OLI Engine 9.3 Reference Manual

August 2016

OLI Systems, Inc.
240 Cedar Knolls Road
Suite 301
Cedar Knolls, NJ 07927

Copyright ${ }^{\circ} 2016$
OLI Systems, Inc.
All rights reserved.
The enclosed materials are provided to the lessees, selected individuals and agents of OLI Systems, Inc. The material may not be duplicated or otherwise provided to any entity without the expressed permission of OLI Systems, Inc.

240 Cedar Knolls Road
Suite 301
Cedar Knolls, NJ 07927
973-539-4996
(Fax) 973-539-5922
Oli.support@olisystems.com
www.olisystems.com

Disclaimer:

This manual was produced using the OLI Engine version 9.1 build 2 (9.1.2). As time progresses, new data and refinements to existing data sets can result in values that you obtain being slightly different than what is presented in this manual. This is a natural progress and cannot be avoided. When large systematic changes to the software occur, this manual will be updated.

Generate and Equilibrium
 Table of Contents

Routine - Function Page
SETSYESP - Sets directory path to public databanks 1
SETSYPRO - Sets directory path to private databanks 1
SETWKDIR - Sets working directory path 1
GENERATE - Chemistry Model Generation 2
EQMODEL - Chemistry Model Retrieval and Storage 3
EQMODI - Model Information - Integers - Single Variable and Vectors 4
EQMODD - Model Information - DP Numbers - Single Variable and Vectors 6
EQMODC - Model Information - Characters 7
EQMODMI - Model Information - Integers - Matrices 8
EQMODMD - Model Information - Double Precision Numbers - Matrices 9
EQSOLVED - Equilibrium Computation 10
EQSOLVEK - Equilibrium Computation with Kinetics 12
EQSOLVEP - Equilibrium Computation - Using True Species as Input 14
EQSOLVFD - Equilibrium Computation - FIX/FREE 16
EQLABAN - Equilibrium Computation - Lab Analysis Reconciliation 17
EQTRACE - Equilibrium Computation - Trace 19
EQESPFILE - Equilibrium Information - Creates ESP-Style Files 20
EQSOLI - Equilibrium Information - Integers 21
EQSOLD - Equilibrium Information - Double Precision Numbers 22
EQSOLAD - Equilibrium Information - ASAP Variables 25
EQDERV - Equilibrium Information - Property Derivatives 26
GETERR - Error Acquisition 28
GETERRG - Error Acquisition From Generator 28
GETERRS - Error Acquisition From Solver 28
CLRERR - Error Reset 28
GETWARNG - Get Warnings From Generator 29
GETWARNS - Get Warnings From Solver 29
EQPROPD - Properties Computation without Equilibrium Calculation 30
EQPROP - Properties Computation without Equilibrium Calculation 36
EQPRDERV - Property Derivatives without Equilibrium 37
GVEC - Molecular Stream Description 39
EVEC - Aqueous Stream Description 42
ASAP Units 43

SETSYESP - Sets directory path to public databanks
SETSYPRO - Sets directory path to private databanks
SETWKDIR - Sets working directory path
Chemistry Model Path Setup
Calling SETSYESP sets the directory path to the public databanks. Calling SETSYPRO sets an alternate directory for finding private databanks. Calling SETWKDIR sets a directory path for any files created. These must be called before any other Model Information calls.

CALL SETSYESP (PATH)
CALL SETSYPRO (PATH)
CALL SETWKDIR (PATH)
Input:
PATH = Directory path to be set.
Output:
None
Example: SETSYESP ("d:\v60devlesp")

GENERATE - Chemistry Model Generation

SETSYESP \& SETSYPRO must be called before any of the Model Generation calls. GENERATE resets the Error storage by calling CLRERR.

Reads .mod file and creates .dbs file.

CALL GENERATE (MODNAM, DBNAM, NERRORS)

Input:
MODNAM $=$ Model name (will be used to access MODNAM.mod file and write
MODNAM.dbs file) (single entry, CHARACTER*80)
DBNAM(I), $\mathrm{I}=1,5=$ Database Names (CHARACTER*8)

Output:

NERRORS = Number of Errors or Warnings Encountered (Use GETERR to determine Error codes and statements)

EQMODEL - Chemistry Model Retrieval and Storage

Initialization

Reads .dbs file. Should be called only once. EQMODEL resets the Error storage by calling CLRERR.

CALL EQMODEL (MODNAM, NERRORS)

Input:
MODNAM $=$ Model name (will be used to access MODNAM.dbs file) (single entry, CHARACTER variable)

Output:
NERRORS = Number of Errors or Warnings Encountered (Use GETERR to determine Error codes and statements)

EQMODI - Model Information - Integers - Single Variable and Vectors

EQMODEL must be called before any of the Model Information calls.

CALL EQMODI (IVALI, NVALI, NVEC, IERR)

Input:
IVALI $=$ ID number of integer vector to be returned
Output:
NVALI = Number of integer values in NVEC vector
NVEC = Vector of integer values
IERR $=0$ No errors encountered
$=1$ Error encountered - ID not recognized

IVALI	NVALI	Maximum	NVEC(I), $\mathrm{I}=1, \mathrm{NVALI}$
1	1	1	Number of Inflows (NI)
2	1	1	Number of Species (NU)
3	1	1	Number of Material Balance Groups (NMOLIN, NMATYP)
4	1	1	Number of Scale Solid Names (NSNAME)
5	1	1	Number of K-Values (NK)
6	1	1	Number of Activities/Activity Coefficients (NA)
7	1	1	Number of ASAP Variables (N(1))
8	1	1	Number of Vapors (NP)
9	1	1	Maximum Length of ESTREA vector (LQESTR)
10	1	1	Number of Equilibrium-Kinetics Reactions (NKINADD)
11	1	1	Maximum Number of Species/Inflows (NNSP)
101	1	1	Redox Flag
			$\begin{aligned} \text { NVEC(1) } & =0 \text { for No Redox Equations present in Model } \\ & =1 \text { for Redox Equations present in Model } \end{aligned}$
1001	NU	NNSP	Species Type, Species I
			$\mathrm{NVEC}(\mathrm{I}) \quad=1$ for H 2 O
			$=2-\mathrm{AQ}$
			$=3-\mathrm{ION}$
			$=4 \quad$-PPT
			$=5 \quad-\mathrm{nH2O}$
			= 6 -VAP
			$=7$-SOL
			= 9 -SUS
			$=10$-LT
			$=11$-CPI
			$=12$-CPM
1002	NU	NNSP	Inflow Number corresponding to Species I
1003	NI	NNIN	Species Number corresponding to Inflow I
1004	NMOLIN	NMOLIN	Material Balance Group Numbers (MOLIN)
			corresponding to names (NAMMOL)
			Note: $N M A T Y P=N M O L I N ~ a n d ~ M O L I N(I)=M A T Y P(I) ~$

EQMODI - Model Information - Integers - Single Variable and Vectors (cont.)

CALL EQMODI (IVALI, NVALI, NVEC, IERR)

\(\left.$$
\begin{array}{lllll}\text { IVALI } & \text { NVALI } & \text { Maximum } & & \text { NVEC(I), I =1, NVALI } \\
1005 & \text { NK } & \text { NNKEQN } & \begin{array}{l}\text { Species Number corresponding to K-Value I (NKLOC) } \\
1006\end{array} & \text { NKINADD NNREAC }\end{array}
$$ \begin{array}{l}Species Numbers of species associated with

Equilibrium-Kinetics Reaction I (ISPEQ)\end{array}\right]\)| IGC vector- molecular stream (GVEC) |
| :--- |
| 2001 |

EQMODD - Model Information - DP Numbers - Single Variable and Vectors

EQMODEL must be called before any of the Model Information calls.
CALL EQMODD (IVALR, NVALR, VEC, IERR) (Double Precision)
Input:
IVALR = ID number of real number vector to be returned

Output:
NVALR = Number of real number values in VEC vector
VEC = Vector of real number values (REAL*8)
$\operatorname{IERR}=0 \quad$ No errors encountered
$=1$ Error encountered - ID not recognized
IVALR NVALR Maximum $\quad \underline{\text { VEC(I) }, I=1, \text { NVALR }}$
1 NU NNSP Species Charge, Species I (ZERM)
2 NI NNIN Molecular Weight, Inflow I (AMWIN)
3 NU NNSP Molecular Weight, Species I (AMWSPE)
4 NMOLIN NNMOLT Molecular Weight, MB Group I (AMWMB)
Note: NMATYP = NMOLIN

EQMODC - Model Information - Characters

EQMODEL must be called before any of the Model Information calls.
CALL EQMODC (INAME, NNAME, NAME, IERR)
Input:
INAME = ID number of names vector to be returned
Output:
NNAME = Number of names in NAME vector
NAME = Vector of names
IERR $=0$ No errors encountered
$=1$ Error encountered - ID not recognized

INAME	NNAME	Maximum	NAME(I), I = 1, NNAME
1	NI	NNIN	Inflow Name, Inflow I ("molecular species") with IN suffix (SPNAME)
2	NI	NNIN	Inflow Name, Inflow I ("molecular species") without IN suffix (SPNAMS)
3	NU	NNSP	Species Names ("solution species") (VNAME)
4	NSNAME	NNSOLI	Scale Solid Names (SNAME)
5	NMOLIN	NNMOLT	MB Group Names (NAMMOL)
			Note: NMATYP = NMOLIN
6	NK	NNKEQN	K-Value Names (AKNAME)
7	NA	NNSP	Activity/Activity Coefficient Names (ACTNAM)
8	$\mathrm{N}(1)$	NNVAR	ASAP Variable Names (NAMEV)
9	NP	NNVAP	Vapor Names (as they appear in VNAME(2 to NP+1)

EQMODMI - Model Information - Integers - Matrices

EQMODEL must be called before any of the Model Information calls.

CALL EQMODMI (IVALI, IRC,NRC,NVALI, NVEC, IERR)

Input:
IVALI = ID number of integer vector to be returned
IRC = Row or Column Designation [MATRIX(Row, Column)]
$=1$ for Row designation
$=2$ for Column designation
NRC $=$ Number of Row or Column to be returned as a vector
Output:
NVALI = Number of integer values in NVEC vector
NVEC = Vector of integer values
IERR $=0$ No errors encountered
$=1$ Error encountered - ID not recognized

For example, for IVALI=1 (i.e., NICOMP(NNMATC, NI)) if IRC=2 (Column designation) and $\mathrm{NRC}=3$ (return column number 3) then NVEC ($1-\mathrm{NNMATC}$) $=\operatorname{NICOMP}(1-\mathrm{NNMATC}, 3) \quad$ (i.e., The first NNMATC MB group ID entries for Inflow Number 3)

IVALI	NVALI	Maximum	NVEC(I), $\mathrm{I}=1, \mathrm{NVALI}$
1	NI	NNIN	NICOMP(NNMATC,NI)
2	NU	NNSP	NCOMP(NNMATC,NU)
3	NK when IRC=1	NNKEQN	KVAL (10,NK) (Reactants<0,
	No. of Species when IRC=2	10	KVAL(10,NK) Products>0)
4	NI	NNIN	MICOMP(NNMATC,NI)
			$\operatorname{MICOMP}(\mathrm{J}, \mathrm{I})=$ location of Jth MB
			Group of Inflow I in the list of MB
			Group Numbers (MOLIN)
5	NU	NNSP	MCOMP(NNMATC,NI)
			$\operatorname{MCOMP}(\mathrm{J}, \mathrm{I})=$ location of Jth MB
			Group of Species I in the list of MB
			Group Numbers (MOLIN)

EQMODMD - Model Information - Double Precision Numbers - Matrices

EQMODEL must be called before any of the Model Information calls.
CALL EQMODMD (IVALR, IRC,NRC,NVALR, VEC, IERR) (Double Precision)
Input:
IVALR = ID number of real vector to be returned
IRC = Row or Column Designation
$=1$ for Row designation
$=2$ for Column designation
NRC $=$ Number of Row or Column to be returned as a vector
Output:
NVALR = Number of integer values in NVEC vector
VEC $=$ Vector of real values (REAL*8)
$\operatorname{IERR}=0$ No errors encountered
$=1$ Error encountered - ID not recognized

For example, for $\operatorname{IVALR}=1$ (i.e., $\operatorname{CIROMP}(5, \mathrm{NI})$)
if $\mathrm{IRC}=2$ (Column designation)
and $\mathrm{NRC}=3$ (return column number 3)
then $\operatorname{VEC}(1-5)=\operatorname{CIROMP}(1-5,3)$ (i.e., The first 5 MB group stoichiometric coefficients for Inflow Number 3)

IVALI	NVALI	Maximum	NVEC(I), $\mathrm{I}=1, \mathrm{NVALI}$
1	NI	NNSP	CIROMP(NNMATC,NI)
2	NU	NNIN	CROMP(NNMATC,NU)
3	NK when IRC=1	NNKEQN	RCVAL (10,NK) (Reactants<0,
	No. of Species when IRC=2	10	RCVAL (10,NK) Products>0)
4	NU when IRC=1	NNSP	TRANGE(2,NU)
	2 when IRC=2	2	

EQSOLVED - Equilibrium Computation

Computes equilibrium condition and retains results in Solver. Until EQSOLVED, EQSOLVEP, EQSOLVFD or EQLABAN is called again, the results remain stored and in effect. EQSOLVED may be called as often as necessary.

CALL EQSOLVED (IFUNC, IREST, TEMP, PRES, COMP, NSPEC, SPEC, JSOLID, NIPROP, IPROP, EVEC, IERR) (Double Precision)

Input:
IFUNC = Function (see below)
IREST $=$ Restart indicator
$=0$ initialization of equilibrium calculation by ESP
$=1$ use the values in EVEC to initialize the equilibrium calculation
$=2$ use only the non-zero values in EVEC to initialize the equilibrium calculation (i.e., "Guesses" for selected species)

TEMP $=$ Temperature,${ }^{\circ} \mathrm{C}($ REAL* 8)
PRES = Pressure, atm (REAL*8)
COMP(I), $\mathrm{I}=1, \mathrm{NI}=$ Inflows, gmole/hr (REAL*8)
NSPEC = The number of SPEC variables
SPEC(I), I=1,NSPEC = Equilibrium specification values - ONLY entered for some Functions (see below) (REAL*8)
$\operatorname{JSOLID}(\mathrm{I}), \mathrm{I}=1, \mathrm{NU}=$ Inclusion indicators for solids in equilibrium calculation
$=0$ include species I (a solid) in equilibrium calculation
$=1$ exclude species I (a solid) from consideration
NIPROP = The number of IPROP specifications
$\operatorname{IPROP}(\mathrm{I})=$ Property calculation flag.
0 - Do not calculate the following properties (default)
1 - Calculate Electrical Conductivity
2 - Calculate Viscosity
3 - Calculate Diffusivity
4 - Calculate Heat Capacity
98-Calculate 1-2-3
99 - Calculate all of the above properties
EVEC(I), I=1,LQESTR = Aqueous Stream Output Vector (VNAME order; used to fill BSTSAV in restart cases) (REAL*8)

Output:
EVEC(I), I=1,LQESTR = Aqueous Stream Output Vector (VNAME order) (REAL*8)
$\operatorname{IERR}=0$ No errors encountered
>0 Error encountered

Function	Type	Functions Specifications SPEC(2)	$\underline{\text { SPEC(3) }}$	Compute
	T, P	$\underline{\text { SPEC(1) }}$	--	
2	T, Bubble	--		P
3	P, Bubble	--		T
4	T, Dew	--	P	
5	P, Dew	--	T	
6	T, Vapor	V (gmol)		P
7	P, Vapor	V (gmol)		T
8	T, V/F	V/F (frac)		P

OLI Systems, Inc.
OLI Engine 9.1 Reference Manual
Page 10

9	P, V/F	V/F (frac)		T
10	T,LIQMOL	LIQMOL		P
11	P,LIQMOL	LIQMOL		T
12	P, H	H (cal)		T
15	T, P, pH	pH		FRAC (Inflow)
16	T, P, Precip Pt	Sp \# of Precip	Inflow \#	
17	T, P, Composi	Composi (mole fr)	Sp \#	Inflow \#
18	T, P, Volume	Volume $\left(\mathrm{m}^{3}\right)$		FRAC (Inflow)
21	Volume, H	Volume $\left(\mathrm{m}^{3}\right)$	H (cal)	
				FRAC (Inflow) $\left(\mathrm{H}_{2} \mathrm{O}\right.$ Inflow)

EQSOLVEK - Equilibrium Computation with Kinetics

Until EQSOLVED, EQSOLVEP, EQSOLVFD or EQLABAN is called again, the results remain stored and in effect. EQSOLVEK may be called as often as necessary.

CALL EQSOLVEK (IFUNC, IREST, TEMP, PRES, COMP, NSPEC, SPEC, JSOLID, NIPROP, IPROP, HOLDUP, KISTEP, EVECIN, EVEC, IERR) (Double Precision)

Input:
IFUNC $=$ Function (see below)
IREST $=$ Restart indicator
$=0$ initialization of equilibrium calculation by ESP
$=1$ use the values in EVEC to initialize the equilibrium calculation
$=2$ use only the non-zero values in EVEC to initialize the equilibrium calculation (i.e., "Guesses" for selected species)

TEMP $=$ Temperature,${ }^{\circ} \mathrm{C}($ REAL $* 8)$
PRES = Pressure, atm (REAL*8)
COMP(I), $\mathrm{I}=1, \mathrm{NI}=$ Inflows, gmole/hr (REAL*8)
NSPEC = The number of SPEC variables
SPEC(I), I=1,NSPEC = Equilibrium specification values - ONLY entered for some Functions (see below) (REAL*8)
JSOLID(I), $\mathrm{I}=1, \mathrm{NU}=$ Inclusion indicators for solids in equilibrium calculation
$=0$ include species ((a solid) in equilibrium calculation
$=1$ exclude species I (a solid) from consideration
NIPROP = The number of IPROP specifications
$\operatorname{IPROP}(\mathrm{I})=$ Property calculation flag.
0 - Do not calculate the following properties (default)
1 - Calculate Electrical Conductivity
2 - Calculate Viscosity
3 - Calculate Diffusivity
4 - Calculate Heat Capacity
98-Calculate 1-2-3
99 - Calculate all of the above properties
HOLDUPT = Residence time for Kinetics, hr (REAL*8)
KISTEP $=$ Number of CSTR reactors, residence time in each $=$ HOLDUPT / KISTEP
EVECIN(J), J=1,NKINADD = Reactor true species feed rate, gmole/hr (For species VNAME(ISPEQ(J)) (REAL*8)
EVEC(I), I=1,LQESTR = Aqueous Stream Output Vector (VNAME order; used to fill BSTSAV in restart cases) (REAL*8)

Output:
EVEC(I), $\mathrm{I}=1, \mathrm{LQESTR}=$ Aqueous Stream Output Vector (VNAME order) (REAL*8)
$\operatorname{IERR}=0$ No errors encountered
>0 Error encountered

Functions					
Function	Type	$\underline{\text { SPEC(1) }}$	Specifications SPEC(2)	SPEC(3)	Compute
1	T, P	--			--
2	T, Bubble	--			P
3	P, Bubble	--			T
4	T, Dew	--			P
5	P, Dew	--			T

OLI Systems, Inc.

6	T, Vapor	V (gmol)		P
7	P, Vapor	V (gmol)		T
8	T, V/F	V/F (frac)		P
9	P, V/F	V/F (frac)		T
10	T,LIQMOL	LIQMOL		P
11	P,LIQMOL	LIQMOL		T
12	P, H	H (cal)		T
15	T, P, pH	pH	Inflow \#	
16	T, P, Precip Pt	Sp \# of Precip	Inflow \#	
17	T, P, Composi	Composi (mole fr)	Sp \#	Inflow \#
18	T, P, Volume	Volume $\left(\mathrm{m}^{3}\right)$		FRAC (Inflow)
21	Volume, H	Volume $\left(\mathrm{m}^{3}\right)$	H (cal)	

EQSOLVEP - Equilibrium Computation - Using True Species as Input

Computes equilibrium condition and retains results in Solver. Until EQSOLVED, EQSOLVEP, EQSOLVFD or EQLABAN is called again, the results remain stored and in effect. EQSOLVEP may be called as often as necessary.

CALL EQSOLVEP (IFUNC, IREST, TEMP, PRES, COMP, NSPEC, SPEC, JSOLID, NIPROP, IPROP, EVEC, IBERR, IERR) (Double Precision)

Input:
IFUNC $=$ Function (see below)
IREST $=$ Restart indicator
$=0$ initialization of equilibrium calculation by ESP
$=1$ use the values in EVEC to initialize the equilibrium calculation
$=2$ use only the non-zero values in EVEC to initialize the equilibrium calculation (i.e., "Guesses" for selected species)

TEMP $=$ Temperature,${ }^{\circ} \mathrm{C}$ (REAL*8)
PRES = Pressure, atm (REAL*8)
COMP(I), $\mathrm{I}=1, \mathrm{NU}=$ Species, gmole/hr (VNAME order; REAL*8)
NSPEC = The number of SPEC variables
SPEC(I), $\mathrm{I}=1, \mathrm{NSPEC}=$ Equilibrium specification values - ONLY entered for some Functions (see below) (REAL*8)
$\operatorname{JSOLID}(\mathrm{I}), \mathrm{I}=1, \mathrm{NU}=$ Inclusion indicators for solids in equilibrium calculation
$=0$ include species I (a solid) in equilibrium calculation
$=1$ exclude species I (a solid) from consideration
NIPROP = The number of IPROP specifications
$\operatorname{IPROP}(\mathrm{I})=$ Property calculation flag.
0 - Do not calculate the following properties (default)
1 - Calculate Electrical Conductivity
2 - Calculate Viscosity
3 - Calculate Diffusivity
4 - Calculate Heat Capacity
98-Calculate 1-2-3
99 - Calculate all of the above properties
EVEC(I), I=1,LQESTR = Aqueous Stream Output Vector (VNAME order; used to fill BSTSAV in restart cases) (REAL*8)

Output:
EVEC(I), I=1,LQESTR = Aqueous Stream Output Vector (VNAME order; REAL*8)
IBERR $=0$ No errors encountered
>0 Error encountered in Material Balance redistribution
IERR $=0$ No errors encountered
>0 Error encountered

Function	Type	Functions Specifications 1			
T, P	$\underline{\text { SPEC(1) }}$	SPEC(2)	SPEC(3)	Compute	
2	T, Bubble	--			--
3	P, Bubble	--		P	
4	T, Dew	--		T	

5	P, Dew	--		T
6	T, Vapor	V (gmol)		P
7	P, Vapor	V (gmol)		T
8	T, V/F	V/F (frac)		P
9	P, V/F	V/F (frac)		T
10	T,LIQMOL	LIQMOL		P
11	P,LIQMOL	LIQMOL		T
12	P, H	H (cal)		T
15	T, P, pH	pH		FRAC (Inflow)
16	T, P, Precip Pt	Sp \# of Precip	Inflow \#	
17	T, P, Composi	Composi $($ mole fr)	Sp \#	Inflow \#
18	T, P, Volume	Volume $\left(\mathrm{m}^{3}\right)$		FRAC (Inflow)
21	Volume, H	Volume $\left(\mathrm{m}^{3}\right)$	H (cal)	
			FRAC (Hflow)	
				T,P Inflow)

EQSOLVFD - Equilibrium Computation - FIX/FREE

Computes equilibrium condition and retains results in Solver. Until EQSOLVFD is called again, the results remain stored and in effect. EQSOLVFD may be called as often as necessary.

CALL EQSOLVFD (NFIXFR, IREST, TEMP, PRES, COMP, JSOLID, NIPROP, IPROP, NAMFIX, VALFIX, NAMFRE, VALFRE, EVEC, IERR) (Double Precision)

Input:
NFIXFR $=$ Number of FIXed/FREEed Variables $($ Maximum $=\operatorname{LQFXFR}=10)$
IREST $=$ Restart indicator
$=0$ initialization of equilibrium calculation by ESP
$=1$ use the values in EVEC to initialize the equilibrium calculation
$=2$ use only the non-zero values in EVEC to initialize the equilibrium calculation (i.e., "Guesses" for selected species)

TEMP $=$ Temperature, ${ }^{\circ} \mathrm{C}$ (REAL*8)
PRES = Pressure, atm (REAL*8)
COMP(I), $\mathrm{I}=1, \mathrm{NI}=$ Inflows, gmole/hr (REAL*8)
$\mathrm{JSOLID}(\mathrm{I}), \mathrm{I}=1, \mathrm{NU}=$ Inclusion indicators for solids in equilibrium calculation
$=0$ include species I (a solid) in equilibrium calculation
$=1$ exclude species I (a solid) from consideration
NIPROP = The number of IPROP specifications
$\operatorname{IPROP}(\mathrm{I})=$ Property calculation flag.
0 - Do not calculate the following properties (default)
1 - Calculate Electrical Conductivity
2 - Calculate Viscosity
3 - Calculate Diffusivity
4 - Calculate Heat Capacity
98-Calculate 1-2-3
99 - Calculate all of the above properties
NAMFIX(I), I=1,NFIX = Names of Variables to be FIXed (CHARACTER*16)
VALFIX(I), I=1,NFIX = Values of FIXed Variables (REAL*8)
NAMFRE(I), I=1,NFIX = Names of Variables to be FREEed (CHARACTER*16)
VALFRE(I), I=1,NFIX = Initial Values of FREEed Variables (REAL*8)
EVEC(I), $\mathrm{I}=1, \mathrm{LQESTR}=$ Aqueous Stream Output Vector (VNAME order; used to fill BSTSAV in restart cases) (REAL*8)

Output:
EVEC(I), I=1,LQESTR = Aqueous Stream Output Vector (VNAME order) (REAL*8)
$\operatorname{IERR}=0$ No errors encountered
$=1$ Error encountered
$=2$ Error: NFIX not equal to NFREE
$=3$ Error: An Illegal variable name has been entered as a FIXed variable
$=3$ Error: An Illegal variable name has been entered as a FREEed variable

EQLABAN - Equilibrium Computation - Lab Analysis Reconciliation

Performs Laboratory Analysis reconciliation, computes equilibrium condition and retains results in Solver. The amount of water is determined based upon the specified concentrations. Until EQSOLVED, EQSOLVEP, EQSOLVFD or EQLABAN is called again, the results remain stored and in effect. EQLABAN may be called as often as necessary.

CALL EQLABAN (IFUNC, IBALAN, ICAT, IANI, IREST, TEMP, PRES, CONC, IUNCON, DENS, JSOLID, NIPROP, IPROP, EVEC, CONCADD, CONCOUT, COMPOUT, IERR) (Double Precision)

Input:
IFUNC $=$ Computation Function (Currently Unused; all equilibrium computations are
"isothermal")
IBALAN = Electroneutrality Reconciliation criterion
$=0 \quad$ Dominant ion (default)
$=1$ Prorate (i.e., add all ions of the necessary charge proportionally to the existing equivalents)
$=2$ User choice (ICAT and IANI will contain species numbers)
$=3 \quad \mathrm{Na}^{+} / \mathrm{Cl}^{-}$
$=4$ Makeup ion (One ion will be chosen. Its added amount may be negative o or positive)
ICAT $=$ Species Number of Cation to be used for balancing (entered for IBALAN $=2$ and 4)
IANI = Species Number of Anion to be used for balancing (entered for IBALAN = 2)
Note: When IBALAN=4, ICAT = IANI (thus IANI will be ignored)
IREST $=$ Restart indicator
$=0$ initialization of equilibrium calculation by ESP
$=1$ use the values in EVEC to initialize the equilibrium calculation
$=2$ use only the non-zero values in EVEC to initialize the equilibrium calculation
(i.e., "Guesses" for selected species)

TEMP $=$ Temperature, ${ }^{\circ} \mathrm{C}$ (REAL*8)
PRES = Pressure, atm (REAL*8)
CONC(I), $\mathrm{I}=1, \mathrm{NU}=$ Concentrations of solution species, mg / l (units in IUNCON except $\mathrm{H}_{2} \mathrm{O}$) (REAL*8)
IUNCON = Concentration units of $\operatorname{CONC}(2$ to NU) - Currently unused, all units: mg/l
Note: $\operatorname{CONC}(1)=\mathrm{H}_{2} \mathrm{O}$ guess (if zero, will be guessed using CONC and DENS)
DENS = Bulk Density GUESS, gm/ml (CONC(1) takes precedence over DENS guess)
JSOLID(I), $\mathrm{I}=1, \mathrm{NU}=$ Inclusion indicators for solids in equilibrium calculation
$=0$ include species I (a solid) in equilibrium calculation
$=1$ exclude species I (a solid) from consideration
NIPROP = The number of IPROP specifications
$\operatorname{IPROP}(\mathrm{I})=$ Property calculation flag.
0 - Do not calculate the following properties (default)
1 - Calculate Electrical Conductivity
2 - Calculate Viscosity
3 - Calculate Diffusivity
4 - Calculate Heat Capacity
98-Calculate 1-2-3

99 - Calculate all of the above properties

Output:

EVEC(I), $\mathrm{I}=1, \mathrm{LQESTR}=$ Aqueous Stream Output Vector (VNAME order; used to fill BSTSAV in restart cases) (REAL*8)
$\operatorname{CONC}(1)=\mathrm{H}_{2} \mathrm{O}$ in IUNCON units (currently mg / l)
DENS = Bulk density, gm/ml
$\operatorname{CONCADD}(\mathrm{I}), \mathrm{I}=1, \mathrm{NU}=$ Concentrations of solution species added to reconcile (units in IUNCON - currently mg / l)
CONCOUT(I), $\mathrm{I}=1, \mathrm{NU}=$ Concentrations of solution species after reconciliation (units in IUNCON- currently mg/l)
COMPOUT(I), $\mathrm{I}=1, \mathrm{NI}=$ Component Flows after reconciliation, gmole
IERR $=0$ No errors encountered
$=1 \quad$ IBALAN $=2$ and ICAT $=0$
$=2 \quad$ IBALAN $=2$ and IANI $=0$
$=3$ IBALAN $=3$ and NAION not in model
$=4$ IBALAN $=3$ and CLION not in model
$=5 \quad$ IBALAN $=4$ and resulting flow is negative
$=6$ Equilibrium computation did not converge

EQTRACE - Equilibrium Computation - Trace

When an equilibrium computation is being done by EQSOLVED, EQSOLVEP, EQSOLVFD or EQLABAN an ElectroChem-style output may be produced as a Trace to a disk file. EQTRACE opens the disk file with the Trace Disk File Name. The Trace Level sets the amount of information to be included in the file. EQTRACE should be called before the call to one of the computation routines. The Trace remains in effect until a call to EQCLOSE. Thus, a Trace file may contain multiple computations, the Trace outputs being concatenated in the file. EQCLOSE closes the Trace Disk File and terminates the Trace Level.

After EQCLOSE is called, EQTRACE may be called again with a different Trace Disk File Name to start writing the output to a new output file.

```
CALL EQTRACE (ITRACE, TRANAM)
: : : : : : :
Call(s) to Computatio Routines (EQSOLVED, EQSOLVEP, EQSOLVFD or
                                    EQLABAN)
: : : : : : :
CALL EQCLOSE
```

Input:
ITRACE = Trace Level (0 to 8)
$=0$ Basic ElectroChem output
$=8$ Extensive debugging output including Jacobeans on each iteration
TRANAM $=$ Trace Disk File Name (The entire file name, including extension, should be included. For example, TRANAM='case1.oue')

EQESPFILE - Equilibrium Information - Creates ESP-Style Files

EQSOLVED, EQSOLVEP, EQSOLVFD or EQLABAN must be called before any of the Equilibrium Information calls.

CALL EQESPFILE (IFUNC, FILENAM, MODELNAM, STRMNAM, IERR)
Input:
IFUNC = File Creation Function
$=1$ create a FILENAM.bst file
$=2$ create a FILENAM.bin file
$=3$ create a FILENAM.bst file and FILENAM.bin file
FILENAM = Filename of ESP-style output file
MODELNAM = Name of the Chemistry Model to be entered under \$MODEL (should not have an extension such as .mod)
STRMNAM $=$ Stream Name to be entered under \$STREAM
Output:

$$
\begin{aligned}
\operatorname{IERR} & =0 & & \text { No errors encountered } \\
& =1 & & \text { Error encountered }
\end{aligned}
$$

EQSOLI - Equilibrium Information - Integers

EQSOLVED, EQSOLVEP, EQSOLVFD or EQLABAN must be called before any of the Equilibrium Information calls.

CALL EQSOLI (IVALI, NVALI, NVEC, IERR)

Input:
IVALI $=$ ID number of integer vector to be returned
Output:
NVALI = Number of integer values in vector
NVEC = Vector of integer values
IERR $=0$ No errors encountered
$=1$ Error encountered - ID not recognized

IVALI	NVALI	Maximum		NVEC(I), I = 1, NVALI
1	1	1		
1	1	1	Debug Index (IDEBUG)	
2	1	I/O Unit being used for Output (LCFILO)		

EQSOLD - Equilibrium Information - Double Precision Numbers

EQSOLVED, EQSOLVEP, EQSOLVFD or EQLABAN must be called before any of the Equilibrium Information calls

CALL EQSOLD (IVALR, NVALR, VEC, IERR) (Double Precision)
Input:
IVALR = ID number of real number vector to be returned
Output:
NVALR = Number of real number values in vector
VEC = Vector of real number values (REAL*8)
$\operatorname{IERR}=0$ No errors encountered
$=1$ Error encountered - ID not recognized

IVALR	NVALR	Maximum	VEC(I), $\mathrm{I}=1$, NVALR
1	1	1	Temperature, ${ }^{\circ} \mathrm{C}$
2	1	1	Pressure, atm
3	1	1	pH
4	1	1	Total Enthalpy, cal
5	1	1	Total Volume, m^{3}
6	1	1	Total Mass, gmole
7	1	1	Total Mass, grams
8	1	1	Ionic Strength
9	1	1	Osmotic Pressure, atm
10	1	1	ORP, volts
11	1	1	Specific Electrical Conductivity, 1/ohm-cm
12	1	1	Molar Electrical Conductivity, $\mathrm{cm}^{2} / \mathrm{ohm}$-gmole
13	1	1	Absolute Viscosity, cP
14	1	1	Relative Viscosity
15	1	1	Vapor Compressibility
16	1	1	Mixture Heat Capacity, cal/g/K

EQSOLD - Equilibrium Information - Double Precision Numbers (continued)

CALL EQSOLD (IVALR, NVALR, VEC, IERR) (Double Precision)

IVALR	NVALR	Maximum	VEC(I), $\mathrm{I}=1$, NVALR
101	1	1	Aqueous Mass, gmoles
102	1	1	Aqueous Mass, grams
103	1	1	Aqueous Volume, m ${ }^{3}$
104	1	1	Aqueous Enthalpy, cal
105	1	1	Aqueous Density, gmole/liter
106	1	1	Aqueous Density, gram/liter
107	1	1	Aqueous Heat Capacity, cal/gram/K
201	1	1	Solid Mass, gmoles
202	1	1	Solid Mass, grams
203	1	1	Solid Volume, m^{3}
204	1	1	Solid Enthalpy, cal
205	1	1	Solid Density, gmole/liter
206	1	1	Solid Density, gram/liter
207	1	1	Solid Heat Capacity, cal/gram/K
301	1	1	Vapor Mass, gmoles
302	1	1	Vapor Mass, grams
303	1	1	Vapor Volume, m ${ }^{3}$
304	1	1	Vapor Enthalpy, cal
305	1	1	Vapor Density, gmole/liter
306	1	1	Vapor Density, gram/liter
307	1	1	Vapor Heat Capacity, cal/gram/K
401	1	1	2nd Liquid Mass, gmoles
402	1	1	2nd Liquid Mass, grams
403	1	1	2nd Liquid Volume, m ${ }^{3}$
404	1	1	2nd Liquid Enthalpy, cal
405	1	1	2nd Liquid Density, gmole/liter
406	1	1	2nd Liquid Density, gram/liter
407	1	1	2nd Liquid Heat Capacity, cal/gram/K
408	1	1	2nd Liquid pH
409	1	1	2nd Liquid Ionic Strength
410	1	1	2nd Liquid Specific Electrical Conductivity, 1/ohm-cm
411	1	1	2nd Liquid Molar Elect Conductivity, $\mathrm{cm}^{2} / \mathrm{ohm}$-gmole
412	1	1	2nd Liquid Absolute Viscosity, cP
413	1	1	2nd Liquid Relative Viscosity

CALL EQSOLD (IVALR, NVALR, VEC, IERR) (Double Precision)

IVALR	NVALR	Maximum	$\underline{\text { VEC(}}$) , $\mathrm{I}=1$, NVALR
1001	1	1	Amount of Inflow added (FRAC) in Functions $15,16,17$ and 18 , gmole
2001	LQGSTR	LQGSTR	Molecular Stream Output Vector (GVEC, IGC pointers-see GVEC list; SPNAME order)
2002	LQESTR	LQESTR	Aqueous Stream Output Vector EVEC; see EVEC list; VNAME order)
2003	NNSOLI	NNSOLI	Scale Indices Output Vector (SCALE; SNAME order)
2004	NU	NNSP	Aqueous Stream Activity Coefficient Vector (VNAME order)
2005	NU	NNSP	Gibbs Free Energy of Formation, cal/gmole (VNAME order)
2006	NU	NNSP	Aqueous Phase Concentrations (ions and aqueous molecules only), gmole/liter (VNAME order)
2007	NU	NNSP	Mobilities, $\mathrm{cm}^{2} /$ volt-sec (VNAME order)
2008	NU	NNSP	Self-Diffusivities, $\mathrm{m}^{2} / \mathrm{sec}$ (VNAME order)
2009	NU	NNSP	Aqueous Molar Flows (all phases), gmole (VNAME order)
2010	NU	NNSP	Aqueous Mass Flows (all phases), gram (VNAME order)
2011	NK	NNKEQN	K-Values (AKNAME order)
2012	NP	NNVAP	$\log _{\mathrm{e}}\left[2{ }^{\text {nd }}\right.$ Liquid Phase Activities]
3001	NMOLIN	NNMOLT	Aqueous Stream Material Balance Flows (NAMMOL order)
3002	NMOLIN	NNMOLT	Solid Stream Material Balance Flows (NAMMOL order)
3003	NMOLIN	NNMOLT	Vapor Stream Material Balance Flows (NAMMOL order)
3004	NMOLIN	NNMOLT	$2^{\text {nd }}$ Liquid Stream Material Balance Flows (NAMMOL order)

EQSOLAD - Equilibrium Information - ASAP Variables

EQSOLVED, EQSOLVEP, EQSOLVFD or EQLABAN must be called before any of the Equilibrium Information calls

CALL EQSOLAD (IFUNC, NVAR, AVARNAM, IVARLOC, AVARVAL, IERR)
(Double Precision)
Input:

$$
\begin{aligned}
& \text { IFUNC }=\text { Function Number (see below for Summary) } \\
&=1 \text { for } \begin{array}{l}
\text { input ASAP Variable Names (AVARNAM(I), I=1,NVAR) } \\
\text { output ASAP Variable Locations and ASAP Values } \\
\text { (IVARLOC(I) and AVARVAL(I), I }=1, \text { NVAR }
\end{array} \\
&=2 \text { for } \begin{array}{l}
\text { input ASAP Variable Locations (IVARLOC(I), I=1,NVAR) } \\
\text { output ASAP Values (AVARVAL(I), I=1,NVAR) }
\end{array} \\
&=3 \text { for } \begin{array}{l}
\text { input ASAP Variable Locations (IVARLOC(I), I=1,NVAR) } \\
\text { output ASAP Variable Names and ASAP Values }
\end{array} \\
& \text { (AVARNAM(I) and AVARVAL(I), I=1,NVAR) }
\end{aligned}
$$

Note: Using IVARLOC is faster than using AVARNAM. The recommended procedure is to make the first call with IFUNC $=1$ and IVARLOC will be returned. On subsequent calls for the same list, set IFUNC $=2$.
NVAR = Number of ASAP Variable values which are being requested
AVARNAM(I), I=1,NVAR = ASAP variable Names (used when IFUNC = 1)
(CHARACTER*16)
$\operatorname{IVARLOC}(\mathrm{I}), \mathrm{I}=1, \mathrm{NVAR}=\mathrm{ASAP}$ variable Locations $($ used ONLY when $\mathrm{IFUNC}=2$ or 3$)$

Output:
AVARNAM(I), $\mathrm{I}=1, \mathrm{NVAR}=$ ASAP variable Names (output when $\mathrm{IFUNC}=3$)
IVARLOC(I), I=1,NVAR = ASAP variable Locations (output when IFUNC = 1)
AVARVAL(I), $\mathrm{I}=1, \mathrm{NVAR}=$ ASAP variable Values in ASAP Units (REAL*8)
$\operatorname{IERR}=0$ No errors encountered
>1 Error(s) encountered - Number of ASAP Variable Names or Locations not found

Function Summary

Function	Variable Names	Variable Locations	Variable Values
IFUNC	AVARNAM	IVARLOC	AVARVAL
1	Input	Output	Output
2	--	Input	Output
3	Output	Input	Output

EQDERV - Equilibrium Information - Property Derivatives

EQSOLVED, EQSOLVEP, EQSOLVFD or EQLABAN must be called before any of the Derivative Information calls.

This call returns the property derivatives at the composition, temperature and pressure at the converged equilibrium calculation.

CALL EQDERV (IVALD, NVALD, VECOUT, IERR)

Input:
IVALD $=$ ID number of property derivative to be returned (integer*4)
Output:
NVALD = Number of derivative values in VECOUT (integer*4)
VECOUT $=$ Vector of derivative values (REAL*8)
IERR $=0$ No errors encountered (integer*4)
$=1$ Errors
IVALD NVALD VECOUT (I), I=1, NVALD
1 NU*NU D(Aqueous activity coefficient I)/D(Aqueous moles of J)
2 NU D (Aqueous activity coefficient I)/D(Temperature)
3 NU D(Aqueous activity coefficient I)/D(Pressure)
$4 \quad \mathrm{NU}^{*} \mathrm{NU} \quad \mathrm{D}$ (Vapor fugacity coefficient I)/D(Vapor moles of J)
$5 \quad \mathrm{NU} \quad \mathrm{D}$ (Vapor fugacity coefficient I)/D(Temperature)
$6 \quad \mathrm{NU} \quad \mathrm{D}$ (Vapor fugacity coefficient I)/D(Pressure)
$7 \quad \mathrm{NU}$ *4 D (Total aqueous enthalpy)/D(Aqueous moles of J)
D (Total vapor enthalpy)/D(Vapor moles of J)
D (Total solid enthalpy)/D(Solid moles of J)
D (Total $2^{\text {nd }}$ liquid enthalpy $) / \mathrm{D}\left(2^{\text {nd }}\right.$ liquid moles of J$)$
8
$4 \quad \mathrm{D}$ (Total aqueous enthalpy)/D(Temperature)
D (Total vapor enthalpy)/D(Temperature)
D (Total solid enthalpy)/D(Temperature)
D (Total $2^{\text {nd }}$ liquid enthalpy $) / D($ Temperature $)$
$9 \quad 4 \quad \mathrm{D}$ (Total aqueous enthalpy)/D(Pressure)
$D($ Total vapor enthalpy)/D(Pressure)
D(Total solid enthalpy)/D(Pressure)
D (Total $2^{\text {nd }}$ liquid enthalpy)/D(Pressure)
$10 \quad \mathrm{NU} * 4 \quad \mathrm{D}$ (Total aqueous volume)/D(Aqueous moles of J)
D (Total vapor volume)/D(Vapor moles of J)
D (Total solid volume)/D(Solid moles of J)
D (Total $2^{\text {nd }}$ liquid volume $) / D\left(2^{\text {nd }}\right.$ liquid moles of J)
11
$4 \quad \mathrm{D}$ (Total aqueous volume)/D(Temperature)
D (Total vapor volume)/D(Temperature)
D (Total solid volume)/D(Temperature)
D (Total $2^{\text {nd }}$ liquid volume $) / D($ Temperature $)$

EQDERV - Equilibrium Information - Property Derivatives (continued)

IVALD	NVALD	VECOUT (I), $\mathrm{I}=1, \mathrm{NVALD}$
12	4	D (Total aqueous volume)/D(Pressure)
		D (Total vapor volume)/D (Pressure)
		D (Total solid volume)/D(Pressure)
		D (Total $2^{\text {nd }}$ liquid volume)/D(Pressure)
13	NU*4	D (Total aqueous entropy)/D(Aqueous moles of J)
		D (Total vapor entropy)/D(Vapor moles of J)
		D (Total solid entropy)/D(Solid moles of J)
		D (Total $2^{\text {nd }}$ liquid entropy)/D ($2^{\text {nd }}$ liquid moles of J)
14	4	D (Total aqueous entropy)/D(Temperature)
		D (Total vapor entropy)/D(Temperature)
		D (Total solid entropy)/D(Temperature)
		D (Total $2^{\text {nd }}$ liquid entropy)/D(Temperature)
15	4	D (Total aqueous entropy)/D(Pressure)
		D(Total vapor entropy)/D(Pressure)
		D (Total solid entropy)/D(Pressure)
		D (Total $2^{\text {nd }}$ liquid entropy)/D(Pressure)
16	NU*NU	$\mathrm{D}(2$ nd liquid phase fugacity coefficient I$) / \mathrm{D}\left(2^{\text {nd }}\right.$ liquid moles of J$)$
17	NU	D (2nd liquid phase fugacity coefficient I)/D(Temperature)
18	NU	D (2nd liquid phase fugacity coefficient I)/D(Pressure)
Units $=$	Heat - cal Pressure	ories atmosphere

In all cases the component order is the full VNAME order. For derivatives where both I and J are involved I is incremented the fastest. in the VECOUT vector.

Note: For option 1-3, the derivative for water is activity not activity coefficient as for all other components.

GETERR - Error Acquisition
GETERRG - Error Acquisition From Generator
GETERRS - Error Acquisition From Solver

GETERR returns error statements resulting from GENERATE, EQMOD* or EQSOL* calls. After calling GENERATE or EQMODEL, the variable NERRORS will be returned as an argument to indicate the number of error statements in the ERROR vector. GETERR must then be called NERRORS times (IER $=1,2, \ldots$, NERRORS) to obtain each error statement in the vector ERROR which is NNERRL lines. If the variable NERRORS is not available (e.g., in the calls to EQSOL*), a call to GETERR with a value of IER which returns an IERCODE of 0 and ERROR vector blank indicates that IER error does not exist. For example, if IER=1 and GETERR returns IERCODE=0 and ERROR= ' ', then no errors occurred since the last time the Error storage was reset.

To reset the Error storage, use CLRERR.
CALL GETERR (IER, IERCODE, ERROR)
CALL GETERRG (IER, IERCODE, ERROR)
CALL GETERRS (IER, IERCODE, ERROR)

Input:
IER $=$ Error number (1 to NERRORS)
Output:
IERCODE $=$ Error Code Number
ERROR(I), I=1,NNERRL = Error Statement Names (CHARACTER*80)

CLRERR - Error Reset

Resets the Error storage. Automatically called by GENERATE and EQMODEL initialization.

CALL CLRERR

GETWARNG - Get Warnings From Generator
GETWARNS - Get Warnings From Solver

GETWARNG AND GETWARNS returns WARNING statements resulting from the execution of the generator or solver. After calling the GENERATOR orSOLVER, these routines can be called to get any warnings produced. These routines are called until IWFLAG is zero.

To reset the warnings storage, use CLRERR.

CALL GETWARNG (IER, IWFLAG, WARNINGS)
 CALL GETWARNS (IER, IWFLAG, WARNINGS)

Input:
None

Output:

IWFLAG $=$ Warnings Code Number (IWFLAG=0 no more warnings)
WARNINGS(I), I=1,NNERRL = Warnings message (CHARACTER*80)

EQPROPD - Properties Computation without Equilibrium Calculation

EQMODEL must be called before any of the following calls. EQSOLVED, EQSOLVEP, EQSOLVFD or EQLABAN do not need to be called.

CALL EQPROPD (IVAL, VECIN, NVECOUT, VECOUT, IERR) (Double Precision) Input:

IVAL = ID number of real number vector to be returned
VECIN $=$ Vector of real numbers describing the input for the specific IVAL (REAL*8)

Output:
NVECOUT $=$ Number of real number values in vector VECOUT
VECOUT = Vector of real number values (REAL*8)
$\operatorname{IERR}=0$ No errors encountered
$=1$ Error encountered - ID not recognized
IVAL
VECIN
VECOUT(I), I = 1, NVECOUT
$1 \quad(1)=\mathrm{Temp},{ }^{\circ} \mathrm{C}$
$(1$ to NK$)=\log _{\mathrm{e}}(\mathrm{K}$-Values $)$
(2) = Pres, atm

2
(1) $=$ Temp, ${ }^{\circ} \mathrm{C}$
(2) = Pres, atm
(3) $=\mathrm{H}_{2} \mathrm{O}$, gmole
(4 to $\mathrm{NU}+2$) $=$ gmoles
(-AQ and -ION only)
(1) $=\log _{\mathrm{e}}$ (Activity) of $\mathrm{H}_{2} \mathrm{O}$
(2 to NU) $=\log _{\mathrm{e}}$ (Activity Coefficient) of each -AQ and -ION species

3
(1) $=$ Temp, ${ }^{\circ} \mathrm{C}$
(2) = blank
(3 to NI+2)= Solid, gmole
Solid Properties
(1) = Total Solid, gmole
(2) = Total Solid, gram
(3) = Solid Enthalpy, cal
(4) = Solid Density, gmole/liter
(5) = Solid Density, gram/liter
(6) $=$ Solid Volume, liter

4
(1) = Location in Inflow
(1) $=$ Solute in Solution, gmole

List of Solute
(2) $=$ Solute in Solution, gram
(2) = blank
(3 to $\mathrm{NU}+2$)= Aqueous
Species Moles/Molalities

EQPROPD - Properties Computation without Equilibrium Calculation (cont.)

CALL EQPROPD (IVAL, VECIN, NVECOUT, VECOUT, IERR) (Double Precision)

IVAL
VECIN
5

6

7
$8 \quad(1)=\mathrm{Temp},{ }^{\circ} \mathrm{C}$

10
$8 \quad(1)=$ Temp, ${ }^{\circ} \mathrm{C}$
$9 \quad(1)=\mathrm{Temp},{ }^{\circ} \mathrm{C}$
(2) = Pres, atm
(3) $=\mathrm{H}_{2} \mathrm{O}$, gmole
(4 to $\mathrm{NU}+2$) = Aqueous
Species gmoles (-AQ and -ION only)
(2) $=$ Pres, atm
(3) $=\mathrm{H}_{2} \mathrm{O}$, gmole
(1) $=$ Temp, ${ }^{\circ} \mathrm{C}$
(2) $=$ Pres, atm
(3) $=\mathrm{H}_{2} \mathrm{O}$, gmole
(4 to $\mathrm{NU}+2$) = Aqueous
Species gmoles
(-AQ and -ION only)

$\underline{\operatorname{VECOUT}(\mathrm{I}), \mathrm{I}=1, \text { NVECOUT }}$

(1) = Solute in Solution, gmole
(2) $=$ Solute in Solution, gram
(1) = Liquid Density, gmole/liter
(Does include Surface Complexation Species)
(1) = Liquid Absolute Viscosity, cP
(4 to $\mathrm{NU}+2$) = Aqueous
Species gmoles
(-AQ and -ION only)
(1) = Diffusivity of $\mathrm{H}_{2} \mathrm{O}, \mathrm{m}^{2} / \mathrm{sec}$
(2 to NU) = Diffusivity of Aqueous
Species, $\mathrm{m}^{2} / \mathrm{sec}$
(1) = Liquid Enthalpy, cal
(Does NOT include Surface Complexation species see IVAL=23)
(1) = Vapor Enthalpy, cal
(2) = Pres, atm
(3) = Vapor, gmole
(4 to NP+3) = Vapor Species Mole
Fractions (VNAME order, EVEC locations 2 to $\mathrm{NP}+1$)

EQPROPD - Properties Computation without Equilibrium Calculation (cont.)

CALL EQPROPD (IVAL, VECIN, NVECOUT, VECOUT, IERR) (Double Precision)

IVAL
VECIN
VECOUT(I), $\mathrm{I}=1$, NVECOUT
11
(1) $=$ Temp, ${ }^{\circ} \mathrm{C}$
(1) = Solid Enthalpy, cal
(2) $=$ blank
(3) $=\mathrm{H}_{2} \mathrm{O}$, gmole
(4 to $\mathrm{NU}+2$) $=$ all other
solution species (VNAME order, EVEC locations 2 to NU)
(1) = Liquid Volume, liter
(Does NOT include Surface Complexation species see IVAL=24)

Species gmoles
(-AQ and -ION only)
14
(1) $=$ Temp,${ }^{\circ} \mathrm{C}$
(1) $=$ Vapor Volume, liter
(2) $=$ Pres, atm
(3) = Vapor, gmole
(4 to NP+3) = Vapor Species Mole
Fractions (VNAME order,
EVEC locations 2 to $\mathrm{NP}+1$)

EQPROPD - Properties Computation without Equilibrium Calculation (cont.)

CALL EQPROPD (IVAL, VECIN, NVECOUT, VECOUT, IERR) (Double Precision)

IVAL
VECIN
(1) $=$ Temp, ${ }^{\circ} \mathrm{C}$
(2) $=$ blank
(3) $=\mathrm{H}_{2} \mathrm{O}$, gmole
(4 to $\mathrm{NU}+2$) $=$ all other solution species (VNAME order, EVEC locations 2 to NU)
(1) $=$ Temp, ${ }^{\circ} \mathrm{C}$
(1) $=2^{\text {nd }}$ Liquid Volume, liter
(2) $=$ Pres, atm
(3) $=2^{\text {nd }}$ Liquid, gmole
(4 to NU +3) $=2^{\text {nd }}$ Liquid Species Mole Fractions
(VNAME order)

For Example see Option 12

17
(1) $=$ Temp, ${ }^{\circ} \mathrm{C}$
(2) $=$ Pres, atm
(3) $=$ Vapor, gmole
(4 to NP +3) $=$ Vapor Species Mole
Fractions (VNAME order,
EVEC locations 2 to NP+1)
18
(1) $=$ Temp, ${ }^{\circ} \mathrm{C}$
$(1$ to NU$)=\log _{\mathrm{e}}\left(2^{\text {nd }}\right.$ Liquid Fugacity $)$
of XH2OO and each X-AQO
(2) = Pres, atm
$(1$ to $N P)=\log _{e}($ Vapor Fugacity Coefficient $)$ of each -VAP
(3) $=2^{\text {nd }}$ Liquid, gmole
(4 to NU +3) $=2^{\text {nd }}$ Liquid Species Mole Fractions
(VNAME order)
For Example see Option 12
19
(1) $=$ Temp, ${ }^{\circ} \mathrm{C}$
(1) $=$ Liquid Entropy, $\mathrm{cal} /{ }^{\circ} \mathrm{C}$
(2) = Pres, atm
(2) = Liquid Gibbs Free Energy, cal
(3) $=\mathrm{H}_{2} \mathrm{O}$, gmole
(3) = Liquid Enthalpy, cal
(4 to $\mathrm{NU}+2$) = Aqueous
Species gmoles
(-AQ and -ION only)

EQPROPD - Properties Computation without Equilibrium Calculation (cont.)

CALL EQPROPD (IVAL, VECIN, NVECOUT, VECOUT, IERR) (Double Precision)

IVAL

VECIN

(1) $=$ Temp, ${ }^{\circ} \mathrm{C}$
(1) $=$ Vapor Entropy, cal/ $/{ }^{\circ} \mathrm{C}$
(2) $=$ Pres, atm
(3) = Vapor, gmole
(4 to NP +3) = Vapor Species Mole
Fractions (VNAME order,
EVEC locations 2 to $\mathrm{NP}+1$)
21
(1) $=$ Temp, ${ }^{\circ} \mathrm{C}$
(4 to NU+2) = Aqueous
Species gmoles
(-CPI and -CPM)
(1) $=$ Temp, ${ }^{\circ} \mathrm{C}$
(2) $=$ Pres, atm
(3) $=\mathrm{H}_{2} \mathrm{O}$, gmole
(4 to $\mathrm{NU}+2$) = Aqueous
Species gmoles
(-CPI and -CPM)
(2) $=$ Pres, atm
(3) $=2^{\text {nd }}$ Liquid, gmole
(4 to NU +3) $=2^{\text {nd }}$ Liquid Sp
\quad (VNAME order)
For Example see Option 12
(1) $=$ Temp, ${ }^{\circ} \mathrm{C}$
(1) $=$ Solid Entropy, cal $/{ }^{\circ} \mathrm{C}$
(2) $=$ blank
(2) = Solid Gibbs Free Energy, cal
(3) $=\mathrm{H}_{2} \mathrm{O}$, gmole
(3) = Solid Enthalpy, cal
(4 to $\mathrm{NU}+2$) = all other
solution species (VNAME order,
EVEC locations 2 to NU)
(1) = Enthalpy of Surface Complexation species in Aqueous Phase, cal
(1) $=$ Volume of Surface Complexation species in Aqueous Phase, liter

EQPROPD - Properties Computation without Equilibrium Calculation (cont.)

CALL EQPROPD (IVAL, VECIN, NVECOUT, VECOUT, IERR) (Double Precision)

EQPROPD Input Summary

IVAL	VECIN(1)	VECIN(2)	VECIN Locations		$\underline{\operatorname{VECIN}}$ (5 to ...)
			VECIN(3)	VECIN(4)	
1	Temp	Pres			
2	Temp	Pres	EVEC(1)	EVEC(2)	EVEC(3 to NU)
3	Temp	--	Solid(1)	Solid(2)	Solid(3 to NI)
4	Location in inflow list of solute	--	EVEC(1)	EVEC(2)	$\operatorname{EVEC}(3$ to NU)
5	Location in inflow list of solute	--	GVEC(1)	GVEC(2)	GVEC(3 to NI)
6	Temp	Pres	EVEC(1)	EVEC(2)	$\operatorname{EVEC}(3$ to NU$)$
7	Temp	Pres	EVEC(1)	EVEC(2)	$\operatorname{EVEC}(3$ to NU$)$
8	Temp	Pres	EVEC(1)	EVEC(2)	$\operatorname{EVEC}(3$ to NU)
9	Temp	Pres	EVEC(1)	EVEC(2)	$\operatorname{EVEC}(3$ to NU)
10	Temp	Pres	Vapor	EVEC(2)	$\operatorname{EVEC}(3$ to $\mathrm{NP}+1)$
11	Temp	--	EVEC(1)	EVEC(2)	$\operatorname{EVEC}(3$ to NU)
12	Temp	Pres	$2^{\text {nd }}$ Liquid	EVEC(NNSP+6)	EVEC(NNSP+7 to NNSP+5+NU)
13	Temp	Pres	EVEC(1)	EVEC(2)	EVEC(3 to NU)
14	Temp	Pres	Vapor	EVEC(2)	$\operatorname{EVEC}(3$ to $\mathrm{NP}+1)$
15	Temp	--	EVEC(1)	EVEC(2)	$\operatorname{EVEC}(3$ to NU$)$
16	Temp	Pres	$2^{\text {nd }}$ Liquid	EVEC(NNSP+6)	EVEC(NNSP+7 to NNSP + 5+NU)
17	Temp	Pres	Vapor	EVEC(2)	EVEC(3 to NP+1)
18	Temp	Pres	$2^{\text {nd }}$ Liquid	EVEC(NNSP+6)	EVEC(NNSP+7 to NNSP +5+NU)
19	Temp	Pres	EVEC(1)	EVEC(2)	$\operatorname{EVEC}(3$ to NU$)$
20	Temp	Pres	Vapor	EVEC(2)	$\operatorname{EVEC}(3$ to $\mathrm{NP}+1)$
21	Temp	Pres	$2^{\text {nd }}$ Liquid	EVEC(NNSP+6)	EVEC(NNSP+7 to NNSP+5+NU)
22	Temp	--	EVEC(1)	EVEC(2)	$\operatorname{EVEC}(3$ to NU$)$
23	Temp	Pres	EVEC(1)	EVEC(2)	$\operatorname{EVEC}(3$ to NU)
24	Temp	Pres	EVEC(1)	EVEC(2)	EVEC(3 to NU)

EQPROP - Properties Computation without Equilibrium Calculation

EQPROP performs the same calculations as EQPROPD with different input parameters. The output is the same as EQPROPD.
EQMODEL must be called before any of the following calls. EQSOLVED, EQSOLVEP, EQSOLVFD or EQLABAN do not need to be called.

CALL EQPROP (IVAL, TEMP, PRES, EVECIN, NVECOUT, VECOUT, IERR)

Input:
IVAL = ID number of real number vector to be returned (See EQPROPD)
TEMP = Temperature, C
PRES = Pressure, atm
EVECIN = EVEC input vector in vname order.
Output
See EQPROPD output

EQPRDERV - Property Derivatives without Equilibrium

EQMODEL must be called before any of the Derivative Information calls.
This call returns the property derivatives at the user specified composition, temperature and pressure.

CALL EQPRDERV (IDERV, TEMP, PRES, EVECIN, NVALD, VECOUT, IERR)
Input:
IDERV = ID number of property derivative to be returned (integer*4)
TEMP = Temperature, C
PRES = Pressure, atm
EVECIN = EVEC input vector in vname order
Output:
NVALD $=$ Number of derivative values in VECOUT (integer*4)
VECOUT = Vector of derivative values (REAL*8)
IERR $=0$ No errors encountered (integer*4)
= 1 Errors

IVALD	NVALD	VECOUT (I , , I=1, NVALD
1	NU*NU	D (Aqueous activity coefficient I)/D (Aqueous moles of J)
2	NU	D (Aqueous activity coefficient I)/D(Temperature)
3	NU	D (Aqueous activity coefficient I)/D (Pressure)
4	NU*NU	D (Vapor fugacity coefficient I)/D (Vapor moles of J)
5	NU	D (Vapor fugacity coefficient I)/D(Temperature)
6	NU	D (Vapor fugacity coefficient I)/D(Pressure)
7	NU*4	D (Total aqueous enthalpy)/D (Aqueous moles of J)
		D (Total vapor enthalpy)/D(Vapor moles of J)
		D (Total solid enthalpy)/D(Solid moles of J)
		D (Total $2^{\text {nd }}$ liquid enthalpy $) / \mathrm{D}\left(2^{\text {nd }}\right.$ liquid moles of J$)$
8	4	D (Total aqueous enthalpy)/D(Temperature)
		D (Total vapor enthalpy)/D(Temperature)
		D (Total solid enthalpy)/D(Temperature)
		D (Total $2^{\text {nd }}$ liquid enthalpy)/D(Temperature)
9	4	D (Total aqueous enthalpy)/D (Pressure)
		D (Total vapor enthalpy)/D(Pressure)
		D (Total solid enthalpy)/D (Pressure)
		D (Total $2^{\text {nd }}$ liquid enthalpy)/ D (Pressure)

EQPRDERV - Property Derivatives without Equilibrium (continued)

IVALD	NVALD	VECOUT (I), I=1, NVALD
10	NU*4	D (Total aqueous volume)/D(Aqueous moles of J)
		D (Total vapor volume)/D(Vapor moles of J)
		D (Total solid volume)/D(Solid moles of J)
		D (Total $2^{\text {nd }}$ liquid volume)/D ($2^{\text {nd }}$ liquid moles of J)
11	4	D (Total aqueous volume)/D(Temperature)
		D (Total vapor volume)/D(Temperature)
		D (Total solid volume)/D(Temperature)
		D (Total $2^{\text {nd }}$ liquid volume)/D(Temperature)
12	4	D (Total aqueous volume)/D(Pressure)
		D (Total vapor volume)/D(Pressure)
		D (Total solid volume)/D(Pressure)
		D (Total $2^{\text {nd }}$ liquid volume)/D(Pressure)
13	NU*4	D (Total aqueous entropy)/D(Aqueous moles of J)
		D (Total vapor entropy)/D(Vapor moles of J)
		D (Total solid entropy)/D(Solid moles of J)
		D (Total $2^{\text {nd }}$ liquid entropy)/D ($2^{\text {nd }}$ liquid moles of J)
14	4	D (Total aqueous entropy)/D(Temperature)
		D (Total vapor entropy)/D(Temperature)
		D (Total solid entropy)/D(Temperature)
		D (Total $2^{\text {nd }}$ liquid entropy $) / \mathrm{D}$ (Temperature)
15	4	D (Total aqueous entropy)/D (Pressure)
		D (Total vapor entropy)/D(Pressure)
		D (Total solid entropy)/D(Pressure)
		D (Total $2^{\text {nd }}$ liquid entropy)/D(Pressure)
16	NU*NU	$\mathrm{D}(2$ nd liquid phase fugacity coefficient I$) / \mathrm{D}\left(2^{\text {nd }}\right.$ liquid moles of J$)$
17	NU	D (2nd liquid phase fugacity coefficient I)/D(Temperature)
18	NU	$\mathrm{D}(2$ nd liquid phase fugacity coefficient I) /D(Pressure)
Units $=$	Heat - cal Pressure	Volume - liters \quad Moles - gram moles \quad Temperature - C atmosphere

In all cases the component order is the full VNAME order. For derivatives where both I and J are involved I is incremented the fastest. in the VECOUT vector.

Note: For option 1-3, the derivative for water is activity not activity coefficient as for all other components.

GVEC - Molecular Stream Description

GVEC(I), $\mathrm{I}=1$, LQGST		(For NNIN=300, LQGSTR=1280)	
	Element Number(s) C	nt IGC	Entry
$\begin{aligned} \text { I } & = \\ & =\end{aligned}$	$=\mathrm{IGC}(1)+1, \mathrm{IGC}(1)+300$	$=1,300$	Molecular, aqueous liquid, gmole
	$=\mathrm{IGC}(2)+1$	$=301$	Total, gmole
$=$	$=\quad+2$	$=302$	Temperature, ${ }^{\circ} \mathrm{C}$
=	+3	$=303$	Pressure, atm
=	+4	= 304	Enthalpy, cal
=	+5	$=305$	Density, gmole/liter
=	+6	= 306	pH
$=$	+7	$=307$	Ionic strength, molality
=	+8	$=308$	Volume, m^{3}
=	+9	$=309$	Osmotic pressure, atm
=	+10	$=310$	Mass, gram
=	+11	$=311$	Heat capacity, cal/g/K
=	+12	$=312$	ORP, volt
=	+13	$=313$	Specific Electrical Conductivity, 1/ohm-cm
=	+14	$=314$	Molar Electrical Conductivity, cm2/ohm-gmole
$=$	$=\quad+15$	$=315$	Absolute Viscosity, cP
=	$=+16$	$=316$	Relative Viscosity
=	= \quad.		
$=$	$=\quad+20$	$=320$	
	$=\operatorname{IGC}(3)+1, \operatorname{IGC}(3)+300$	= 321,620	Molecular, solids, gmole
	$=\mathrm{IGC}(4)+1$	$=621$	Total flow, gmole
$=$	$=\quad+2$	$=622$	Temperature, ${ }^{\circ} \mathrm{C}$
=	+3	$=623$	Pressure, atm
=	+4	$=624$	Enthalpy, cal
=	+5	$=625$	Density, gmole/liter
=	+6	$=626$	
$=$	+7	$=627$	
=	+8	$=628$	Volume, m^{3}
=	$=+9$	$=628$	
$=$	+10	$=630$	Mass, gram
=	+11	$=631$	Heat capacity, cal/g/K
=	+12	$=632$	
$=$	+13	$=633$	
$=$	+14	$=634$	
$=$	+15	$=635$	
=	$=+16$	$=636$	
=	= \quad.		
$=$	$=\quad+20$	$=640$	
	$=\mathrm{IGC}(5)+1, \mathrm{IGC}(5)+300$	$=641,940$	Molecular Vapor
	$=\mathrm{IGC}(6)+1$	= 941	Total flow, gmole
$=$	$=\quad+2$	$=942$	Temperature, ${ }^{\circ} \mathrm{C}$
=	+3	$=943$	Pressure, atm
=	+4	= 944	Enthalpy, cal
=	+5	$=945$	Density, gmole/liter
$=$	+6	= 946	
$=$	+7	$=947$	
=	+8	$=948$	Volume, m^{3}
=	+9	= 949	
=	+10	= 950	Mass, gram
=	+11	= 951	Heat capacity, cal/g/K
=	+12	= 932	
=	+13	= 933	
$=$	+14	= 954	
$=$	+15	= 955	
=	$=+16$	= 956	
=	= $\ldots \ldots .$.		
=	$=\quad+20$	$=960$	

GVEC - Molecular Stream Description (continued)

EVEC - Aqueous Stream Description

EVEC(I), I = 1, LQESTR (For NNSP=300, LQESTR=610)

I $=1 \quad \mathrm{H} 2 \mathrm{O}$ in aqueous phase, gmole
$=2, \mathrm{NU} \quad$ Species quantity in aqueous phase,
-AQ,-ION - gmole
-PPT, -.nH2O, -SUS, -LT - gmole
-VAP - mole fraction
-SOL - gmole/kg solid medium
-CPI, -CPM - gmole/kg H2O
$=$ NNSP $+1 \quad$ Temperature, K
$=$ NNSP +2 Pressure, atm
$=$ NNSP $+3 \quad$ Vapor, gmole
$=$ NNSP $+4 \quad$ Total Aqueous $(\mathrm{H} 2 \mathrm{O},-\mathrm{AQ},-\mathrm{ION})$, gmole
$=$ NNSP $+5 \quad$ SOLMAS, kg
$=$ NNSP +6 ,NNSP $+5+$ NU Species concentration in organic phase, mole fraction
$=$ NNSP $+5+$ NNSP +1 Total Organic, gmole
$=$ NNSP $+5+$ NNSP +2 SELIM

ASAP Units

Variable Name	Value	Units
T	temperature	Kelvin
PT	pressure	atmosphere
I	ionic strength	gmole/kg H2O
PH	pH	--
OSPRES	osmotic pressure	atmosphere
ORP	oxidation reduction potential	volt
ECOND	specific electrical conductivity	1/ohm-cm
ECONDM	molar electrical conductivity	cm^{2} /ohm-gmole
VISABS	absolute viscosity	cP
VISREL	relative viscosity	
-IN	inflows	gmole
-AQ, -ION	aqueous solutions mole fractions	
-CPM, -CPI	surface complex mole fractions	
-PPT, -.nH2O	precipitates and hydrates	gmole
-SUS	suspended phase solids	gmole
-LT	lattice species (coprecipitation)	gmole
H2O	water in solution mole fraction	
-SOL	solid solution molalities	gmol/kg solid medium
Y-	vapor mole fractions	--
X-O	2nd liquid phase mole fractions	--
D_H2O	diffusivity, water	$\mathrm{m}^{2} / \mathrm{sec}$
D_-AQ, -ION	diffusivities, aqueous species	$\mathrm{m}^{2} / \mathrm{sec}$
SOLMAS	solid medium mass	kg
Note: For cation exchange medium, SOLMAS based upon H -Solid molecular weight.		
LIQMAS	total aqueous liquid mass	gram
LIQMAS2	total organic phase mass	gram
LIQMOL	total aqueous liquid moles	gmole
V	total vapor moles	gmole
SOLMOL	total solid moles	gmole
TOTO	total organic liquid moles	gmole
ENTHALPY	total enthalpy	cal
ENTHAL	aqueous liquid phase enthalpy	cal
ENTHAL2	organic liquid phase enthalpy	cal
ENTHAV	vapor phase enthalpy	cal
ENTHAS	solid phases enthalpy	cal
ENTHAI	inert phases enthalpy	cal
DENLIQ	aqueous liquid molar density	gmole in soln/liter
DENLIQ2	organic liquid molar density	gmole in soln/liter
DENMAS	aqueous liquid density	gram/liter
DENMAS2	organic liquid density	gram/liter
ZCOMP	vapor compressibility	--

ASAP Units (continued)

VOL
VOLLIQ
VOLLIQ2
VOLVAP
VOLSOL
RATEi
EXTi
TSTEP
BRATESi
BEXTSi
BRATEEAi
BEXTEAi
BRATEENi
BEXTENi
BRATEECi
BEXTECi
BRATDEAi
BEXTDAi
BRATDENi
BEXTDNi
REACVOL
A-AQ, A-ION
A-CPM, A-CPI
AH2O
A-AQO
AY-
K-
L-AQ, L-ION
L-CPM, L-CPI
total volume
aqueous liquid volume
liter
liter
liter
vapor volume liter
solid volume liter
kinetics rate of reaction, reaction i gmole/hr
kinetics extent of reaction, reaction i gmole
kinetics time step hr
rate of reaction - synthesis, bioreaction i gmole/liter-hr
extent of reaction - synthesis, bioreaction i gmole
rate of reaction - aerobic energy, bioreaction i gmole/liter-hr
extent of reaction - aerobic energy, bioreaction I gmole
rate of reaction - anoxic energy, bioreaction igmole/liter-hr
extent of reaction - anoxic energy, bioreaction I gmole
rate of reaction - anaerobic energy, bioreaction i gmole/liter-hr
extent of reaction - anaerobic energy, bioreaction I gmole
rate of reaction - aerobic decay, bioreaction i gmole/liter-hr
extent of reaction - aerobic decay, bioreaction I
rate of reaction - anoxic decay, bioreaction i
extent of reaction - anoxic decay, bioreaction i
bioreactor volume
loge (aq phase activity coef)
loge (aq phase activity coef)
loge (aq phase H2O activity coef)
loge (organic phase activity coef)
loge (vapor phase fugacity coef)
loge (equilibrium K-values)
loge (aq phase mole fraction)
loge (aq phase mole fraction)

gmole

gmole/liter-hr
gmole
liter
--
--
--
--
--
--

