyzers

Sometimes a user will want to remove a database from consideration. To do this locate the Databanks Tab via the **Chemistry Menu Item > Model Options** path.

Default Chemistry Model Options	8 23
Databanks Redox Phases T/P Span	
Databanks	
Thermodynamic Framework	
MSE (H3O+ ion)	
Available Selected	
MSE Corrosion MSE (H3O+ ion)	
GEM Databank AMI Databank	
	↓
Import Databank Databank search order is from top to b Unload Databank Use the Up and Down arrows to char search order.	
OK Cancel Apply	Help

There is no pop up warning to make sure you want to do this. Be careful

Click the Unload Databank button

Remove Databank	×
Progress	
 ✓ 	Opening Analyzer database
	Removing databank
	Completed
Prog	ress of current operation:
	Finish Cancel

This removes the selected databank.

Default Chemistry Model Options	? <mark>X</mark>
Databanks Redox Phases T/P Span	
Databanks	
Themodynamic Framework	
MSE (H3O+ ion)	
Available Selected	
MSE Corrosion GEM Databank SE (H3O+ ion)	
	₽
Import Databank Databank search order is from top t Unload Databank search order.	
OK Cancel Apply	Help
	1.0.2

The database has been removed. As you can see AMI databank is unavailable in the above screen capture.

37. OLI Units Manager

The default units for the OLI Studio are moles, centigrade, atmospheres, calories and liters. In many (if not most) cases the user will need to change both the input and output units. In this example we have entered a simple case in the default units.

		Variable	Value
	$\overline{\nabla}$	Stream Parameters	5
		Stream Amount (mol)	55.5182
0		Temperature (°C)	25.0000
•		Pressure (atm)	1.00000
	$\overline{\nabla}$	Calculation Parameters (n	nol/mol)
		Vapor Frac. (Apparent)	0.90000
	$\overline{\nabla}$	Inflows (mol)	
		H2O	55.5082
		CaSO4	0.0100000

You can change the units of individual fields by clicking the blue unit. This is a hyperlink to the units manager dialog. Below we are going to change the unit field for temperature.

		Variable	Value	
	$\overline{\nabla}$	Stream Parame	ters	
	Stream	Amount (mol)	55.5182	
0	Tempera	ature (°C)	25.0000	
•	Pressur	e (atm)	1.00000	
	$\overline{\nabla}$	Calculation Parameter	s (mol/mol)	
	Vapor F	rac. (Apparent)	0.900000	
	$\overline{\nabla}$	Inflows (mo	1)	
	H2O		55.5082	1
	CaSO4		0.0100000	1

Click on the blue °C

omposition	Parameters	Corrosion	 		_
		Variable		Units	
Tempera			°C		V.
Pressure	1		atm		
Time			hr		
Aller College			 	0.0	
Alkalinity			mg HCC)3/L	-1
Density	Constructivity on		g/ml m2/ohm		-1
	Conductivity, m		m2/onm mho/m	-moi	_
	Electrical Condu	Clivity	cal		-1
Energy Energy, I	lolor		cal/mol		-1
Entropy	noiar		cal/K		-1
Entropy,	Molar		cal/mol	v	-1
Fugacity	molai		 atm	N	-1
Heat Cap	acity		cal/g K		-
-	ngth (x-based)		mol/mol		
	noth (m based)		mol/ka		

This displays the units manager with the selected unit already highlighted. To change the unit to Fahrenheit, click the drop down menu and make the appropriate selection.

Units	*
°F 🚽	
°C	
К	
۴	
R	Ξ

You can select from a range of units For this example we are choosing Fahrenheit.

As you can see the 25 C value is now 77 F.

	Variable	Value				
	C Stream Parameters					
	Stream Amount (mol)	55.5182				
o	Temperature (°F)	77.0000				
•	Pressure (atm)	1.00000				
	Calculation	on Parameters (mol/mol)				
	Vapor Frac. (Apparent)	0.900000				
	~	Inflows (mol)				

It would be cumbersome to do this for each and every field. You can make systematic changes to the stream or to the calculation by using the Units Manager.

There are two ways to access the units manager in the Analyzers. The first is from the **Tools** menu and the second is from the tool bar. The figure below shows the location of each item.

💧 OLIAnalyzer - [AnalyzerStudio3*]	
File Edit Streams Calculations Chemistry Tools View Window Help	_ & ×
D 😅 🖬 🐇 🛍 💼 🥔 😵 🕺 🛛 Aq Va So 2 nd Re ± 🕅 ± 🛱 ± 👫 🎬 🚱 🖾 🖉	

For our example we are going to use the **tool bar**. Once selected, we will have a range of selections to make. Select **Units Manager...**

Below is the units manager dialog with the default standard units selected.

Units Manager - Stream		? ×
Units Manager		
Metric 💌 B	atch 🔹 Moles	• •
Customize		
ОК Са	ancel Apply	Help

For a quick units change we can click one of the radio buttons. Click the **Customize** button

Stream Am	Variable	Basis	Units
Ctraam Am		n	
Ctroom Am		flow variables	
Stream An	ount	Moles	mol
Inflows		Moles	mol
		utput variables	
	composition	Moles	mol
Vapor Com	•	Moles	mol
Solid Comp		Moles	mol
	Composition	Moles	mol
Total Comp	osition	Moles	mol
		Basis choice	
Moles			mol
Mass			g
Volume	•		L
Concentrat Molar Conc			mg/L mol/L
Molar Conc Mass Fract			movL mass %
Mass Fraci Mole Fracti			mass % mole %
Mole Fracti	on		mole %

Click the drop-down menu next to *Inflows* under the basis column:

Inflow variables			
Stream Amount	Moles	mol	
Inflows	Moles	mol	
Outp	ut vari Mass		
Aqueous Composition	Moles	mol	
Vapor Composition	Concentration	mol	
Solid Composition	Molar Concentration Mass Fraction	mol	
2nd Liquid Composition	Mole Fraction	mol	

Next select *Mass Fraction* and the grid updates:

Composition	Parameters				
	Variat			Basis	Units
		In	flow vari		
Stream Ar	nount			Moles	mol
Inflows				Mass Fraction	mass %
		0	utput var		
	Composition			Moles	mol
Vapor Co	•			Moles	mol
Solid Com	•			Moles	mol
	Composition			Moles	mol
Total Com	position			Moles	mol
			Basis ch	oice	
Moles					mol
Mass					g
Volume					L
Concentra					mg/L
	centration				mol/L
Mass Frac					mass %
Mole Frac	tion				mole %
	inits for all new	-1	tod in this	decument	

Notice that the units for Mass Fraction are set to **mass %** in this example. Lower in the grid displays the current setting for Mass Fraction. You can change this value by clicking its drop-down menu.

As you can see, the definition grid is updated with the new units set.

		Variable	Value			
	$\overline{\nabla}$	Stream Parameters				
		Stream Amount (mol)	55.5182			
0		Temperature (°F)	77.0000			
•		Pressure (atm)	1.00000			
	$\overline{\nabla}$	Calculation Parameters (mol/mol)				
		Vapor Frac. (Apparent)	0.900000			
	$\overline{\nabla}$	Inflows (mass %)				
		H2O	99.8640			
		CaSO4	0.135957			

38. Tools | Options

Setting the Auto Save and Automatic Backup Features

Even though modern computers are very reliable, some software packages were written without full consideration of what else may be running. This may cause system crashes and you may lose your work.

OLI has provided a method to help recover lost data. By default OLI will backup any file you open with the OLI Analyzers so that you have the previous version saved. OLI will also automatically save your file every 5 minutes. You can change these settings.

To begin, select **Tools** from the menu line.

OLIAnalyzer - [AnalyzerStudio3*]					
E File Edit Streams Calculations Chemistry	Tools View Window Help		_ 8 >		
🗅 🗃 🖬 X 🖻 🖻 🍜 💡 😢 🗛 Va		M 🎬 💱 🔊 😭 🖉			
Navigator	Names Manager				
AnalyzerStudio1		-			
Chapter 26 Tour.oad	Units Manager	Definition 🚯 Report			
	Customize	Boundari 🔊 Hepon	Object		
Chapter 28 tour.oad		la Malua			
AnalyzerStudio3*	Options	le Value	Add Calculation -		
♦ Streams		Stream Parameters	▲ Add Calculation ▼ Brain		
	Add an Alloy	nol) 55.5082			
Stream	Analyzer Tester	25.0000	Solids Only		
	Pressure (atm)	1.00000			
		Inflows (mass %)	Summary		

Next select Options...

Select the General category

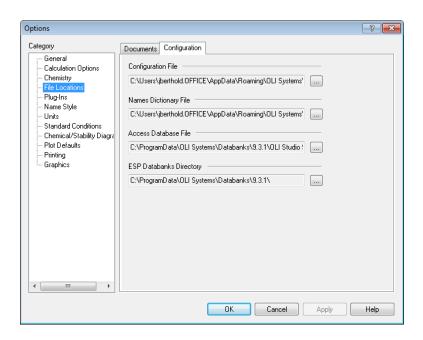
By default, the OLI Analyzers will create a back up copy of the file (if it was previously saved). If this was a large file you may want to disable this feature but unchecking the *Always create backup copy* check box.

Also by default, the OLI Analyzers will save your file every 5 minutes. You can decrease or increase this time as you require.

Options		? 💌
Category General Calculation Options Chemistry File Locations Plug-Ins Name Style Units Standard Conditions Chemical/Stability Diagre Pinting Graphics	General Image: Constraint of the second se	
4 III >	OK Cancel Apply	Help

If you need to recover a file that you accidentally saved (or it got corrupted) OLI creates a file with essentially the same name except the extension "backup" is appended. You should copy or rename this file and then open it as you would any other OLI Analyzer file.

📘 Chapter 28 tour.oad.backup
🏂 chapter 29_1.PNG
🔊 chapter 30.oad
📘 chapter 30.oad.backup
🌉 chapter7_4.PNG


Changing the default file locations

Sometime a user will need to change the default file locations for the OLI Analyzers. There are many reasons to do this but frequently it is because the user is on a multi-user system with multiple user logins. To change or verify the file locations the user needs to select the *Tools* menu item:

OLIAnalyzer - [AnalyzerStudio3*]			х
I File Edit Streams Calculations Chemistry	Tools View Window Help	_ (5)
🗅 🗃 🖬 👗 🖻 💼 🥌 🦓 🎌 🛛 Aq Va Navigator	Component Search Names Manager		1
AnalyzerStudio1 Chapter 26 Tour.oad Chapter 28 tour.oad	Units Manager Customize	Definition B Report	Object
AnalyzerStudio3*	Options	ole Value ∧ Add <u>Calculation</u> ▼	Libra
♦¢ Streams	Add an Alloy Analyzer Tester	Special Conditions 00 55.5082 25.0000 Solids Only	ary
	Pressure (atm)	1.00000 Inflows (mass %)	

Next select Options...

Next select *File Locations* and then click on the *Configuration* tab.

This will display the current file locations. You may want to verify these locations (some OLI programs will inadvertently modify these locations).

If you need to change the file location, click on the "..." to open the dialog.

l 🕗 🖉 🕨 🕨 Computer	 OS (C:) ProgramData OLI Syst 	ems Databanks 9.0.12	Analyzer 9.0		earch Analyzer 9.0	
rganize 🔻 New folder						(
📃 Desktop 🔷	Name	Date modified	Туре	Size		
OLI Systems	Empty OLI Database.mdb	1/29/2014 11:06 AM	Microsoft Office A	1,448 KB		
My Cases	OLI Database.mdb	4/18/2014 2:17 PM	Microsoft Office A	34,948 KB		
🎉 Downloads						
Recent Places						
Documents						
Aspen Plus V8.4						
E						
Libraries						
Music						
Pictures						
Videos						
1 videos						
Computer						
🚢 OS (C:)						
Public Shares (\\						
	<u>-</u>					
File nam	ne:			👻 Da	atabase File (*.mdb)	

Turning off hardware acceleration

The OLI Analyzer program uses OpenGL to plot stability diagrams. To speed up the rendering of the plot, the OpenGL drivers will use some of your video cards hardware acceleration features. Some video drivers do not support this ability and will result in a crash when attempting to display a diagram such as the feature shown below.

OLIAnalyzer - [AnalyzerStudio1*]		SID X
Ple Edit Streams Calculations Chemistry		- হাজা হা
	4 Va So 2** Re ± 常 ± 按 ± 林語 3- 页 合	
AnalyzerStudio1*	Stability Diagram1	
Streams	😺 Description 💽 Definition 🛍 Stability Diagram 🔀 Report	
E Stream1		
OLIA	salyzer - [AnalyzerStudio1*]: OLIAnalyzer.exe - Application Error	
	The instruction at "0x7c362949" referenced memory at "0x00000001". The memory could not be "read".	
	Click on CK to terminate the program Click on CANCEL to debug the program	
Actions	OK Cancel	
1		
For Help, press F1	98	N.M

To remedy this error we need to turn off hardware acceleration for the OpenGL drivers. This affects the current document only.

Select Tools from the menu.

OLIAnalyzer - [AnalyzerStudio3*]								- X-
File Edit Streams Calculations Chemistry	Too	ols View Window Help						- 5 ×
🗅 😅 🖬 🐇 🖻 💼 🎒 😵 🗛 Va		Component Search	Ma 🎬 💱 🎮	1 🗗 🖉				
Navigator		Names Manager						
AnalyzerStudio1								
Chapter 26 Tour.oad	1	Units Manager	Definition	😼 Report				Object
Chapter 28 tour.oad	1	Customize	-		_	0		Ä
AnalyzerStudio3*	1	Options	le	Value	-		Add Calculation 🔻	Library
4.4 Streams	1		Stream Parame				Special Conditions	
Stream		Add an Alloy	noi)	55.5082			Solids Only	1
Julean		Analyzer Tester		25.0000			Solids Unly	
	_	Pressure (atm)		1.00000				
		~	Inflows (mas	s %)		Summ	ary	-

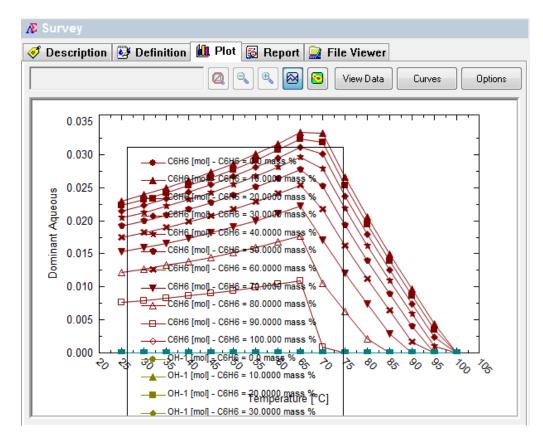
Then select Options from the drop down menu.

This will display the options available for the Analyzers. Select Chemical/Stability diagrams.

Options		9	23
Category	Diagram Colors Fonts Options		
General Calculation Options File Locations	Background		
Plug-Ins Name Style Units Standard Conditions	pH line		
Chemical/Stability Diagra Plot Defaults	Contact surface		
Printing Graphics	Solid films		
	Oxidation/Reduction system progression		
	Reset Reset to Defaults		
• III •			
	OK Cancel Apply (He	lp

You can change the way your plots look. To turn off hardware acceleration click the Options tab.

Category	Diagram Colors Fonts Options
- General - Calculation Options - File Locations - Name Style - Units - Standard Conditions - Chemical/Stability Diagre - Piot Defaults - Printing - Graphics	Diagram Lolors Fonts Uppions
< III >	


Uncheck the User graphics hardware acceleration box.

Click the OK button and then save the document. Reopen it and redisplay the diagram.

39. Modifying the plot

Hiding Curves

One nice feature of the OLI Analyzers is that you can generate a lot of points to plot many variables. You can also perform multiple series of plots such as plotting temperature curves as a function of pressure. This is what we are showing below. This is a pre-run temperature survey with pressure selected as the secondary (*then by...*) survey.

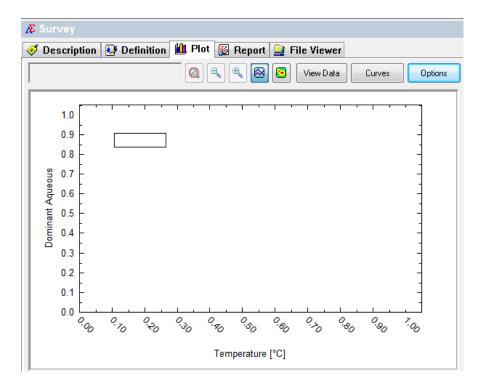
As you can see there is a lot of data, the plot is very hard to read. Fortunately we have created a tool to clean up the plot. Click the **Options** button in the upper right-hand corner.

This will display the **Customize Plot** dialog. Select the **Curves** category.

Customize Plot		8 ×
Category Cerental Axis YAxis Curves	General Tale Allow Layout Changes Steak lines between invalid data points Number of Dominant Species 5 Background Color Frame Color Frame Color Frame Weight 1 pt V	
	OK Cancel Apply	Help

Each data series in the current plot is displayed. As you can see in the dialog below there are many series currently displayed. You could hide each one individually or select groups to hide. We are first going to hide all the curves. Select the first item in the list and hold the **Shift Key**.

Customize Plot		28 23
Category General – Legend – X Axis – Y Axis – Durves	Curves CBHE (mol) - C6H6 = 0.0 mass % CBH5 (mol) - C6H6 = 20.0000 mass % CBH6 (mol) - C6H6 = 20.0000 mass % CBH6 (mol) - C6H6 = 4.00000 mass % CBH6 (mol) - C6H6 = 4.00000 mass % CBH6 (mol) - C6H6 = 6.00000 mass % CBH6 (mol) - C6H6 = 6.00000 mass % CBH6 (mol) - C6H6 = 6.00000 mass % CBH6 (mol) - C6H6 = 8.00000 mass % CBH6 (mol) - C6H6 = 0.0000 mass % CBH6 (mol) - C6H6 = 0.00 mass % CAuto Legend Text C6H6 (mol) - C6H6 = 0.00 mass % CAuto Line Style V Auto Line Style V Auto Scaling Factor Hidden Filled Dat 4	× H V
	OK Cancel Apply	Help

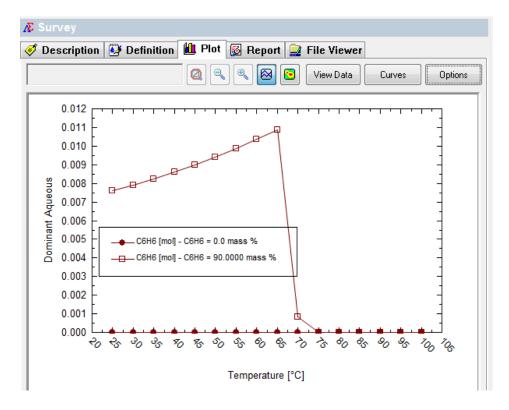

Scroll down to the last item in the list

H30+1 [mol] - C6H6 = 10.0000 mass %	
H30+1 [mol] - C6H6 = 20.0000 mass %	
H30+1 [mol] - C6H6 = 30.0000 mass %	
H30+1 [mol] - C6H6 = 40.0000 mass %	
H30+1 [mol] - C6H6 = 50.0000 mass %	
H30+1 [mol] - C6H6 = 60.0000 mass %	
H30+1 [mol] - C6H6 = 70.0000 mass %	
H30+1 [mol] - C6H6 = 80.0000 mass %	
H30+1 [mol] - C6H6 = 90.0000 mass %	
H30+1 [mol] - C6H6 = 100.000 mass %	
macht (moi) * como – roo.ooo mass /s	

We have now selected all the items. Click the **Hidden** check box to hide these curves.

Customize Plot		8 ×
Category General Legend 	Curves CBH6 [mol] - C6H6 = 0.0 mass % CBH5 [mol] - C6H6 = 10 0000 mass % CBH5 [mol] - C6H6 = 20 0000 mass % CBH5 [mol] - C6H6 = 20 0000 mass % CBH5 [mol] - C6H6 = 40 0000 mass % CBH5 [mol] - C6H6 = 40 0000 mass % CBH5 [mol] - C6H6 = 60 0000 mass % CBH5 [mol] - C6H6 = 60 0000 mass % CBH5 [mol] - C6H6 = 60 0000 mass % CBH5 [mol] - C6H6 = 50 0000 mass % CBH5 [mol] - C6H6 = 90 0000 mas % CBH5 [mol] - C6H6 = 90 0000 mas % CBH5 [mol] - C6H6 = 90 0000 mas % CBH5 [mol] - C6H6 = 90 0000 mas % CBH5 [mol] - C6H6 = 90 0000 mas % CBH5 [mol] - C6H6 = 90 0000 mas mas % CBH5 [mol] - C6H6 = 90 0000 mas % CBH5 [mol] - C6	A H
	Auto Line Style Auto Line Weight Auto Color 1 pt Auto Scaling Factor V Hidden 4 OK Cancel Apply	-

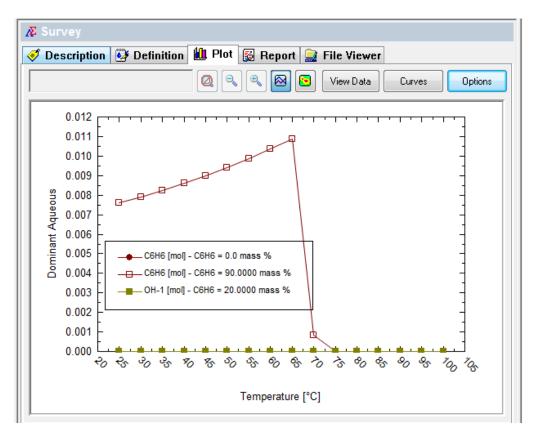
Click the **Apply** and then **OK** buttons to see the plot.



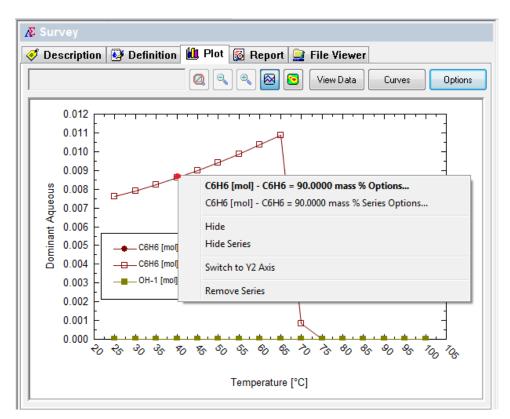
This is not very helpful. We need to "Unhide" some curves. Once again, click the **Options** button and then reselect the **Curves** category.

For this example we want to see the highest pressure for this dual survey. Scroll to the bottom of the list and then uncheck the **Hidden** box.

Category	Curves
General Legend XAxis YAxis Curves	C6H6 [mol] - C6H6 = 0.0 mass % C6H6 [mol] - C6H6 = 10.0000 mass % C6H6 [mol] - C6H6 = 20.0000 mass % C6H6 [mol] - C6H6 = 30.0000 mass % C6H6 [mol] - C6H6 = 30.0000 mass % C6H6 [mol] - C6H6 = 50.0000 mass % C6H6 [mol] - C6H6 = 90.0000 mass %
	V Auto Line Style V Auto Line Weight V Auto Color V Auto Symbol V Auto Scaling Factor Square V

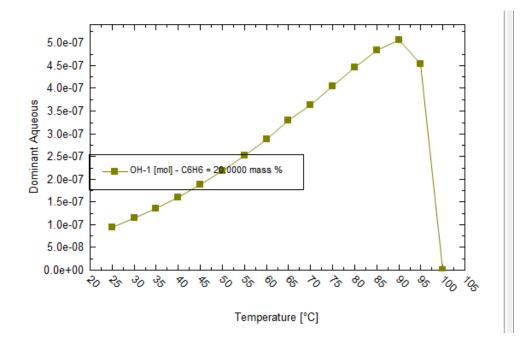

Click the Apply and OK buttons to display the plot.

We now have our plot without all the clutter of extra points. We can now go back an add (or unhide) additional curves. Once again, click the **Options** button and then reselect the **Curves** category.


	1		₽ X
Curves			
C6H6 [mol] - C6H6 = 40.0 C6H6 [mol] - C6H6 = 50.0 C6H6 [mol] - C6H6 = 50.0 C6H6 [mol] - C6H6 = 70.0 C6H6 [mol] - C6H6 = 70.0 C6H6 [mol] - C6H6 = 90.0 C6H6 [mol] - C6H6 = 90.0 OH-1 [mol] - C6H6 = 10.0 OH-1 [mol] - C6H6 = 10.0	000 mass % 000 mass % 000 mass % 000 mass % 000 mass % ass % 000 mass %		E
0H-1 [mol] - C6H6 = 20.00	100 mass % 100 mass %		Ŧ
📝 Auto Legend Text			
V Auto Line Style	Auto Line Weight	✓ Auto Color	•
V Auto Symbol	V Auto Scaling Factor	<mark>Hi</mark> dden	
	ОК	Cancel Apply	Help

Locate a curve midway in the list (here we have chosen a different variable also at the highest pressure). Uncheck the **Hidden** check box. Click the **Apply** and **OK** buttons to display the plot.

We now have to curves displayed. It is helpful to note that all the other curves are still present in the diagram. If you export this plot to a spreadsheet, all the data, not just the displayed values, will be used.


We can modify the plot directly without the use of the Options button. **Right-click** any displayed curve. We have chosen the upper curve.

This will display a pop-up menu. The name of the series is displayed. Select Hide Series.

This removed the series from display. Unfortunately the only method to "Unhide" the series is to use the Options button as we did above.

Switching Variables between plots

Occasionally it is necessary to quickly switch variables between the Y1 axis and the Y2 axis. This is frequently necessary because the range of the variables plotted is vastly different. In this example, we are using the files created in Chapter 8. See: <u>http://wiki.olisystems.com/wiki/images/5/53/Chapter_08.zip</u> for the latest version of the worked file or **pH** (Mixer)in Chapter 8 on page 150 above.

In this example, we are mixing an acidic stream containing citric acid with a basic stream containing NaOH. Here is the resultant plot. Here is the resultant plot:

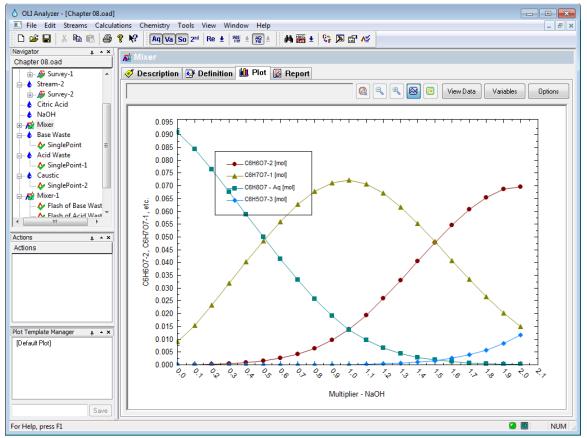


Figure 39-1 Chapter 8 citric acid survey

Perhaps we want to see an additional variable such as pH on this plot. Using the <u>Variables</u> button, select pH from the <u>Additional Stream Parameters</u> category.

]	X Axis
			Multiplier - NaOH
Stream Parameters			Matpier Noort
Calculation Results			Y1 Axis
	=		C6H8O7 - Ag
Additional Stream Parameters	-	>>	C6H7O7-1
···· Density - Aqueous			C6H6O7-2
···· Density - Total		<<	C6H5O7-3
Ionic Strength (m-based) - Aqueous	, —		
lonic Strength (x-based) - Aqueous			
Standard Liquid Volume - Aqueous			Y2 Axis
Phase Flow Properties There a description		>>	
Thermodynamic Properties Scaling Tendencies			
Scaling Tendencies Pre-scaling Tendencies		<<	
E Solid			Z Axis
Malandan Tatala	Ŧ		
4 III +]	- Select -
Hide zero species			

Figure 39-2 Selecting pH from the Additional Stream Parameters

This will put the pH on the Y1 axis by default. Here is the resultant plot:

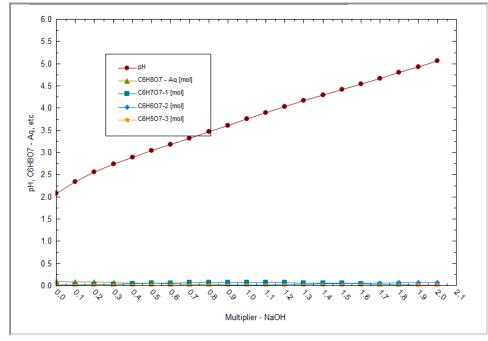


Figure 39-3 pH plotted, this skews the view

The variable "pH" has dominated the plot. Its values dwarf the vales of the ions. The pH variable should be plotted on the Y2 axis.

We can switch the variables easily. Using the **Variables** button. Highlight the pH variable in the Y1 axis box.

	Y1 Axis
рH	
C6H8O7 - Aq	
C6H7O7-1	
C6H6O7-2	
C6H5O7-3	

Figure 39-4

Now right-click the variable

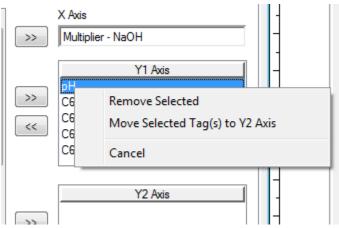


Figure 39-5 Right-clicking "pH"

Select Move Selected Tag(s) to Y2 Axis

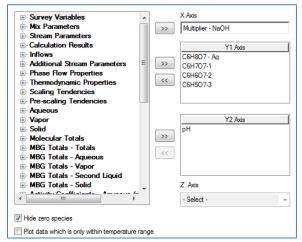


Figure 39-6 Variable moved

Here is the updated plot.

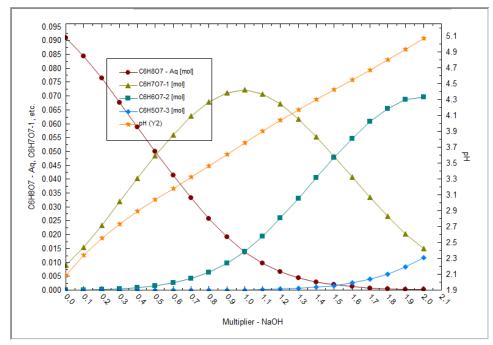


Figure 39-7 Updated plot with Y2 axis variable

Plotting two separate graphs at the same time

Frequently it is necessary to see two plots of two different systems at the same time. This is useful when comparing similar results between calculations. In this example, we have the results of a mixer calculation where we are absorbing chlorine into two different caustic (sodium hydroxide) solutions. Each caustic solution is at different concentrations.

You can download a copy of the example file from this location: http://wiki.olisystems.com/wiki/images/5/5a/Chapter_38_-_2-Plots.zip

We will now open the file:

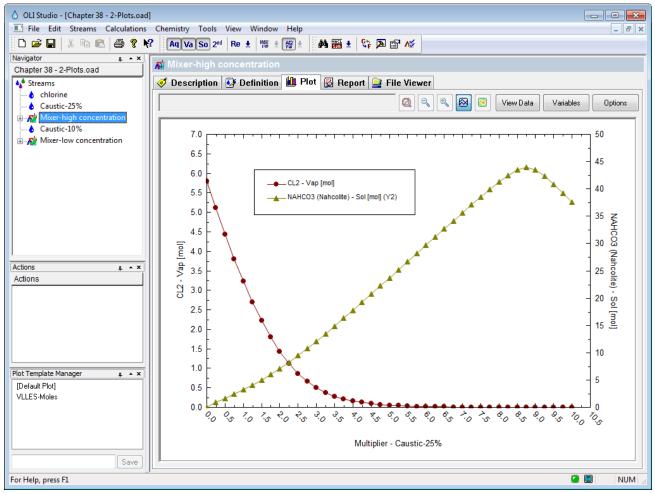


Figure 39-8 Our sample file

We have already set up our plot to display our variables. In this case, we have a 25 weight % caustic solution. It is beyond the scope of this tutorial to explain the chemistry and analysis of this case. We would like to simultaneously see the low concentration case.

To do this select <u>Window</u> from the menu line and then select <u>New Window</u>.

Tools View	Win	dow Help New Window	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
nigh conce	✓	Cascade Tile Arrange Icons 1 Chapter 38 - 2-Plots.oad	ile Viewer
) L			

Figure 39-9 Creating a new window

This will create an exact reproduction of the same file. Notice that we have appended a window identifier for each file (the colon :1 or :2 in this case).

OLI Studio - [Chapter 38 - 2-Plots.oad:2]	
I File Edit Streams Calculations Chemistry Tools View Window Help	- 8 ×
🗅 🖙 🖬 🗼 🖶 📾 🕼 🥔 😵 🕅 Aq Va So 2* Ne ± 🎬 ± 🎇 ± 🚺 🏘 🎬 ± 💱 🔉 🕋	
Navigator <u><u><u>a</u></u> <u><u>a</u></u> <u><u>a</u></u> Streams</u>	
Chaptel 36 - 2-Plots.vau. 1	
Chapter 38 - 2-Plots.oad:2 Description Object Map	
Streams	
→ chlorine Name: Streams Date: 5 / 3 /2017	
Caustic-25%	
Caustic-10% Description Description	
	Â
Actions a. A X	-
Actions	•
Add Stream Add Mixer	
evs Automatic Chemistry Model	
Public Public	
Plot Template Manager	
	~
Save	
For Help, press F1	

Figure 39-10 The new window

Now we select the other mixer and set up the plot with the same variables as the first plot:

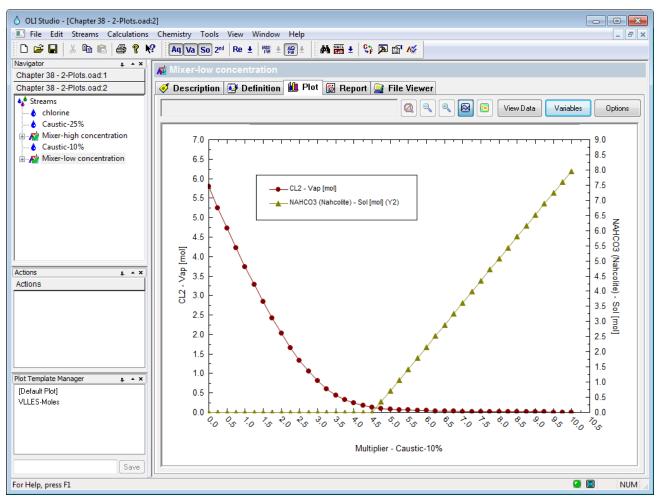


Figure 39-11 Plotting the low concentration case

Now we begin the process of putting both plots on the same display. Reselect <u>Window</u> and this time select <u>Tile</u>

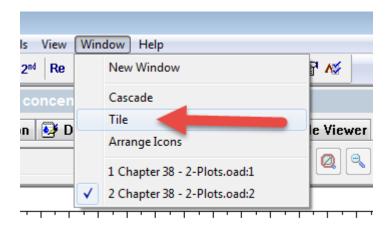


Figure 39-12 Tiling the images

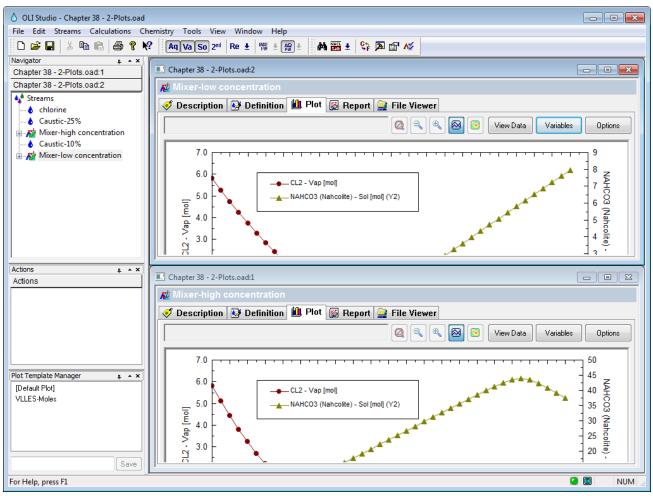


Figure 39-13 The tiled images

One of the limitations of a program such as Microsoft Word is that we are usually constrained by page width. To limit the amount of space we have artificially decreased the width of the OLI Studio window to make it fit on our page. What the user will have to do is resize the images so both fit at the same time.

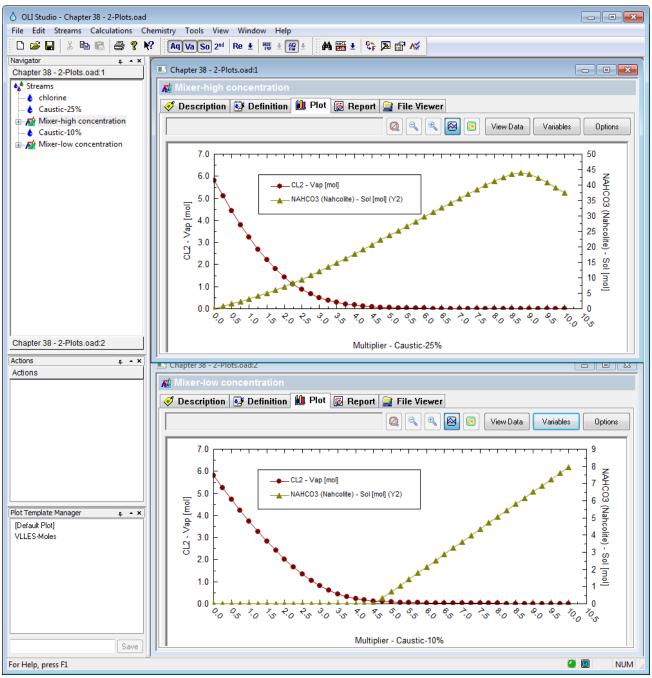


Figure 39-14 Resized Pictures

You will notice that the top window slightly overlaps the bottom window. This was done to make the image fit into Microsoft Word. You will get different results depending on the size of your monitor.

To complete the analysis here the top image is using a more concentrated solution of sodium hydroxide than the other and the formation of the solid sodium bicarbonate appears earlier than in the bottom (lower concentration) display. This may be important if you are designing multi-stage scrubbers.

40. Customizing the Report

The default report does not include some calculated values since they tend not to be used by most users. The extra thermodynamic values such as Gibb's Free Energy as well as diffusivity coefficients are not displayed. To display them click on the **Customize** button.

Survey Description 🔯 Definition 🛍 Plot 📓	Report 📴 File Viewer	
		Export
Calculation Summary		
Survey Calculation		
Temperature survey:		
Range 25.0 to 100.0 °C		
Step size 5.0 °C		
No. steps 15		
Composition survey		
HCI Range 0.0 to 100.0 mass %		
Range 0.0 to 100.0 mass % Step size 10.0 mass %		
No. steps 10		
Primary and secondary survey variables		
move independently		
Total points: 176		
Unit Set: Custom		
Automatic Chemistry Model		
Aqueous (H+ ion) Databanks:		Ŧ
III		•

This will display the Report Contents dialog. The categories on the left will allow you to set options for each category. To display the hidden categories you will need to scroll down in the right-hand window.

Report Contents	2 X
Category Category Catculation Summary Catculation Summary Stream Inflows Speciation Summary Stream Parameters Catal/Phase Flows Scaling Tendencies Species Output Molecular Output Element Balance Species Activity Coe Species K-Values Species Mobilities Aqueous Phase Self Di Vapor Phase Self Di Vapor Diffusivity Mat Gibbs Free Energy Gibbs Free Energy Gibbs Free Energy Catbox Free Energy Entropy Entropy Standard St	Report Contents To add or remove a section, click the check box. A shaded box means that only part of the component will be printed. To see what's included in a component, click Details. Sections V Calculation Summary Stream Inflows Speciation Summary Stream Parameters Total/Phase Flows Scaling Tendencies Species Output Molecular Dutput Element Balance Species Activity Coefficients Species Mobilities Aqueous Phase Self Diffusivities Vapor Phase Self Diffusivities Vapor Phase Self Diffusivities Vapor Phase Self Diffusivities Description This section displays a calculation summary.
4	7 of 19 Sections selected
	OK Cancel Apply Help

Eventually you will find the unchecked categories.

Check the boxes you wish to display and then click the \mathbf{OK} button.

Report Contents Global Settings		
To add or remove a section, click the check box. A shaded means that only part of the component will be printed. To se included in a component, click Details.		
Sections		
V Survey Total/Phase Flows		
Scaling Tendencies		
Pre-Scaling Tendencies		
🔽 Species Output		
📝 Molecular Total Output		
📝 Element Balance		
Species Activity Coefficients		
🔽 Species K-Values		
Species Mobilities		
Aqueous Phase Self Diffusivities	=	
Vapor Phase Self Diffusivities		
📝 Gibbs Free Energy		
Cibbs Free Energy Standard State		
C Entropy		
Entropy Standard State	-	

By default, the newly displayed categories will appear at the end of the report. You can use the Customize Button to move these categories higher in the report if you desire.

Gibbs Free Energy of Formations - Standard State

Row Filter Applied: Only Non Zero Values

	Aqueous	Vapor
	cal/mol	cal/mol
CI-1	-28310.5	
CO2	-88769.5	-90755.2
CO3-2	-1.24329e5	
H2O	-55476.1	-51465.6
H2S	-2711.37	-4391.58
HCI	-19568.4	-20258.9
HCO3-1	-1.3644e5	
H+1	1849.89	
HS-1	6335.04	
OH-1	-35503.2	
S-2	22876.6	
	m	

If you cannot see the above table, please right click on the single point calculation in the tree diagram under Navigator panel

- n singleroint			
🍌 🎸 SinglePoint-1			
INAVIGATOR			μ ▲ Χ
chapter 30.oad*			
🏘 Streams			
🛓 🗄 Stream			
🔤 🕂 🖉 Survey			
SinglePoint			
SinglePoint	Arrange	•	
	Cut		
	Сору		
	Paste		
	Delete		
Actions	Rename		μ ▲ ×
Actions	Add As Stream		
	Clear Results		
	Clear Status		
	Clear Status		
	Calculation Options		

Click on calculation options

Ca	alculation Options	
	Calculation Options Convergence	
	General Diagnostics Image: Show status dialog Image: Diagnostics Image: Trace Level 1	
	Optional Properties	
	Diffusivities and Mobilities	
	Diffusivities Matrix	
	Viscosity	
	Electrical Conductivity	
	Heat Capacity	
	Activity Coefficients and K-Values	
	Gibbs Free Energy	
	Entropy	
	Thermal Conductivity	
	Surface Tension	
	V Interfacial Tension	
	Pre-scaling Tendencies	
	OK Cancel Apply Help	

Make sure you have Gibbs Free Energy selected.

Then you will be able to see Gibbs Free energy in the report tab. Please remember to recalculate.

41. Displaying Transport Properties and Extra Thermodynamic Parameters

Single Point Calculations

The OLI Analyzer program generates a lot of data. The program has attempted to sort out the most important data for you but some values are still hidden. You can expose those values by using the

Plotting two separate graphs at the same time

Frequently it is necessary to see two plots of two different systems at the same time. This is useful when comparing similar results between calculations. In this example, we have the results of a mixer calculation where we are absorbing chlorine into two different caustic (sodium hydroxide) solutions. Each caustic solution is at different concentrations.

You can download a copy of the example file from this location: http://wiki.olisystems.com/wiki/images/5/5a/Chapter_38_-_2-Plots.zip

We will now open the file:

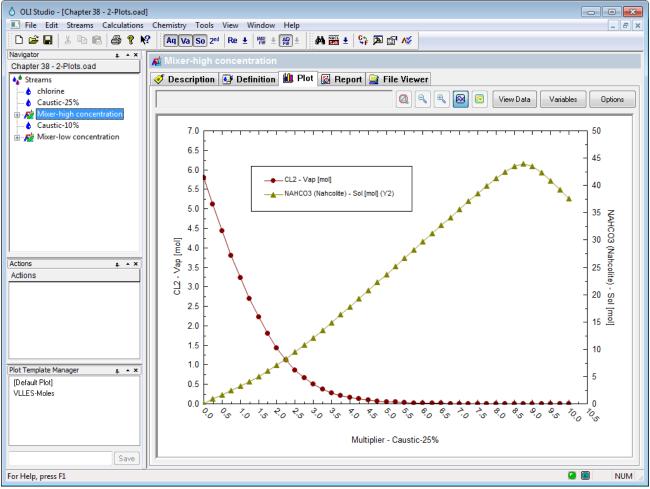


Figure 39-8 Our sample file

We have already set up our plot to display our variables. In this case, we have a 25 weight % caustic solution. It is beyond the scope of this tutorial to explain the chemistry and analysis of this case. We would like to simultaneously see the low concentration case.

To do this select <u>Window</u> from the menu line and then select <u>New Window</u>.

Tools View	Win	dow Help New Window	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
nigh conce	✓	Cascade Tile Arrange Icons 1 Chapter 38 - 2-Plots.oad	ile Viewer
) L			

Figure 39-9 Creating a new window

This will create an exact reproduction of the same file. Notice that we have appended a window identifier for each file (the colon :1 or :2 in this case).

OLI Studio - [Chapter 38 - 2-Plots.oad:2]	
I File Edit Streams Calculations Chemistry Tools View Window Help	- 8 ×
🗅 🖙 🖬 🗼 🖶 📾 🕼 🥔 😵 🕅 Aq Va So 2* Ne ± 🎬 ± 🎇 ± 🚺 🏘 🎬 ± 💱 🔉 🕋	
Navigator <u><u><u>a</u></u> <u><u>a</u></u> <u><u>a</u></u> Streams</u>	
Chaptel 36 - 2-Plots.vau. 1	
Chapter 38 - 2-Plots.oad:2 Description Object Map	
Streams	
→ chlorine Name: Streams Date: 5 / 3 /2017	
Caustic-25%	
Caustic-10% Description Description	
	Â
Actions a. A X	-
Actions	•
Add Stream Add Mixer	
evs Automatic Chemistry Model	
Public Public	
Plot Template Manager	
	~
Save	
For Help, press F1	

Figure 39-10 The new window

Now we select the other mixer and set up the plot with the same variables as the first plot:

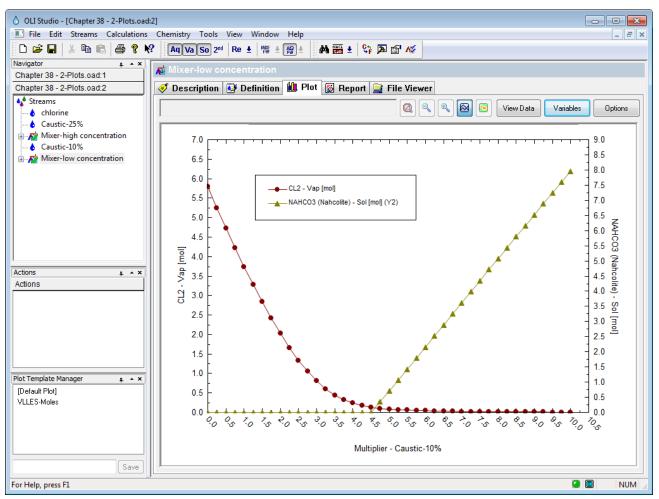


Figure 39-11 Plotting the low concentration case

Now we begin the process of putting both plots on the same display. Reselect <u>Window</u> and this time select <u>Tile</u>

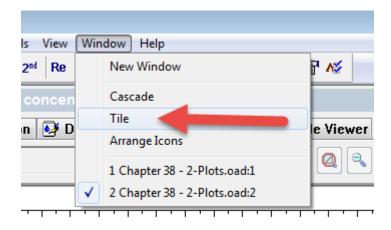


Figure 39-12 Tiling the images

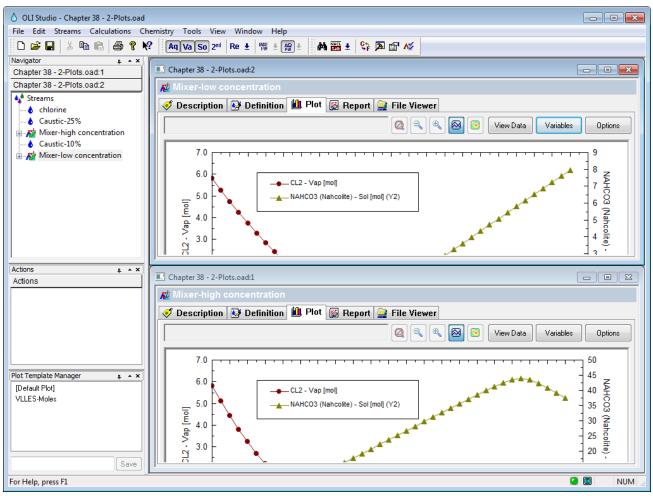


Figure 39-13 The tiled images

One of the limitations of a program such as Microsoft Word is that we are usually constrained by page width. To limit the amount of space we have artificially decreased the width of the OLI Studio window to make it fit on our page. What the user will have to do is resize the images so both fit at the same time.

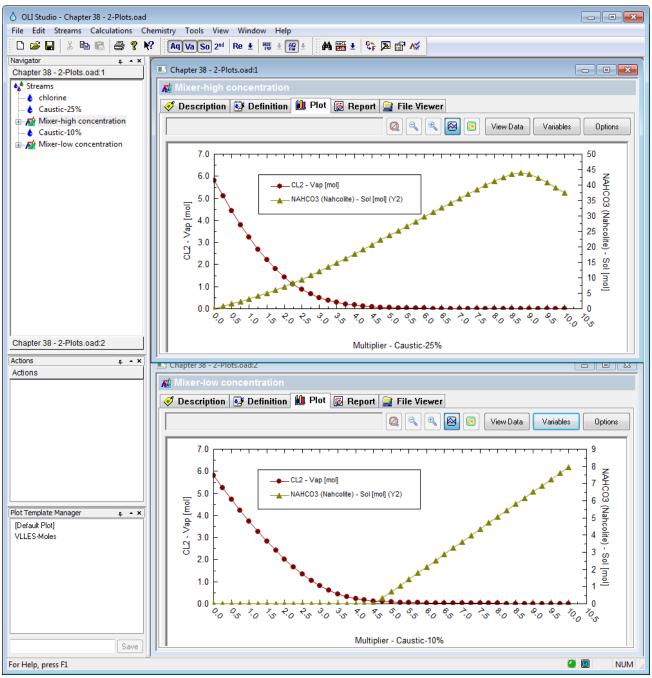
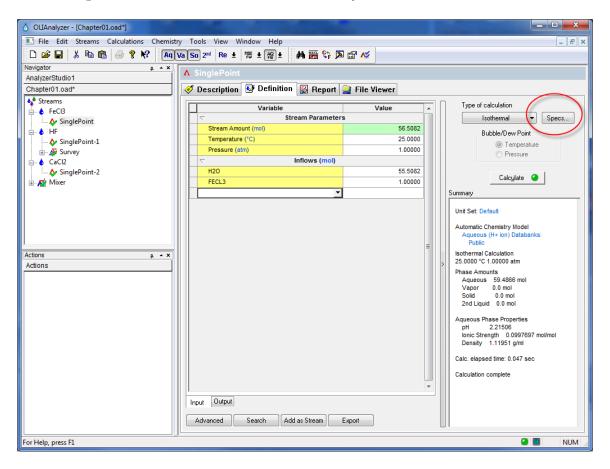


Figure 39-14 Resized Pictures

You will notice that the top window slightly overlaps the bottom window. This was done to make the image fit into Microsoft Word. You will get different results depending on the size of your monitor.


To complete the analysis here the top image is using a more concentrated solution of sodium hydroxide than the other and the formation of the solid sodium bicarbonate appears earlier than in the bottom (lower concentration) display. This may be important if you are designing multi-stage scrubbers.

Customizing the Report as discussed on page 507

Other values, such as the Gibb's Free Energy of a species are not automatically calculated since it can impart a large time burden on the calculation. To enable these types of calculations (Gibb's, Entropy and Heat Capacity) you need to enable them prior to starting the calculation.

For our example we have taken a simple chemistry and created a *SinglePoint* calculation.

Click the **Specs...** button to enable the extra thermodynamic calculations.

This will display the Calculation Options dialog. You will notice that we have left unchecked those calculations which take extra time to complete. You can enable any or all of them by checking the box.

Calculation Options	2 X				
Calculation Options Convergence					
General 🕼 Show status dialog	Diagnostics Enable trace Trace Level 1				
Optional Properties					
Diffusivities and Mobilities					
Diffusivities Matrix					
Viscosity of Liquid phases					
Electrical Conductivity of Lig	uid phases				
Heat Capacity of all phases					
Activity Coefficients and K-Values					
Bbbs Free Energy of all phases					
ntropy of all phases	Tentropy of all phases				
Thermal Conductivity of Liqu	Thermal Conductivity of Liquid and Vapor phases				
Surface Tension of Liquid phases					
Pre-scaling Tendencies					
OK Cance	el Apply Help				

Here we have enabled all of the extra calculations.

Calculation Options	2 ×				
Calculation Options Convergence					
General Show status dialog	Diagnostics Enable trace Trace Level 1				
Optional Properties					
Diffusivities and Mobilities					
Diffusivities Matrix					
Viscosity of Liquid phases					
Electrical Conductivity of Light	juid phases				
Heat Capacity of all phases					
Activity Coefficients and K-Values					
Gibbs Free Energy of all phases					
Entropy of all phases					
Thermal Conductivity of Liqu	Thermal Conductivity of Liquid and Vapor phases				
Surface Tension of Liquid phases					
Pre-scaling Tendencies					
OK Cance	el Apply Help				

Click the **OK** button to continue

Click the **Calculate** button to continue. When the program finishes click on the **Report** tab and then the **Customize** button to enable the new values to be displayed.

Survey Calculations

To specify the extra thermodynamic values in a survey you need to follow similar steps as with the single point calculation. Here we have added a temperature survey. Click the **Specs...** button to add the additional calculations.

♦ OLIAnalyzer - [Chapter01.oad*]	and the second second						
🗈 File Edit Streams Calculations Chemistry Tools View Window Help							
D 😅 🖬 👗 🛍 🐔 🔗 🎗 😢 🗛 Va So 2 nd Re ± 🗱 ± 🤮 ± 👹 쨞 약 🔉 🖬 🐇							
Navigator # *	Æ Survey						
AnalyzerStudio1							
Chapter01.oad*	🛷 Description 🥸 Definition 🛍 Plot 📓	Report 🔜 File Viewer					
🍓 Streams	Variable	Value	Survey by				
FeCI3	Stream Parameter		Composition - (Specs)				
SinglePoint	Stream Amount (mol)	55.6082					
SinglePoint-1	Temperature (°C)	30.0000	Then by (optional)				
	Pressure (atm)	1.00000	None Specs				
En CaCl2			Vary				
↓ SinglePoint-2	H2O	55.5082	Independently				
🗄 🕂 Mixer	HF	0.100000	 Together 				
	CACL2						
			Calculate 🥥				
			Summary				
			Composition survey:				
Actions		=	CACL2				
Actions			Range 0.0 to 0.2 mol Step size 0.01 mol				
			No. steps 20				
			No secondary survey selected				
			Unit Set: Default				
			Automatic Chemistry Model Aqueous (H+ ion) Databanks:				
			Public				
			Isothermal Calculation				
			30.0000 °C 1.00000 atm				
			Calculation complete				
		v	Calc. elapsed time: 0.443 sec				
	Input CACL2=0.0 CACL2=0.0100000 CACL2=0.02	200000 CACL2=0.0300000 + >					
		Fund					
	Advanced Search Add as Stream	Export					
For Help, press F1							

The Survey Options dialog is different from the single point dialog. You now must select **Calculation Options** to select the new calculations.

Survey Options	
Category	Component Survey Range Component Inflows New Inflow Image: Hide Related Inflows New Inflow CACL2 H20 HF HF Select a component inflow which will be varied over the specified range.
	OK Cancel Apply Help

Once selected, the Calculation Options dialog is very similar to the single point dialog. Select the desired values. You will need to calculate (or recalculate) the survey when you are done.

Survey Options	? • X •
Category Var. 1 - Composition Calculation Type Calculation Options	Calculation Options Convergence General Diagnostics Enable trace Trace Level 1
	Optional Properties Image: Diffusivities and Mobilities Image: Diffusivities Matrix Image: Diffusivity of Liquid phases Image: Diffusivity of Liquid and Vapor phases Image: Diffusivity of Liquid and Vapor phases Image: Diffusivity of Liquid phases Image: Diffusive Tension of Liquid phases Image
	OK Cancel Apply Help

42. Using the OLI Tester

Overview

The OLI Tester is an internal program used to compare results from the current version of the tester with previous versions. The results are stored in a database for easy comparisons. The OLI Tester is a separately licensed program and requires a new or updated serial number.

This section covers the installation and use of the OLI Tester in both single point and multiple point (surveys) calculations. The tester does not work with Stream Analyzer mixer calculations nor with ScaleChem objects.

Installation and Activation

The default installation does not include the OLI Tester. To check if OLI Tester is enabled you need to first go to the plug-ins menu.

Activating the Tester

The plug-ins menu is found from Tools | Options | Category: Plug-ins

Options				?
Category	Plug-In Man	ager		
General Calculation Options Chemistry File Locations File Locations Units Units Standard Conditions Chemical/Stability Diagre Pitol Defaults Printing Graphics	Enabled V V V	Auto Yes Yes Yes No	Name Stream Analyzer Corrosion Analyzer EVS Analyzer Studio ScaleChem OLI File Viewer	Pah C:\Program Files (x86)\OLI Systems\O C:\Program Files (x86)\OLI Systems\O C:\Program Files (x86)\OLI Systems\O C:\Program Files (x86)\OLI Systems\O C:\Program Files (x86)\OLI Systems\OLI Stud
	•		III Add	, Remove
4			ОК	Cancel Apply Help

Figure 42-1 Default Plug-Ins menu

There is no mention of the **OLI Tester** in this list so you will need to contact OLI Systems for an updated serial number. A complete re-install of the software is required.

In the next image, OLI has installed the software with an updated serial number that enables the OLI Tester.

Options				8
Category	Plug-In Man	ager		
General Calculation Options Chemistry File Locations File Locations Units Units Units Standard Conditions Chemical/Stability Diagre Plot Defaults Graphics	Enabled V V V	Auto Yes Yes Yes No No	Name Stream Analyzer Corrosion Analyzer EVS Analyzer Studio ScaleChem OLI File Viewer Analyzer Tester	Pah C:\Program Files (x86)\OLI Systems\O C:\Program Files (x86)\OLI Systems\O C:\Program Files (x86)\OLI Systems\O C:\Program Files (x86)\OLI Systems\OL Sud C:\Program Files (x86)\OLI Systems\OLI Sud C:\Program Files (x86)\OLI Systems\OLI Sud
	•		m Add	, Remove
۰ ااا				\$
			OK	Cancel Apply Help

Figure 42-2 OLI Tester has been installed

Check the box to enable the OLI Tester.

Enabled	Auto	Name	Path
V	Yes	Stream Analyzer	C:\Program Files (x86)\OLI Systems\0
1	Yes	Corrosion Analyzer	C:\Program Files (x86)\OLI Systems\0
	Yes	EVS Analyzer	C:\Program Files (x86)\OLI Systems\0
V	Yes	Studio ScaleChem	C:\Program Files (x86)\OLI Systems\0
1	No	OLI File Viewer	C:\Program Files (x86)\OLI Systems\OLI Stud
\checkmark	No	Analyzer Tester	C:\Program Files (x86)\OLI Systems\OLI Stud
•			•

Figure 42-3 OLI Tester enabled

Please close the OLI Studio program.

Activating the Tester for multiple point surveys

The default activation for the OLI Tester does not enable multiple point surveys to be tested. This is an unfortunate condition but it can be remedied with a modification to the computer's registry.

Warning! Modifying your computer's registry settings can cause irreparable harm to your computer, proceed at your own risk.

Use the Windows Run command (Windows key + R) and enter the <u>Regedit</u> command.

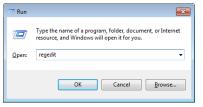


Figure 42-4 entering the registry editor command

This will display the registry editor

Navigate to the key:

HKEY_CURRENT_USER\Software\OLI Systems\OLI Studio 9.5

Figure 42-5 Navigating to the OLI Tester key

Click on the **AnalyerTester** key. In the right-hand window there should be only the default value:

🎒 Registry Editor					
File Edit View Favorites Help					
A - DLI Studio 9.5	Name	Туре	Data		
a 🆺 Common	ab (Default)	REG_SZ	(value not set)		
		160_52	(value not set)		
Database					
Settings					
Template Manager	< III				
Computer\HKEY_CURRENT_USER\Software\OLI Systems\OLI Studio 9.5\Common\AnalyzerTester					

Figure 42-6 Default key value

Right-click in the right-hand windows and select New | String Value

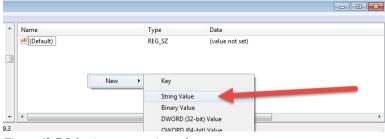


Figure 42-7 Selecting a new string value

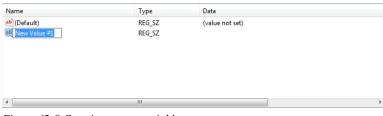


Figure 42-8 Creating a new variable

Rename the <u>New Value #1</u> variable to AllowSurveyTesting

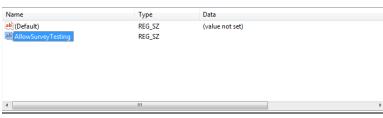


Figure 42-9 Renamed variable, spelling counts!

Double-click the new variable name AllowSurveyTesting and this will display a new dialog:

Edit String	×
Value name:	
AllowSurveyTesting	
Value data:	
True	
	OK Cancel

Figure 42-10 Enter "True" in the blank box

Close the Registry Editor

Starting and Setting up the OLI Tester for the First Time

Now that the OLI Tester has been enabled we need to create the first database to store our data. Start the OLI Studio program as you would normally.

OLI Studio - [Chapter 7 Tour.oad*]	Fan Western Hele		×
File Edit Streams Calculations Chemistry Tools	View Window Help Re 🛨 1 勝 🛨 📾 🏙 🎆 🛨 💱 🔎 🗊 🎊		- 8 ×
Chapter 7 Tour.oad*	▲ SinglePoint-2		
Streams Acetic Acid Solutions Acetic Acid Solutions Acid Solutions Acid Acid Acid Acid Acid Acid Acid Dev Point Oev Point Oev Point Acid Vapor Fraction Acid SinglePoint-2	Description Definition Report File Viewer Jump to: Calculation Summary SinglePoint-2 Calculation Unit Set Custom Automatic Chemistry Model AO (H+ ion) Databanks: Public Vapor Fraction Calculation 1.00000 atm	Custonize	Export
Actions & * X Actions	Stream Inflows Row Filter Applied: Only Non Zero Values Species mass % H2O 90.0000 NACL 9.00000 CASO4 1.00000		
(Plot Template Manager + • x)	Stream Parameters Row Filter Applied: Only Non Zero Values column Filter Applied: Only Non Zero Values <u>Mixture Properties</u> III	Ç₹	*
For Help, press F1		e 🗉	NUM

Figure 42-11 Starting a case

For this example, we are using the Chapter 7 files created earlier in this manual. You can download the completed file from this link: <u>http://wiki.olisystems.com/wiki/images/d/dc/Chapter_7_Tour.zip</u>.

We need to create a database. Select Tools | Analyzer Tester | Select Tester Database

emistry	Тоо	ls View	v Window Help	
Aq Va	Aq Va Component Search Names Manager Units Manager Customize Options Alloy Manager Analyzer Tester			ka ∰ ± \$‡ ⊅ ≌ A≶
			nize	efinition 🔯 Report 🚂 File Viewer
			lanager	
			er Tester 🔹 🕨	Select Tester Database
	_	SinglePoint-2 Calcu Unit Set: Custom		Run Test
				Add Current Calc
			Automatic Chemistry AQ (H+ ion) Databa	

Figure 42-12 selecting the database

This will display a new dialog to either open a database or create a new database.

Select Tester Database	? 💌
Location of the current tester database file (.atd)	
No database file selected.	
Open	
Create new tester database:	
New	Close

Figure 42-13 Database selection dialog

For this example, click the <u>New...</u> button.

Open Analyzer Test	er Database File				(m2.2a
🔾 🔾 🕈 📕 🕨 Ne	twork + granite + ReleaseTesting + OLI Studie	• •		• 49 Search O	Ll Studio 🖉 🔎
Organize * Net	v folder				E • 0
Videos Videos Jim Bethold Computer Sol (c) HP-RECOVE VD RV MV DVD Drive (f Public Share Stuppert.olsy Carbonite B Carbonite B Carbonite B Carbonite B Carbonite B Carbonite B Carbonite B Carbonite B Control Panel	e (Julio Tetter Databases) E Scripts St st tot	Date modified 7/22/2010 11:17 AM 12/72/2016 11:39 12/72/2016 11:38 11/2/2016 3:33 PM 7/21/2016 3:33 PM 6/27/2016 10:40 AM 6/16/2016 3:25 PM	Type ATD File File folder File folder File folder File folder File folder File folder	Site 24,765 KB	
File name:	OLIAnalyzer Test Cases(9.5.2).atd				
Save as type:	Analyzer Tester Database file (*.atd)				•
Hide Folders				Save	Cancel

Figure 42-14 Determining a location for your database

You can place your database anywhere you have access and name it anything that makes sense to you. OLI uses many different people to test the software so a centralized location has been chosen. In this case a server location. We also name the database in some manner that indicates the source of the original data, in this case version 9.5.2 of the software. The name is arbitrary and should make sense to you. You may notice that we have a version 9.3.2 database located in this folder. This will be used in a subsequent portion of this chapter.

Click the **Save** button when ready.

Adding Single Point Calculations to the Database

In the example on page 534 you will notice that each object has already been calculated as noted by the green check mark. This means those results are now available to the database (remember mixers do not work in the tester so you cannot add them).

Click the 'pH' calculation

Figure 42-15 Clicking the object

Now select Tools | Analyzer Tester | Add Current Calc

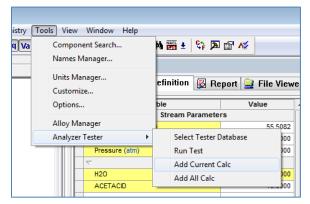


Figure 42-16 Adding the current calculation

This adds the currently selected calculation to the database. You can also add all the calculations to the database now but you may want to be selective in what is added.

For this example, we have added all the calculations to the database. You do not have to save the base file if you do not require it.

Adding Multiple Point Calculations (Surveys) to the Database

Adding surveys to the database is done in much the same way as single point calculations. In this example, we are using the file created from chapter 8 earlier in this guide. You can download the example file from: http://wiki.olisystems.com/wiki/images/0/0a/Chapter 8 Tour.zip

If you kept the file open from the previous section, then there is no need to reselect the database. Otherwise you will need to open the database you wish to add the cases.

Adding to an existing database

After opening your file, select **Tools** | **Analyzer Tester** | **Select Tester Database.** Select **Open...** (refer to Figure 42-12 through Figure 42-14).

Here we are opening the 9.5.2 file we created earlier:

Wetwork + granite + Release	🔪 🔄 🗢 📕 • Network • granite • ReleaseTesting • OLI Studio • 🛛 🗢 🛃							
Irganize 🔻 New folder					iii • 🗇			
Documents Music Pictures Pictures Videos Jum Berthold Computer Computer DVD RVM Onive (E) DVD RVM Onive (E) DVD DVM Onive (E) Support.oliolystems.com (\\10.10.10.10.10.10) (U) Support.oliolystems.com (\\10.10.10.10.10.10) (U) Support.oliolystems.com (\\10.10.10.10.10.10) (U) Control Backup Drive Control Pand		Name OLLAnalyzer Test Casse(9.3.2).atd OLLAnalyzer Test Casse(9.3.2).atd ULAnalyzer Test Casse(9.3.2).atd ULS Sudio Versions Membrane test OLD Testro Detabores Soripts Bugs	Date modified 2//7017 152 PM 7/22/2016 11.17 AM 12/12/2016 11.38		No preview available.			
File name: OLIAnalyzer Test				Analyzer Tester Database file (". •				

Figure 42-17 Opening an existing database

Remember mixer objects and contour plots cannot be saved to the database. Select a survey and add it to the database. In this example, we are picking the first survey in the file:

Chapter 8 Tour.oad*	
🏘 Streams	
🖕 👌 Stream	
🗄 🗛 Survey	
🖃 💧 Stream-1	
🗄 🔬 Survey-1	
Figure 42-18 Selecting a survey	

Now select Tools | Analyzer Tester | Add Current Calc (refer to Figure 42-16 on page 536).

The tester automatically updates and saves with the results.

Running the Tester

Running the tester is very straight forward. You first need to start with a blank OLI Studio file. Next you need to select the database to run the tests. Open the database you have been working with previously (see the previous section).

After opening the database, the program will still be in its natural state. Select Tools | Analyzer Tester | Run Test

	Options	nt tester databa	se file (.atd)	t Cacer(9,5,2) at	4				(
Abs Err.	0.0001	in the database			0.0	5			
Selected	Case ID 1 2 3 4 5		Calc Object ScratchPadCalc ScratchPadCalc ScratchPadCalc ScratchPadCalc SurveyCalc	Bubble Point Dew Point		Status	Improv	ed in sec (%)	
	ct All	Clear All	Invert	Run Test		Delete Sele	orted	Create Ve	
Sele	ect All	Clear All	Invert	Run Test		OK	Cance	Save Only	 Help

Figure 42-19 The Tester roster of tests

This dialog has many features. At the moment, the test set has not been run so some information is missing.

Feature		Description		
Abs Err		This is the absolute error in the calculation. If exceeded a message is created and a file saved		
Rel Err.		This is the relative error in the calculation. If exceed a message is created and a file saved		
Selected		This file is selected for the desired action (see buttons below)		
Case ID		The case identifier in this database		
Case Name		The name of the case in the original OLI Studio file		
Calc Object		The class of calculation ScratchPadCalc (single point) or SurveyCalc (survey)		
Calculation Type		The type of calculation		
States		Passed, failed, error		
Improved in sec (%)		How much faster is the current calculation than in the older version?		
Buttons				
	Select All	Selects all tests		
	Clear all	Deselects all tests		
	Invert	Turns off all selected cases and turns on all unselected cases		
	Run Test	Runs the calculation		
	Delete Selected	Deletes the selected test, there is no restore facility		
Create Verbose Output Fil	es	All tests that are calculated will have an output file		
Save only Error Cases		Only save cases that fail or exceed the error limits (see above)		

We will now run this sample test. Since all cases are selected, click the **<u>Run Test</u>** button.

\\granite\		nt tester databa sting\OLI Studio		t Cases(9.5.2).atd Rel Err.	05	
	Case ID 1 2 3 4 5		: Calc Object ScratchPadCalc ScratchPadCalc ScratchPadCalc ScratchPadCalc SurveyCalc	Bubble Point Dew Point	Status OK! OK! OK! OK! OK!	Improved in sec (%) -0.253000 (-328.571%) -0.285000 (-730.769%) -0.331000 (-1324.000%) -0.450000 (-692.308%) 0.067000 (12.116%)
Sele	ect All	Clear All	Invert	Run Test	Delete Se	elected Save Only Error Cases

Figure 42-20 The completed test

Of course, this is not a good test. We populated this database with the results from this version. The tests should all pass and have essentially the same results. This is really just a test that our database is connected properly. We now need to review the output files (if any).

Be default, the results of the tests are stored in your documents folder under the My OLI Cases folder stored under the OLI Studio 9.5 folder since this is the version used to create the test. Please look for the folder for the version you used for the test.

	cuments	My OLI Cases ➤ OLI Studio 9.5 ➤	
Organize 🔻 Share with 💌	Burn	New folder	≣ - 🔟 📀
☆ Favorites ■ Desktop	-	Documents library OLI Studio 9.5	Arrange by: Folder 🔻
Downloads		Name	Date modified Type Size
Google Drive	=	9.5.2_02.07.2017.14.36.43	2/7/2017 2:37 PM File folder
Releases (production)		퉬 Object Library	12/8/2016 4:01 PM File folder
🜸 iCloud Photos		3 Samples	12/8/2016 4:01 PM File folder

Figure 42-21 The results of the tests

This is a very strange name for the folder. The name includes the version number and the time and date. Expand this folder.

🕒 🗢 📔 🕨 Libraries 🕨 Do	ocuments	My OLI Cases → OLI Studio 9.5 → 9.5.2_02.07.2017.14.36.43	•	• • •	
Organize 👻 Share with 👻	Burn	New folder			0
🔆 Favorites 🔲 Desktop		Documents library 9.5.2_02.07.2017.14.36.43	Arrang	e by: Folder 🔻	
Downloads		Name	Date modified	Туре	S
Recent Places Google Drive	=	OLIAnalyzer Test Cases.atd	2/7/2017 2:36 PM	ATD File	
Releases (production)		summary warning.txt	2/7/2017 2:36 PM	Text Docum	
liCloud Photos		summary.bd	2/7/2017 2:37 PM	Text Docum	

Figure 42-22 the results details

As we said previously, this is not a real test. We have created a new database with the results of the test. This is the file named "OLIAnalyzer Test Cases.atd." Since there are no errors only the summary files are created. Here are the rsults of the "Summary.txt" file:

	Analyzer Tester Summary Test Date Time: 02-07-2017 14:36 Analyzer Version: 9.5.2 Solver Version: 9.5.2								
	Error: 0.0 Error: 0.0								
Case_ID 1 2 2 3 3 4 4 5 5	Bad_Num 0 0 0 0 0 0 0 0 0 0 0 0	Diff_Num 76 76 81 145 145 263 263 1263 1263	Add_Line 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Drp_Line 0 0 0 0 0 0 0 0 0 0 0 0	Elapsed 0.330000 0.324000 0.324000 0.356000 0.356000 0.515000 0.486000 0.486000	CaseName PH SinglePoint SinglePoint-1 SinglePoint-2 SinglePoint-2 Survey Survey			
Note:			-			lative error ranges.			
Diff_Num-	Number di	fferences	are within	both abso	lute and r	elative error ranges or			
Add_Line-	beyond th Tags exis	e absolute t in the c	range but urrent cal	within th c results	e relative but are mi	range. ssing in the baseline.			
Drp_Line-	Tags exis	t in the b	aseline re	sults but	are missin	g in the current calc. $ ightcase$			
							-		
L							_		

Figure 42-23 A very good test

Opening a database created in a previous version of OLI Studio

We have created the same database in version 9.3.2 of OLI Studio. This database can be found on the OLI Wiki page at: http://wiki.olisystems.com/wiki/images/d/de/OLIAnalyzer_Test_Cases%289.3.2%29.zip

Place this example file in a location to which you have access.

We now need to open this file as we have done previously in a later version of the program. You now need to run the test as we showed you in the previous section. For this test set, check the box <u>Create Verbose Output files</u>.

100000000000000000000000000000000000000		nt tester databa				
(Igranit	-Support Ca	oés, Périnda S	ipport ChemOpr	2017115453 OLIAn	alyzer Test Ca	ises(9.3.2).atd
Abs Err.	0.0001			Rel Err. 0.	05	
List of the	test cases	in the database	:			
Selecter	d Case ID	Case Name	Calc Object	Calc Type	Status	Improved in sec (%)
V	1	pH	ScratchPadCalc	Isothermal	OK!	0.026000 (6.388%)
V	2	SinglePoint	ScratchPadCalc	Bubble Point	OK!	0.093000 (18.526%)
V	3	SinglePoint-1	ScratchPadCalc	Dew Point	OK!	-0.043000 (-10.617%)
V	4	SinglePoint-2	ScratchPadCalc	Vapor Fraction	OK!	0.757000 (54.421%)
V	5	Survey	SurveyCalc	Precipitation Point	OK!	-0.081000 (-14.647%)
				Run Test		elected

Figure 42-24 Completed test set from an earlier version

There is very little difference between 9.3.2 and 9.5.2 (the versions used for this example). This is true because the AQ thermodynamic framework was used in both cases and the database has not changed between these versions.

Let's look at the results folder - remember that it will have a new file name under the documents folder.

Coo Vibraries > Docum	ents ► My OLI Cases ► OLI Studio 9.5 ►	 □ ■ □ ■ ■ ▼ ↓ Search OLI
Organize 🔻 🔚 Open Share	with 🔻 E-mail Burn New folder	III 🔹 🖬 🔞
☆ Favorites ■ Desktop	Documents library	Arrange by: Folder 🔻
🐌 Downloads	Name	Date modified Type Size
Recent Places Google Drive	9.5.2_02.07.2017.14.52.51	2/7/2017 2:53 PM File folder
Releases (production)	9.5.2_02.07.2017.14.51.12	2/7/2017 2:51 PM File folder
 iCloud Photos 	9.5.2_02.07.2017.14.36.43	2/7/2017 2:37 PM File folder
Creative Cloud Files	🔒 Object Library	12/8/2016 4:01 PM File folder
Tookainel Connet	Samples	12/8/2016 4:01 PM File folder

Figure 42-25 We want to look at the most recent set of results.

Name		Date modified	Туре	Siz
📄 summary.txt		2/7/2017 2:53 PM	Text Docum	
Survey5(ReOpen).details.txt		2/7/2017 2:53 PM	Text Docum	
OLIAnalyzer Test Cases.atd		2/7/2017 2:53 PM	ATD File	
Survey5.details.txt		2/7/2017 2:53 PM	Text Docum	
SinglePoint-24(ReOpen).details.txt		2/7/2017 2:53 PM	Text Docum	
SinglePoint-24.details.txt		2/7/2017 2:53 PM	Text Docum	
SinglePoint-13(ReOpen).details.txt		2/7/2017 2:53 PM	Text Docum	
SinglePoint-13.details.txt		2/7/2017 2:53 PM	Text Docum	
SinglePoint2(ReOpen).details.txt		2/7/2017 2:52 PM	Text Docum	
pH1(ReOpen).details.txt		2/7/2017 2:52 PM	Text Docum	
SinglePoint2.details.txt		2/7/2017 2:52 PM	Text Docum	
pH1.details.txt		2/7/2017 2:52 PM	Text Docum	
summary warning.txt		2/7/2017 2:52 PM	Text Docum	
	N			
	2			

Figure 42-26 The details of the results

Opening any text file will give you details about what has changed in the file. In these tests, very little has changed.

The final option is to save each test as a separate OLI Studio file. Uncheck the "Save Only Error Cases" and run the tests again.

-	0.0001			2017 See StollAnalyzer Test Cases(9.3.2).atd		ses(9.3.2).ato
List of the Selected		in the database	: Calc Object	Calc Type	Status	Improved in sec (%)
	1 2 3 4 5		ScratchPadCalc ScratchPadCalc ScratchPadCalc ScratchPadCalc ScratchPadCalc SurveyCalc	Bubble Point	0K! 0K! 0K! 0K!	0.026000 (6.388%) 0.093000 (18.526%) -0.43000 (10.617%) 0.757000 (54.421%) -0.081000 (-14.647%)
	ect All	Clear All		Run Test	Delete Se	Create Verbose Output Files

Figure 42-27 Unchecking the save option

Now review the results in yet another new folder (most recent) in the same general location at the other results:

🔾 🗢 📙 🕨 Libraries 🕨 Do	cuments	✓ 4→ Search 9.5		
rganize 🔻 Share with 👻	Burn	New folder		= • 🔳
🔶 Favorites 💻 Desktop	Â	Documents library 9.5.2_02.07.2017.15.05.03	Arrang	ge by: Folder 🔻
Downloads Recent Places		Name	Date modified	Туре
Google Drive	=	summary.bt	2/7/2017 3:05 PM	Text Docum
Releases (production)		Survey5.oad	2/7/2017 3:05 PM	OLI Studio 9.5
iCloud Photos		OLIAnalyzer Test Cases.atd	2/7/2017 3:05 PM	ATD File
Creative Cloud Files		SinglePoint-24.oad	2/7/2017 3:05 PM	OLI Studio 9.5
Technical Support		SinglePoint-13.oad	2/7/2017 3:05 PM	OLI Studio 9.5
OneDrive - OLI Systems		SinglePoint2.oad	2/7/2017 3:05 PM	OLI Studio 9.5
SharePoint) pH1.oad	2/7/2017 3:05 PM	OLI Studio 9.5
GoneDrive - Personal		summary warning.txt	2/7/2017 3:05 PM	Text Docum

Figure 42-28 Individual tests are saved as files

Each of the test set cases are saved as individual files for further analysis if required.

Index

A

Activity Coefficients, 10, 90, 91, 101 Add Single Point Calc, 41, 72 Add Survey, 45 Adiabatic, 18, 111, 116 Alkalinity, 257-58, 261, 263, 264-67, 277, 296, 304-5, 308 Anions, 254, 261-63 API, 237, 238, 241, 455, 456 API Gravity, 238, 241, 255, 455 Aqueous Model, 251, 253 aqueous thermodynamics, 85 aragonite, 69, 76-80 assay, 238 Assay Data Type, 240 ASTM, 237, 238, 240, 455 ASTM D1160, 254, 455 ASTM D2887, 254, 455 ASTM D86, 254, 455 Average Bulk Density, 240, 455 Average Bulk Density Type, 240

B

basis species, 329, 330 Brines, 251, 257, 265, 285–88, 274, 277, 285–88, 296, 309, 310 Bromley, 93–95 Bubble Point, 18, 111, 121, 123–24, 126 Butler-Volmer, 380

С

Calcium Carbonate, 69-70, 146, 149, 163, 166 calcium phosphate, 28, 34 calculate button, 19, 42, 47, 55-56, 74, 116, 120, 124, 125, 135, 142, 164 Cations, 254, 261-62 Cavett, 255, 456 Chemistry, 10-11, 23, 34, 35, 38, 63-67, 69, 75-80 Chemistry Model, 65, 66, 77 CO2 Fraction in Gas, 258, 264-65 Complete Agitation, 379-80 Composition Point, 19 Composition Survey, 378 CORROSION, 75 Corrosion Simulation Program, 314 Critical Pit Depth, 435, 438 CSP, 314 current density, 380-81 Customize button, 49-51, 147

D

Debye-Huckel, 92, 94-96

A Guide to Using OLI Studio

density, 255, 257, 261, 278 Depletion parameters, 397 Depletion Profile, 401, 409 Description tab, 318, 334 Description Tab, 38, 56, 70, 72, 112 Dew Point, 18, 111, 125 Dew Point, 280 Dew Point, 280 Dew Point, 309 Diagram tab, 323, 342, 344, 349, 353, 355, 359, 365, 367 Display Name, 39, 70–71 Dolomite, 253 Dominant lons, 263

E

Electroneutrality, 257, 261–63, 277, 301 enthalpy, 86, 88–89 Entropy, 86, 89 Equation of State, 87–88, 100 equilibrium, 10, 22–23, 33, 61, 66, 69, 76, 85–86, 87, 98, 101, 103–10, 140 EVS, 422 Excess properties, 90, 93 Exclude these solid phases, 77 Expanded Chemistry, 253 explorer tab, 16, 41 Extreme Value Statistics, 422, 425

F

Facility Calculation, 296 **Fail Probability** Area, 427, 428, 438, 444 Depth, 434, 435, 438 Life, 435 Flow Velocity Survey, 378 Formula Name, 40, 71

G

Gases, 257, 261–63, 274, 277, 279, 296, 309 *Generator*, 65–66 **Geo Chem**, 75–76 Gibbs Free Energy, 85–86, 89–90

Η

Heat Capacity, 87, 89 Helgeson, 87–88, 93–96 hydrocarbon, 254, 257, 269, 279, 280–81, 283, 285, 288 hydrofluoric acid, 28–29, 34

I

Ion Activity Product, 101 ionic strength, 91, 94, 96

К

K-equation, 62

L

Lee-Kesler, 255, 456

M

Make Up Ion, 263 material balances, 63 mathematical model, 61 Meissner, 93 Metal Chemistry, 378, 385 meta-stable, 69 Mixing Waters, 285 multi-component, 7–10, 7–10

N

Names Manager, 39, 70–71, 111, 117, 318, 336 Neutrals, 263

0

Oxidation/Reduction, 354, 363, 383

P

Partial Pressures, 24-27 passivate, 314 passivation, 315, 325-26, 350, 354, 363 Petroleum, 237, 455 Petroleum Fractions, 254-55 pH, 10-11, 13, 18, 20, 22, 29-32, 41, 44-45, 51-52, 29-32, 112, 131, 143-44, 150, 156, 169-82, 261, 263, 143-44, 277, 296, 301, 304-5, 308 pH Survey, 377, 394 PHASE SELECTION, 66-68 Pipe Flow, 379, 391 Pit Depth Prediction, 430 pKa, 34, 150, 156 Plot Tab, 47, 135, 142, 164 Polarization Curve, 380, 388 Pourbaix, 8, 11, 315, 324, 327, 342, 372, 376 Pourbaix diagrams, 324 Precipitation Point, 18, 69, 72-74, 77-80 Pressure Survey, 378 Proration, 263 pseudo-components, 255 PUBLIC, 75

R

Range tab, 147, 163

rate of corrosion, 314–15, 387 Rates Definition Tab, 385, 389, 398, 407, 413 real-solution, 315, 327, 329 REDOX, 10, 63 reference state, 85, 87, 99 *Report tab*, 20, 124 Rotating Cylinder, 377, 379–80, 381 Rotating disk, 379

S

Samples, 277-78, 263, 277-78, 291 Saturate Calculations, 291 Saturated water. 280 scale index, 259 scaling tendencies, 251, 254, 274 scaling tendency, 77, 101-2 Scaling Tendency, 254, 258-59, 294, 311 Selective Redox, 373 Service Life, 434, 438 Set pH, 18 Setschenow, 97-98 Shift - Enter, 239 single point, 334, 377 SinglePoint Definition tab, 42, 72 Solubility Product, 101 speciation, 13, 22-23, 26-28, 34, 55, 59, 102 Specific Gravity, 455 Specs, 132, 141, 146, 163, 340, 344 SRK, 100 Stability Diagram, 315, 317, 319, 323, 324, 327, 330, 333, 338, 345, 347, 365 Standard Chemistry, 253, 306 Static Conditions, 379, 385 Steel, 336, 378, 383, 385 Stream, 13-14, 24, 29-33, 35, 37-39, 41, 55, 66, 70, 73, 112, 118-22, 122, 126, 132, 142, 146, 163 Stream Definition, 318, 336, 343, 350, 384, 398 Stream Definition Grid, 18 Stream Definition Tab, 39, 70, 117, 122 Subsystems tab, 322, 341 Surface Area, 430, 432, 434, 435 survey, 45-47, 51, 56-58, 146-48, 150, 163-64, 166 Survey by, 46, 56, 141, 146, 163, 164

Т

TBP, 254, 455 Temperature Survey, 378, 385, 394 thermal aging, 394, 395, 397, 398, 399, 404, 405, 407, 408, 409, 410, 411, 412 Thermal Aging, 393, 394, 397, 398, 400, 403, 404, 408, 415, 416, 418 **Thermo Method**, 241 **thermodynamic framework**, 7–10, 110 Tip-of-the-Day, 69 Titrants button, 321, 341 Total dissolved solids, 265 TRANGE, 102 tree view, 45, 56 **Type of Calculation**, 18, 72, 123

V

Vapor Amount, 18, 111 Vapor Fraction, 18, 126–29 **Volume**, 87, 89

W

Watson K, 255, 456

Ζ

Zematis, 95