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Abstract

A comprehensive model has been developed for the calculation of speciation, phase equilibria, enthalpies, heat
capacities and densities in mixed-solvent electrolyte systems. The model incorporates chemical equilibria to account
for chemical speciation in multiphase, multicomponent systems. For this purpose, the model combines standard-state
thermochemical properties of solution species with an expression for the excess Gibbs energy. The excess Gibbs
energy model incorporates along-range electrostatic interaction term expressed by a Pitzer—Debye—Hiickel equation,
a short-range interaction term expressed by the UNIQUAC model and a middle-range, second virial coefficient-type
term for the remaining ionic interactions. The standard-state properties are calculated by using the Helgeson—
Kirkham—Flowers equation of state for species at infinite dilution in water and by constraining the model to reproduce
the Gibbs energy of transfer between various solvents. The model is capable of accurately reproducing various types
of experimental data for systems including aqueous electrolyte solutions ranging from infinite dilution to fused salts,
electrolytes in organic or mixed, watérorganic, solvents up to the solubility limit and acid—water mixtures in the
full concentration range.
© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Electrolyte solutions are ubiquitous in numerous industrial processes and natural environments. Design
and scale-up of unit operations in chemical process industries requires a thorough understanding of the
chemical and phase behavior of process fluids. For example, design of separation processes (such a:
extractive distillation with salt or solution crystallization) requires a quantitative understanding of the
effect of salts on phase behavior, prevention of corrosion requires the knowledge of chemical speciation
in electrolyte solutions throughout a process, and environmental concerns require a precise control of the
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concentrations of electrolytes in final products or in waste streams. These applications involve chemical
systems that cover wide ranges of composition (aqueous, organic or mixed-solvent, dilute or concen-
trated solutions) and conditions (from ambient temperatures to supercritical conditions). Reliable models
are, therefore, indispensable for predicting thermodynamic properties of electrolyte solutions, and the
development of such models continues to be an important subject of research.

Numerous electrolyte solution models including those for mixed-solvent systems have been reported
in the literature. In a recent papfgl], electrolyte solution models have been reviewed with emphasis
on mixed-solvent systems. In general, three classes of models can be distinguished, i.e. models tha
treat electrolytes on an undissociated basis, those that assume complete dissociation of electrolytes int
constituent ions and speciation-based models, which explicitly treat the solution chemistry. Although
comparable results can be obtained for phase equilibrium calculations (especially VLE) with models
that belong to various groups, speciation calculations become necessary whenever solution chemistry i
sufficiently complex to manifest itself in thermodynamic properties. In mixed-solvents, ion pairing can
be significant in comparison with aqueous environments due to the change of solvent properties such as
decrease in the dielectric constant. It is known that the degree of ion association varies substantially with
solvent composition and the dielectric constgh8]. The change in ion association with composition
can also be significant in common acids, such as tp@-HiF and HO-H,SO, mixtures. Speciation
variations can also have a significant effect on phase equilibria, such as the solubility of salts, especially
in multi-salt, mixed-solvent systems. In general, solution chemistry is an inherent part of the nonideality
of electrolyte solutions and needs to be properly accounted for.

Mixtures of electrolytes and molecular solvents that are miscible at moderate temperatures from dilute
electrolyte solutions to the fused salt limit are another important class of systems. Although relatively
uncommon, they are of interest for both theoretical and practical reasons. The fused salt limit is becoming
increasingly important in view of the interest in room-temperature ionic solvents. Thus, it is desirable to
extend the definition of mixed-solvent electrolytes to include liquid salts and to develop thermodynamic
models that are capable of reaching this limit.

In this work, we present a new, general, speciation-based thermodynamic model for mixed-solvent
electrolyte systems. Here, the term “mixed-solvent electrolyte” encompasses systems of the following

types:

1. aqueous electrolyte solutions from infinite dilution to fused salt;
2. fully miscible inorganic systems (e.g,80,—water and HF—water) in a full concentration range;
3. electrolytes in organic or mixed organicwater solvents.

The modelis designed to represent phase and chemical equilibria as well as thermal and volumetric proper
ties in mixed-solvent electrolyte systems. The model is validated using experimental data on vapor-liquid
equilibria, solubility, activities and activity coefficients, acid dissociation constants, Gibbs energies of
transfer, heats of dilution and mixing, heat capacities, and densities.

2. Thermodynamic framework
The nonideality of an electrolyte solution arises from various forces including electrostatic (long-range)

effects due to the electric charges of ionic spefies], chemical forces that lead to association or com-
plex formation, physical dispersion forces and structural differences (e.g. in shape and relative size)
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between specid$§,7]. While the long-range forces predominate in dilute electrolyte solutions, the chem-
ical and physical forces become increasingly important at moderate and short separation distances betweer
species. The physical chemistry of electrolyte solutions becomes rather complex when all of these inter-
actions occur simultaneously. To take into account the various effects, an expression for the excess Gibbs
energy can be constructed as a sum of three terms:
G™ _ G | G , G% 0
RT RT RT RT
where Gt} represents the contribution of long-range electrostatic interact@gsjs the short-range
contribution resulting from molecule/molecule, molecule/ion, and ion/ion interactions, and an additional
(middle-range) ternG; accounts for ionic interactions (e.g. ion/ion and ion/molecule) that are not
included in the long-range term. Similarly, the activity coefficient is given by

Iny, =Iny R+ InyMR 4inySR (2)

To account for speciation, the chemical effects due to the formation of ion pairs and complexes or the disso-
ciation of these species can be explicitly expressed using chemical equilibria. Thus, for a chemical reaction:

aA+bB+---=cC+dD+--- (3)

the equilibrium conditions can be determined from

_AGoZIn(xéx%...yéyg..) @)
RT x4xhoydylo
with

AG® = Zviu? 5)

wheren!? is the standard-state chemical potential of specitre sum is over all species participating in
the chemical reaction, and is the stoichiometric coefficient of specieim Eq. (3)with positive values
for the species on the right-hand side of the equation and negative values for those on the left-hand side.
The algorithm for the determination of the chemical speciation in a mixed-solvent electrolyte system is
similar to that used for aqueous solutions as described by Rafal[8].alrhus, additional constraints,
such as charge balance and the material balance, are used in the computation. For VLE calculations, the
nonideality of the vapor phase can be conveniently modeled using a cubic equation of state such as the
Soave—Redlich—-Kwong (SRK) EOS.

Thus, the model presented in this work combines an expression for the excess Gibbs energy with
chemical equilibrium relations that arise from ion association, complex formation, hydrolysis, etc.

2.1. Reference state

An important issue in modeling electrolyte solutions is the selection of a reference state. For the
long-range electrostatic interaction term, the commonly used expression is that originally developed by
Debye and HuckeJ4]. The Debye—Hickel theory was originally developed in the McMillan—Mayer
framework where the solvent appears only as a dielectric continuum, and the ionic reference state is
always at infinite dilution in the dielectric medium. In general, such an unsymmetrical reference state
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depends on the composition of the solvent mixture. On the other hand, the excess Gibbs energy model
used to represent the short-range interactions, such as NRTL and UNIQUAC, use the pure liquid at
the system temperature and pressure as the reference state. Thus, in modeling mixed-solvent electroly:
solutions, different reference states are generally used for ionic species and for solvents, i.e. the infinite
dilution state in pure water or in a mixed-solvent has been used as the reference state for ions, and the
pure liquid is commonly used as the reference state for soly@n1$]. In addition, concentration units

used in some of these models are different for the electrolytes and for the solvents. Commonly, molality
is used for the electrolyte or “solute”, and mole fraction is used for the “solV@t12,14,16] The

use of molality does not allow the model to be extended to very concentrated electrolytes that approach
fused salts or pure acids. In some models, in which the long-range interaction contribution has been
neglected17,18], a symmetrical reference system is used for all components (i.e. for both the solutes
and solvents). This is justified by the fact that the effect of long-range electrostatic interactions on phase
equilibria is negligible for electrolyte concentrations sufficiently remote from infinite diljfi®r20] It

has been notgd 8,21]that an inconsistency may occur in solubility and liquid—liquid equilibrium (LLE)
calculations with models that use different reference states for ions and solvents unless the standard stal
of the ionic species is properly seleci@d]. In addition, a reference state based on the infinite dilution

in water limits the applicability of the model to water-dominated systems. On the other hand, models that
neglect the long-range interaction contribution and use the symmetrical convention for all components
do not show the correct limiting behavior according to the Debye—Huickel theory and are not suitable for
chemical equilibrium calculations because the electrolyte is assumed to be undisgdgiale]

In view of the necessity to perform speciation calculations and in order to make the model applicable
over wide ranges of compositions, the symmetrical reference state has been selected in the present worl
Thus, for any of the three contributions to the excess Gibbs energy, the activity coefficient is normalized
to the unit mole fraction, i.e; = 1 asx; — 1 for all of the species. Obviously, such a reference state is
hypothetical for ions. The symmetrical reference state makes no distinction between the “solvent” and the
“solute”. This is especially convenient when modeling thermodynamic properties of liquid mixtures of
any composition, e.g. electrolyte solutions from infinite dilution to fused salts or acids or nonelectrolyte
mixtures in full concentration ranges. The concentration unit in the model is mole fraction for all species.

2.2. Standard-state chemical potentials

As discussed above, speciation calculations require the use of standard-state chemical ppﬁantials,
for all species that participate in a chemical reaction. For electrolyte solutions, the standard-state chemica
potential can be generally based on the following conventions: (1) infinite dilution in water on the molality
scale (unsymmetrically normalizeﬁ;“’m’o, where %" in the superscript denotes infinite dilution with
respect to water); (2) infinite dilution in water on the mole fraction scale (unsymmetrically normalized,
M;"x’o); (3) pure component on the mole fraction scale (symmetrically normald:zfe‘b, Thermochemical
data for aqueous species are available from extensive thermodynamic daf{&baard the tempera-
ture and pressure dependence of the standard-state properties can be calculated using a comprehens
model developed by Helgeson and coworkers (commonly referred to as the Helgeson—Kirkham—Flowers
equation of statg22—-25). The parameters of this model are available for a large number of aque-
ous species including ions, associated ion pairs, and neutral species (inorganic and {2§aB8iz)

These standard-state property data, which provide a basis for speciation calculations, are based on th

infinite dilution in water reference state and on the molality concentration scale. When combined with
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symmetrically-normalized activity coefficients for speciation calculations, these standard-state properties
need to be appropriately converted. Conversion of the standard-state chemical potentials among the three
reference states can be performed on the basis of an activity coefficient jabdeh addition, due to

the change of the solvent from water to a solvent mixture, the Gibbs energy of transfer of the electrolyte
must be correctly accounted for to ensure the correctness of the chemical potentials in the mixed-solvent
for speciation calculations. The conversion of the standard-state chemical potentials and the inherent
thermodynamic consistency issues will be discuss&krtions 2.6 and 2. Analogous conversions for

the standard-state enthalpy and volume calculations will be discusSestiions 2.8 and 2.9

2.3. Long-range interaction contribution

Various Debye—Hiickel-type excess Gibbs energy expressions have been proposed in the literature to
represent the long-range electrostatic interactions between ions at low electrolyte concentrations. The
extended form proposed by PitZ@2,33] has been most satisfactory in empirical tests, and has been
used for modeling aqueous electrolyte solutions from infinite dilution to the fused sal{3iriB7]as
well as for mixed-solvent electrolyte systefi$,38,39] Thus, because of its empirical effectiveness,
the Pitzer—Debye—Hiickel expression is used for the long-range electrostatic contribution in this study.
When normalized to mole fractions of unity for any pure species, the Pitzer—-Debye—Huickel expression
for the excess Gibbs energy is written as:

Ge, 4A. 1, 1+ pl?
RT Zni n 1 10)1/2 (6)
- 1Y Z,’xt[ + p( x,z‘) ]

1

where the sum is over all of the species (ionic and neutral) aisdhe mole fraction-based ionic strength
defined by

1 2
I, = _Elzxizi (7)

12, represents the ionic strength when the system composition reduces to a pure compenéfit =
(1/2) 22, p is related to a hard-core collision diameter and is treated as an empirical cdagtd6} A
value ofp = 14.0 is used in this study. Th&, parameter is given by

A= Son a2 (. 3/2 8
o= 3@ () ®)
whereN, is the Avogadro number (622137 10?2 mol~1), ds the molar density of the solution (molT#),

ethe electron charge (302177x 1071°C), r = 3.14159,¢ the permittivity of vacuum (8541878x

1072 C? 31 m™1), ¢ the dielectric constankg the Boltzmann constant 38066x 10722J K1) andT

is the temperature in K.

It has been long recognized from experimental evidence that there is a strong concentration dependence
of the dielectric constant of ionic solutiof#l]. However, for modeling water—organic—salt systems, the
electrostatic interactions were usually represented by assuming no ionic concentration effect on the
dielectric constant of water—organic mixtuf&8—14] The dielectric constants were also treated either as
always equal to that of watt6,38]or as a constari®,15]. For a more comprehensive representation of
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the properties of mixed-solvent electrolyte systems, the effect of composition on the dielectric constant
should be taken into account. A general model for the composition dependence of the dielectric constant
has been developed in a previous pap&] and has been used in this study to calculatén the
Pitzer—-Debye—Hickel long-range contribution term. By including this dielectric constant model, the
long-range contribution reflects the electrostatic effects in the actual solution environment. Differentiation
of Eq. (6)with respect to the number of moles at a constant temperature and pressure yields the following
expression for the activity coefficient for any spediggons and molecules):

o 272 1+ pL/? (22— 2I,)
Ny, "=—A,| —1In s 73
P Y[l + p(I2)Y?] 1+ pl;
and [ 1tpn” Z [ 1 9ds 3 885i|
P Xl + p( x’i)l/z] 2ds dn, 25 0ny
1+ pUI2 )2
Zixi[l+p(l,8i)l/2]

It should be noted that the composition dependence of both density and the dielectric constant has bee
taken into account in the long-range interaction term. The sums in this expression cover all species.

1/2

9

2.4. Short-range interaction contribution

The short-range interaction contribution includes the interactions between all species. Local composi-
tion models originally developed for nonelectrolyte mixtures, such as the NRTL, Wilson, and UNIQUAC
models, are appropriate for representing the short-range interactions in mixed-solvent electrolyte system:
[9-12,14-16,38,39,43]n this work, the UNIQUAC modeld4] is selected for this purpose. The advan-
tages of using UNIQUAC in representing short-range interactions are that: (1) its parameters often have &
smaller temperature dependence compared to other models, which facilitates the use of fewer parametel
when fitting data covering a wide temperature range; (2) it is applicable to solutions containing small or
large molecules including polymers, because the primary concentration variable is the surface fraction,
rather than the mole fractio@4]; (3) it can be extended to a group contribution framework, such as
UNIFAC, to enhance the model’s predictive capability.

The excess Gibbs energy in the UNIQUAC model is calculated as a sum of a combinatorial and a
residual ternj44]:

Ginouac G binatori i
_ comblnatorlal+ residual (10)

RT RT RT

with

Gcombmatorlal (an |:le In — + th-xl In — :| (12)

Gex .
%.Ic_mal =— (Z”’) Z%xi In Zejfij (12)
i | ¢ J
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qiXi

0 = —=— 13
quj'xj (13)

riXi
;= 14
) S (14)
Ti = exp(— %_) (15)

whereq; andr; are the surface and size parameters, respectively, for the speZiesconstant with

a value of 104a;; the binary interaction parameter between speica®j (a; # a;i). When applied to
mixed-solvent electrolyte solutions, the subscrigtsdj in these equations include all molecules (solvent
molecules and undissociated electrolyte or neutral complexes) and ions. The activity coefficient equations
that correspond t&qgs. (10)—(15are given by Abrams and Prausnjz!].

2.5. Middle-range interaction contribution

The middle-range term arises from interactions involving charged species (i.e. ion/ion and ion/molecule)
that are not included in the long-range term. A symmetrical second virial coefficient-type expression is
used to represent this contribution:

ex
% = — (Zm) sziijij(lx) (16)
1 4 J

The quantityB;;(I,) is a binary interaction parameter between the speaeslj (ion or molecule) and
is similar to the second virial coefficient representing the hard-core effects of charge interactions, which
are found to be ionic strength-dependga#]. The parametes;;(1.) has been assumed to be symmetric,
i.e. Bij(Ix) = Bji (1), andBii = Bjj =0.

The activity coefficient is expressed as:

In VkMR — ZZXinBij(Ix) — <Zn,~> Zinxj
J i j

i i

n

B (I,)
8’ - lex,- Bi(1,) 17)

2.6. Thermodynamic consistency in speciation calculations

As discussed in the beginning of this section, the computation of chemical equilibria requires the simul-
taneous use of activity coefficients and standard-state thermodynamic properties of all species participat-
ing in chemical reactions. Since the standard-state properties from the available thermodynamic databases
[8] and the Helgeson—Kirkham—Flowers equation of dt2ke-30]are defined for infinite dilution in wa-
ter on the molality basis, an appropriate conversion must be performed to make speciation calculations
consistent when these properties are combined with the mole fraction-based, symmetrically-normalized
activity coefficients. For this purpose, the mole fraction-based activity coefficient of spemiethe
symmetrical reference state,, is first converted to that based on the unsymmetrical reference state, i.e.
at infinite dilution in watery;*, via

Ny =Iny — IimO Iny, (18)
Xkp—>

xw—1
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where lim,, 0 In y; is the value of the symmetrically-normalized activity coefficient at infinite dilution in

xw—1
water, which can be calculated by substitutipg= 0 andx,, = 1 into the activity coefficient equations.
At the same time, the unsymmetrical, molality-based standard-state chemical poﬁe,?iﬁ&l,can be

converted to a mole fraction-based quan'r/iti/,x’o, by

1000
*,x,0 *,m,0

i = ™%+ RTIn | ==
k k <” )

w

(19)

whereM,, is the molar weight of water. The unsymmetrical activity coefficient basdetpiil8)can then

be used with the standard-state chemical potential calculated Bgin¢l9)for chemical equilibrium
calculations. It should be noted that this procedure remains valid even when the system of interest doe:t
not contain any water.

2.7. Standard Gibbs energy of transfer

As discussed above, the available extensive databases of thermochemical properties for aqueous speci
provide a foundation for modeling speciation in aqueous systems. When applied to speciation calculations
in mixed-solvent electrolyte systems, the aqueous standard-state properties must be combined with ac
curately predicted Gibbs energies of transfer to ensure an accurate representation of chemical potential:
Thus, it is important for the activity coefficient model to reproduce the Gibbs energies of transfer. In a
mixed-solvent electrolyte model, the change in the standard Gibbs energy of ions due to the change in
the dielectric constant may be, in principle, accounted for by introducing a Born electrostatic solvation
term. The Born term formally converts the reference state from infinite dilution in water to that in the
mixed-solvent15,21,45] However, the Born term is not introduced in the present model. It has been
found in this study that inclusion of the Born term does not contribute to the accuracy of the model. There
are also indications in the literature that the Born term has been found to give inaccurate results when
compared to experimental d4iz8]. In the present model, an accurate representation of the Gibbs energy
of transfer is achieved by imposing constraints on the parameters of the activity coefficient model. For
this purpose, we derive an expression to relate the Gibbs energy of transfer to the activity coefficients in
agueous and nonaqueous (or mixed-solvent) environments.

The Gibbs energy of transfer of iarirom solventR to solventSon a molal concentrationr) scale is
defined as:

AuG (R = S)p = p" — pdm (20)

1

whereu®™S and i

; ; are the standard-state (infinite dilution) chemical potentials of iarsolvent
SandR, respectively. Through appropriate thermodynamic manipulation, the standard-state chemical
potential of ioni in solventScan be related to that in waterj("”’o) and to the unsymmetrical (referenced
to infinite dilution in water) activity coefficient, i.e.
1000
up™S = ™0 + RTIn <—M ) RTIn(xSy;%) — RTInm} (21)

w

0,m,R

wherem? andx; are the molality and mole fraction, respectively, of idn solventS andyl.*’s is the
mole fraction-based unsymmetrical activity coefficient ofiiomsolventS, which can be calculated using
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the excess Gibbs energy model described in previous sections. By substiqti(@yl)into Eq. (20) a
general expression is obtained:

V,'*’SMS
Vi*’RMR

A¢GI(R = S),, = RTIn (22)

whereMg andMy, are the molecular weights of solver8&ndR, respectively. At infinite dilution, the

Gibbs energy of transfer for an electroly@eA, from solventRto Scan be obtained by adding those of its
constituent cation and anion. It should be noted that most published standard Gibbs energies of transfer
are on the molar scale. Conversion of the standard Gibbs energy of transfer between th&/jnatet (

molal (M) scales is necessary for consistent calculations. This is made using the following expression
[46]:

MG n (R = S)y = AyGip (R — S) + (c + @)RTIN (f)—R) (23)
S
wherep is the density of the designated solvent, arahda are the stoichiometric coefficients of the
cation and anion in the electrolyte.

2.8. Enthalpy and heat capacity calculations

As discussed above, the symmetrically-normalized activity coefficients are converted to unsymmet-
rical normalization in order to incorporate the available standard-state thermodynamic properties for
consistent speciation calculations. A similar approach is adopted for enthalpy and heat capacity cal-
culations. Thermal properties of mixtures are derived from the temperature derivative of the excess
Gibbs energy. To be thermodynamically consistent, the enthalpies are also calculated based on the
unsymmetrical normalization. Thus, the total enthalpy in the mixed-solvent electrolyte solution
is:

h=Y xh} +h™* (24)

whereh} is the standard-state partial molar enthalpy of specieghich can be computed from the
Helgeson—Kirkham—Flowers equatidmndh®* is the excess molar enthalpy of a mixed-solvent elec-
trolyte solution. In the unsymmetrical normalizatid®** is expressed as:

aln x; aln y*
pr = Ry x (5] —REY M (S (25)
i oT ), : oT ),

The first term inEq. (25)arises from the variation of speciation with temperature due to the temperature
dependence of the equilibrium constants. This termis introduced because speciation is taken into account
in the model. The value di*** differs from the excess molar enthalpy expressed in the symmetrical

! For mixed solvents, they are the weighted molar weightsMe= ka,ka, where the sum is over all solvent components,
x{ is the mole fraction of componekt andM; is the molecular weight df.

2 It can be proved that’ = k", i.e. the standard-state partial molar enthalpies are the same on the basis of both mole fraction
and molality.
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normalizationh®*. The difference results frofag. (18)and can be calculated as:

aln(lim y,-)xl._>o1
W — > = —RTY x; | ——————== 26

P.,x

Heat capacities can be found by differentiating the enthalpy equatioi&f(24) and (25)with respect
to temperature.

Although thermodynamic properties such as standard-state partial molar enthalpies for organic compo-
nents are available in aqueous thermochemical databases, they are typically determined based on expel
mental data in dilute aqueous solutions of these components. When a mixture contains a large amount o
such organic components, the calculated thermodynamic properties may show large deviations from the
experimental results due to the necessity of extrapolating the solution properties from infinite dilution.
For systems that have a zero water content, the representation of organic-phase heat capacities becom
difficult using the unsymmetrically-normalized standard-state properties. Thus, the calculation of ther-
modynamic properties for a mixed-solvent electrolyte system must be constrained by the pure liquid
properties for all components for which pure component data are available. Thus, a methodology has
been developed to impose such constraints for thermal property calculations.

For the majority of organic compounds, pure liquid heat capac'tﬂ%(T), have been determined as
a function of temperature and are readily availdllg. They can be used to constrain the calculations
of enthalpy and heat capacity in mixtures. First, the molar enthalpy of a pure liquid compbhést,
calculated by integrating the heat capacity:

T
ho = / CY (T)dT (27)
Tr

whereT, is a reference temperature at which the enthalpy of the pure liquid is set equal to zero. The
values ofr? are the standard-state molar enthalpies in the symmetrical normalization, i.e.

h=Y xh)+h™ (28)

1

The value of:® can be related to the standard-state partial molar enthalpy in the unsymmetrical normal-
ization, i}, by noting that the unsymmetrically and symmetrically-normalized standard-state chemical
potentials are related by

wi = u? 4+ RTIn(lim y;) (29)

x;i—0
xw—1

Therefore, differentiation with respect to temperature yields:

aln(“m Vi)xl'—>0
P.x
The value of:; calculated fronq. (30)for an organic componentis then used in the enthalpy calculations
(Eq. (24). The values ok} for other, especially ionic, species are obtained from the Helgeson—Kirkham-—
Flowers equation. Thus, the calculation of thermal properties has been constrained to reproduce the hee
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capacities of pure liquid components. At the same time, properties for mixtures at other concentrations
can also be accurately represented.

2.9. Density calculations

The methodology used for density calculations is similar to that used for thermal properties. The excess
volume of mixed-solvent electrolyte solutions can be obtained by differentiating the excess Gibbs energy
with respect to pressure. In the unsymmetrical convention, we obtain

aln y*
& = RT ; ! 31
0 Xi:x < ap )T,x ( )
The volume of a mixture can be then found from
v = Zx,-vl.* + v* (32)

where v’ is the standard-state partial molar volume of specjegshich can be calculated from the
Helgeson—Kirkham—Flowers equation for a variety of, mostly ionic, spédieanalogy toEq. (30) the
pure liquid molar volume of a speciés?, can be related to; by:

dIn(lim yi)Xi—>Ol
* 0 Aw—>
v =v; +RT 0P (33)
T,x
Thus, the calculation of the volumes (or densities) in mixed-solvent electrolyte solutions is constrained
by the pure liquid volumes for most organic components and some inorganic components for which data
are availablg47]. The values ob; and their temperature and pressure dependence for ionic species are
calculated from the HKF model.
It should be mentioned that, while the standard-state properties (sughaasiz;) calculated from
the Helgeson—Kirkham—Flowers model show divergences in the vicinity of the critical point of water due
to the rapid changes in water compressibility, the current model is generally applicable in temperature
ranges up to ca..9 x T, of the solvent, which is outside of the region where the anomalous behavior of
the standard-state properties occurs.

3. Evaluation of model parameters

The validation of the model and the evaluation of model parameters require a large amount of ex-
perimental data of various types. For this purpose, we used the compilations by Linke and Seidell
[48], Stephen and Steph¢#9], and Silcock{50] for solubility results; Maczynski and Skrze§zl],
Gmehling and Onkeb2], Ohe[53] for vapor—liquid equilibrium data; Christensen et[&l] for heat
of mixing data and Handa and Bensf@®b] and S6hnel and Novoyn[56] for density data. The work
of Marcus[46] provides a compilation of data for the standard molar thermodynamic properties of

*,m
i

8 It can be proved thatf = v, i.e. the standard-state partial molar volumes are the same on the basis of both mole fraction

and molality.
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ion solvation or transfer. Additional experimental data, especially those for the salt effects on VLE,
solubility, density, heats of mixing and dilution, and heat capacities have been collected from original
sources.

The types of experimental data used in the determination of model parameters include the following:

VLE data;

activity coefficients in completely dissociated aqueous systems (such as NaCl);
osmotic coefficients (or activity of water) in aqueous solutions;

solubility of salts in water, organic solvents and mixed-solvents;

acid dissociation constants as a function of solvent composition;

Gibbs energy of transfer of electrolytes;

densities;

heats of mixing and dilution;

heat capacities.

CoNO~WNE

These experimental data cover the concentration ranges=0f0—xs (wherexs is the solubility of the
salt) orx = 0-1, whichever applies, and temperatures up to°800

The adjustable parameters in the model are the binary interaction parameters in the UNIQUAC and
the middle-range terms. These parameters are determined by simultaneous inclusion of all available
experimental results of the above types in a single data regression run, and minimization of the differences
between the experimental and calculated property values.

The structural parameters (surface area and size) in the UNIQUAC term for all nonelectrolyte com-
ponents are based on Bondjs7] normalized value§i4] of van der Waals group volumes and surface
areas. The values for ionic species are fixed to be 1.0. For inorganic neutral species, the surface and siz
parameters are assigned to be equal to those of water@.92; g = 1.4). For the UNIQUAC binary
interaction parameters;; anda;;, a quadratic temperature dependence has been found, in most cases,
satisfactory for fitting experimental data:

For the middle-range term, the second virial coefficient-type param&ge(ls,), for charge interactions
(ion/ion, ion/molecule) are represented by an empirical expression:

Bij(I,) = bj + (cij + diT) exp(—/I, +a1) + ;T + fiT? (35)

whereb;;, ¢;;, d;;, &;, andf;; are adjustable parameters amds set equal to 0.01. The presence of the
constanta; prevents the occurrence of an infinite valuedd(/,)/on, at I, — 0 whenEq. (16)is
differentiated to yieldeq. (17) The decrease of the second virial coefficient with ionic strength, which is
embodied byEg. (35) has been noted befoj&2]. In a statistical thermodynamic treatment of electrolyte
solutions, Pitzef32] derived a function of ionic strength that qualitatively describes the behavior of
the second virial coefficient that arises from charge interactions as “short-range” effects (relative to
the Debye—Hiickel long-range effect). This function has provided a basis for the expressions for the
second virial coefficient-type paramet¢t2,32] The expression given iq. (35)varies with the ionic
concentration in a way that is consistent with the trend described by B&esind is adopted based on
its effectiveness in fitting experimental data.

To model densities of mixed-solvent electrolyte solutions, additional adjustable parameters are intro-
duced to include the pressure dependence in binary parameters. For this purpose, the following functior
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is used in the UNIQUAC term for representing densities at saturation pressures:

aj = (af’ +a{’T +a>TH P (36)
The function for the pressure dependence of the middle-range parameter is:
8—P” = b{j + (ci’j + di}T)exp(—\/Ix +ap) + [ei’j + (fij’ + gi'jT)exp(—\/Ix +a))]P + hi’jPZ (37)

Here, the parametersi(f)—ai(-S) andby, cjj, djj, ej, fij, g, hjj are determined separately from parameters
that are used for phase equilibrium and enthalpy calculationg&¢sf. (34) and (33) It should be noted

that the complete model reduces to UNIQUAC for nonelectrolyte mixtures.

4. Results and discussions

The model has been validated using different types of experimental data for various classes of mix-
tures under wide ranges of conditions. The model can simultaneously reproduce VLE, activity coef-
ficients, solubility, speciation in water and mixed-solvents, Gibbs energy of transfer of electrolytes,
heats of dilution and mixing, heat capacities, and densities in electrolyte solutions ranging from infi-
nite dilution in water to fused salts or pure acidsble llists the types of systems that have been
examined in this work and the typical experimental data that were used to test the model. Parameters
for selected systems are givenTable 2to demonstrate the types of parameters required for various
systems.

4.1. Modeling VLE and solubility in agueous systems from dilute solutions to fused salts

Metal nitrates in water provide an example of systems that are continuously miscible from infinite di-
lution to the fused salt limit. These systems, for which extensive experimental data are aya8abl#&]
provide good opportunities to examine the model in the full concentration range of the electrolyte compo-
nent. VLE and solubility behavior for the ternary systems AgNONOs—H,O and LING;—KNO3;—H,O
and all of their constituent binary subsystems (i.e. MNB,O, M = Li, K, Ag, Tl) [58—-63]have been
examined in this studyig. 1 shows the VLE results for the LINGKNO3;—H,O system at various tem-
peratures. The solubilities of LiNQand AgNG; in water at various temperatures are showirig. 2
These results demonstrate that the model is capable of accurately representing the experimental results fo
agueous electrolytes from dilute solutions to the limit of fused salts. Another example of simultaneous
representation of VLE and solubility in aqueous systems is provided by the-cHC system. The
VLE results for this system are shownfig. 3 at various CaGl concentrations. Ifrig. 4, solubilities
of various Ca(Cl hydrates are shown as a function temperature. In numerous industrial and geological
applications, the solubility of compounds depends not only on temperature and solution composition, but
also on the pressure of gaseous species such asi@® is exemplified by the behavior of Cag.®ig. 5
shows the results of solubility calculations for Ca§J@ water at various temperatures as a function of
the partial pressure of GOThe dependence of the solubility of Cag@n temperature anéco, has
been accurately reproduced.

In addition to phase equilibria, the mean activity coefficients of completely dissociated electrolytes have
also been used in calibrating the model. For example, activity coefficients in aqueous NaCl solutions at
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Table 1
Types of systems studied and typical experimental data used in model validation
System Examples Concentration Types of data
range
Aqueous electrolyte systems VLE, SLE, y, Hai, C,, density
Salts with limited solubility NaCl-60
CaCb—-H,O X = 0-Xg
HCI-H,O
Fully miscible acids HF-KO
HzSO4—H20 x=0-1
HNOs-H,0O
Salts miscible with water from dilute LiINO3—KNOs;-H,O x=0-1
electrolyte to fused salts NaOH-HO
Weakly dissociated systems VLE, Hpix, C,, density
Methanol-HO
Acetic acid-HO x=0-1
Acetic acid—methanol
Electrolytesin organic or mixed-solvents VLE, SLE, AyG?, Ka, Hix,
C,, density

LiCl-methanol

HCl-methanol
CaClb—acetone—methanol
NaCl-methanol-kO
HCl-isopropanol-HO X = 0-Xs
Acetic acid—ethanol-$D

10 10
£
DA o
g
>
(]
(7]
o
e o1 - 0.1
]
o
(o
>
0.01 T T T 0.01
00 02 04 06 08 1.0

x-H,0

Fig. 1. Vapor pressure of the LINOKNOz;—H,O system at various temperatures (with the molar ratio 15/K..0). The filled
symbols are from Simonson and PitZé8], and the empty symbols are from Triff®] and Tripp and Braunsteii0]. The
lines are calculated from the model.
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Parameters for representative systems

155

Systems UNIQUAC parametergq. (34) Middle-range parameter&(. (35) Experimental
data sources
A0 Helg = —148 301 byt o- = —139738 [51,52,103,
a0 Hon, = 940162 v = 167294 Eijll&lzov
o o, = —1.21081 dys o = —0.427632
HCl-water {31, 1,0 = 10, 9655 ent.c- = 0.317799
0<T<200°C
O=<T< ) aﬁ%hq,HgO = —90.9743 fur - =0.0
Isopropanol-water aﬁfélaquzo = 0.090474 b+ 2-pron = be- 2-pron = 78.6504
(0<T<200°C)
HCl-isopropanol-water ) ,-pron = —458622 Ch+ 2-ProH = Coi- p-pron = — 70.6361
(60<T<85°C) 020 3-prom = 117639 dis 2-pron = do- p-prop = 0.216608
a2, -pron = 0.00842474 er+ 2-pron = €ci- p-pron = —0.245043
aé(-”prOHHzo = 4407.26 St 2-pron = di- 2-pron = 0
aStpron,0 = 0.215586
ayponn,0 = —0.0231173
0
e 5154103
(68} —9I94, ’
Q= 199305 ber-nar = —422615 117,126-129,
A Nat = —0.0735037 cco- Na+ = 41.8316 133,134]
NaCl-water al, - =-12,1623 dei- nat = —0.0910231
(0 <T<300°C) o, ., =281739 eor nat = 0.0491386
Methanol-water a, o = —0.01196964 for nat = 4.28128E—5

(—21 < T < 200°C)

NaCl-methanol-water
(0<T<100°C)

apomeon = —314965
afiomeon = 244368
a0 meon = —0.0104692
om0 = —279916
Ayeon 0 = 8.18056
Aymon,0 = —0.0194803

bnat meon = bci- meon = —33.6701
CNat .MeOH = Ccl-.MeoH = 32.8959
dnat meor = doi- meon = —0.0787143

enat MeoH = €ci-.meon = 0.0909991

Snar meoH = Jfei- meon = —3.69465E— 5

various temperatures are showrig. 6. The mean activity coefficients of electrolytes in mixed-solvents
such as in water—alcohol mixtures have been determined in a number of $6/€8] Customarily,

the mean activity coefficient is defined based on the stoichiometric coefficients of the cation and anion
assuming that the electrolyte completely dissociates. In mixed-solvents, however, due to the decrease in
the dielectric constant, the dissociation may be incomplete, and the extent of ion pair formation depends on
the composition of the solvent. The mean activity coefficients determined on the assumption of complete
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Fig. 2. Solubilities of AgNQ and KNG; as a function of temperature. The experimental data were taken from Linke and Seidell
[48] and the lines were calculated from the model.

dissociation of electrolytes in a mixed-solvent will lead to an inconsistency when recalculated using a
speciation model. Therefore, these data were not utilized in our study.

4.2. Modeling VLE and solubility in salt—-mixed-solvent systems

In this section, we present the results of modeling VLE and solubility in systems containing salts, water
and/or nonelectrolytes. Fig. 7, the solubilities of NaCl in the methanol-8 and ethanol-D mixtures
at 25°C are shown as a function of the alcohol mole fractions. VLE results are shokg.i8 for the
ethanol-HO-LICl systems at 25C at two different LiCl concentrations. The salt-free VLE results are
also shown in the figure. The “salting-out” effects can be accurately predicted as seen in the increase of
the vapor phase mole fraction of the alcohol upon addition of thefsglt9 shows the results at saturated
concentrations of Cagin acetone—methanol mixtures at 1.0 atm. Both the “salting-out” of acetone at

Vapor pressure, atm

Fig. 3. Vapor pressure of the Ca€H,0 system as a function of temperature at various gatlalities. The experimental data
were taken from Hoffmann and Vio@t13] and the lines were calculated from the model.
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Fig. 4. Solubilities of various Caghydrates in water as a function of temperature. The experimental data were taken from Linke
and Seidel[48] and Garvin et al[114]. The lines were calculated from the model.

high concentrations of methanol and the weak “salting-in” effect at low methanol concentrations can
be accurately predicted. In the systems shown in these figures, the electrolytes have been assumed ftc
completely dissociate and the weak dissociation of the alcohols has been taken into account using acid
dissociation constants from the literat(ié8b].

The behavior of acids and bases in mixed-solvents is of particular interest in the study of solution
properties that are dependent on pH. For example, due to changes in ionization, the corrosivity of an acid
or a base may change significantly with the compaosition of the solution in which the metal isimmersed. In

0.1
0.01 |
- :
o i
Y- 75¢C
© 100C
S 0.001 125 C o
1 1sec © 2
S
200C
0.0001 :
0.1 1 10 100

Pcog, atm

Fig. 5. Solubility of CaCQ in water at various temperatures as a functiorPes,. The lines were calculated using the model
and the symbols are the experimental data from Signit §t &b] (empty symbols) and EIlligL16] (filled symbols).
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Fig. 6. The mean activity coefficients of NaCl in water at various temperatures. The symbols were taken from the smoothed
values of Archef117] and the lines were calculated from the model.

this work, systems containing acids in water and organic solvents were analyzed. The results of modeling
VLE for the HCl-water and HCl—-water—isopropanol systems are showig@ 10 and 11Fig. 10shows
VLE results for HCl-water at 0 and 7C. The results for the HCl-water—isopropanol system are shown
in Fig. 11at two compositions.

All of the results presented here show that the model can accurately reproduce experimental VLE and
solubility data in salt—-water—organic mixtures.

4.3. Modeling VLE and speciation in associating systems

Numerous industrial applications require the knowledge of the chemical speciation in electrolyte solu-
tions. For example, speciation is of particular interest in the study of solution properties that are dependent

10
|5 1
2
[
(7]
g 01
o 3
[}
=
5 001
E E
0.001 — :

00 02 04 06 08 1.0

x-Alcohol

Fig. 7. Solubility of NaCl in methanol-water (upper curve) and ethanol-water (lower curve) mixturegafidte experimental
data were taken from Linke and SeidglB] and Pinho and Maced89] and the lines were calculated from the model.
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1.0
LiCl=4.0 mol/kg solvent
0.8
2 06
E salt-free
=
? 04
LiCl=1.0 mol/kg solvent
0.2 |
0.0 T T T
0.0 02 04 06 0.8 1.0
x-ethanol

Fig. 8. VLE results for the LiCl-ethanol-water system at LiCl concentrations of 1.0 and 4.0 mol kg per solvenCafhgé
salt-free equilibria are also shown as a dashed line. Experimental data were taken fr¢&3]Ctrel references cited therein.
All lines were calculated using the model.

on pH, and in identifying the species that are responsible for certain phenomena such as corrosion or other
electrochemical processes. Monoprotic acids such as formic and acetic acids in water—alcohol mixtures
as well as the HF—$0D and HSO;—H,O mixtures are among the systems that are characterized by mod-
erate to strong ion association or polymerization. Extensive experimental VLE and thermal property data
have been reported for these systems, and ionization constants for the monoprotic acids in water—alcohol
mixtures are also availabJ@,3]. These data are convenient for testing the speciation model.

1.0 g 1.0 )

0.8 e 0.9 1 y
© 06 0.8
s P 08 09 1.0
"q"' /,/
8
& 0.4 e

0.2 s

0.0 & , ,

00 02 04 06 08 1.0
x-acetone

Fig. 9. VLE results for the Cagtmethanol-acetone system, saturated with respect to solid, @GaCl0 atm. The salt-free
equilibria are shown as a dashed line. Experimental data were taken frofp&)aed references cited therein. The lines were
calculated using the model.
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Fig. 10. VLE results for the HCl-water system at 0 and@0The experimental data were taken from Perry and Chjltag]
(¢ ande), Miller [119] (A andA), and Kag[120] (O and®) and the lines were calculated from the model.

4.3.1. Acetic acid and formic acid

Acetic and formic acids are known to associate in aqueous solutions with the ionization constants
of 10476 for the acetic acid and 1&7° for the formic acid at 25C [69]. In mixed-solvents, these
ionization constants change with the solvent compos[g8]. The acids become more associated with
an increase in the alcohol concentration and a decrease in the solvent dielectric constant. It is also wel
known that these acids are highly associated in the vapor phase to form dimers or higher polymers
[70]. Realistic modeling of these systems must take into account the speciation reactions (i.e. ionization
and dimerization) in both the liquid and the vapor phases. The ionization constants for formic acid and

1.3
£ X,=0.0069
® 111 x,,=07265
g = 0.2666
2 0.9 W
@
g
8 07
3 Xue=0.0235
S 05 Xiqop= 0.0688
0.3 : :
60 70 80 20
t/C

Fig. 11. VLE results for the HCl-water—isopropanol mixture as a function of temperature at fixed liquid compositions. The
experimental data were taken from Ishidao efH1] and the lines were calculated from the model.
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Fig. 12. Predicted vapor phase speciation in the formic acid—water system as a function of the mole fraction of formic acid at
60°C.

acetic acid in water—alcohol mixtures such as water—-methanol and water—ethanol have been reported
in the literaturg2,3]. Dimerization constants in the vapor phase for these acids are also aviil@ble
With these constants, the model can reproduce both VLE and chemical speciation in both liquid and
vapor phases. The predicted vapor phase speciation is shdwig. ib2 At the same time, the apparent
dissociation constants of the acids in alcohol-water mixtures can also be reproduced. The results are
shown inFig. 13for the ionization constants of formic acid and acetic acid in ethanol-water mixtures,
and inFig. 14for the same acids in methanol-water mixtures.

When comparing the predicted speciation with the experimental apparent ionization constants, par-
ticular attention must be paid to the reference system that was used to report ionization c¢a&hnts
The experimental ionization constants are usually reported on the mixed-solvent basis. For example, the

11
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8 acetic acid

¥ 7

6
5 formic acid
4
3 T

0.0 0.2 0.4 0.6 0.8 1.0
x-Ethanol
Fig. 13. Apparent ionization constants of acetic acid and formic acid in ethanol-water mixtures as a function of the ethanol

mole fraction. The experimental data were taken from Panichajakul and W¢2]I€illed symbols) and Sen et dB] (empty
symbols).
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Fig. 14. Apparent ionization constants of acetic acid and formic acid in methanol-water mixtures as a function of the methanol
mole fraction. The experimental data were taken from Sen g]al.

ionization constant of acetic acid in methanol-water mixtures is reported as

MY+ pc— —
Ka = H+Mac YH+VAc (38)
MHAc(ag VHAc(ag)

wherem; is the molality of speciesin the mixed-solvent. At infinite dilution, this mixed-solvent-based
ionization constant can be written as a function of the mole fractions of individual species:

B 1OOOCH+xAc—
XHAc(ag) (Mwxw + Mmxm)

K} (39)
whereM,,, Xy andMp,, X, are the molecular weight and mole fraction of water and methanol, respec-
tively. The value ofK is different for each composition of the water—-methanol mixture. However, the
thermodynamic equilibrium constants for the acids, obtained from aqueous solutions, remain valid for all
solvent compositions. By combining the aqueous-based thermodynamic equilibrium constants with the
mixed-solvent activity coefficient model, the apparent ionization constants can be calculated according
to Eq. (39) Additionally, Fig. 15shows the predicted dissociation trend of acetic acid in ethanol-water
mixtures at 25C.

4.3.2. Hydrogen fluoride

Another system that exhibits significant speciation effects is HF—water. This system is of considerable
interest from the perspective of industrial applications such as glass etching, stainless steel pickling, alu-
minum refining, alkylation catalysis, and manufacture of fluorine-containing plastics. This is a particularly
difficult system because of a very strong change in dissociation as a function of composition, coupled
with multimerization of HF. Hydrogen fluoride is known to have a fairly low ionic dissociation in water
(pKa = 3.45)[69]. Electrical conductivity measurements in extremely anhydrous hydrogen fluoride also
indicate a very low concentration of dissociated HF,Afe.~ 3 x 10°8 at 0°C [71]. At the same time,
strong multimerization of pure HF in both the liquid and gas states has been recognized by many authors
[72,73] The formation of dimers, hexamers and other products of self-association of HF in the vapor
phase is well known and has been extensively investigated in the litefadurér] Infrared spectroscopic
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Fig. 15. Predicted dissociation trend of acetic acid in ethanol-water mixtures containthgndlOHAc per 1 kg of solvent at
25°C.

data seem to indicate the existence of monomers, dimers, trimers, and higher pgEgne$ Other

studies have shown thBWVT properties of the saturated HF vapor can be represented either by assuming
only two molecular species, HF angi4 and a single equilibrium, 6HNap) = HgFs(vap)[75] or by
assuming multiple association modgfd]. The study of association of HF in the liquid phase is much

less extensive. Although modeling studies yield the degree of association in the liquid§hes4] all

these models are nonelectrolyte equations of state based on a combination of association theories with
van der Waals-type equations. Thus, they impose a particular form of density dependence on association.
However, there is no experimental indication whether these model results are valid. Polymerization of HF
to hexamers in the liquid phase has also been indicated in experimental $8&djd®it no quantitative

data are given. In our treatment, we assumed only the monomer—hexamer equilibrium in the vapor phase,
and used literature data for hexamerization constgims In the liquid phase, the HF dissociation is
constrained by the acid dissociation constant of HF in water, as determined using available experimental
data[26,86], and by the low ionic concentrations in anhydrous HF derived from conductivity measure-
mentg71]. Using vapor pressure data for the HF—water binary mixtures, and applying the constraints for
the dissociation of HF, both phase equilibria and chemical speciation have been accurately reproduced
over a wide temperature range and in the entire composition span as sheignis. The speciation in

the liquid phase and in the vapor phase in this system can be predicted as illustiaitgsl 7 and 18

for 40°C. To validate the speciation results, the predicted and experimental vapor phase compressibility
factors have been compared. This comparison is showigiri9 The compressibility factor is a measure

of the association of HF75,81], as defined by Long et dI75], i.e.

~ 1T (40)

whereny is the total number of moles of all species in an associated mixturengisdthe number of
moles of all species that would exist in the absence of association. In our model for HF:

NT = Nmonomert Mhexamer (41)

10 = Nmonomer+ OMhexamer (42)
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Fig. 16. VLE for HF—water at 1.0 atm. The experimental data were taken from the references cited in the TRC datdbank
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Fig. 17. Predicted liquid phase speciation in the HF—water system.
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Fig. 18. Predicted vapor phase speciation in the HF—water system.



P. Wang et al./Fluid Phase Equilibria 203 (2002) 141-176 165

3.5

3.0

25

20 -

1/2

1.5

1.0

0.5

0.0 T T T
0.0 0.2 0.4 0.6 0.8 1.0

Pressure, atm

Fig. 19. The reciprocal of the vapor phase compressibility factdrafppure HF at various temperatures. The lines are predicted
using the model and the experimental data are taken from Long[@bal.

As shown in the figures, the present model can accurately represent the experimental results for vapor
phase speciation. Because of a lack of direct experimental evidence of association in the liquid phase, a
meaningful comparison can be made only for the gas phase.

4.3.3. Sulfuric acid

The thermodynamic treatment of sulfuric acid has been unusually difficult because of the change of
the aqueous speciation £80,°, HSQ,~, and SQ?") with concentration, and the dissociation of the
acid in the vapor phase to form sulfur trioxide &0, (g) = SOs3(g) + H20(g)). An accurate model of
the H,SO,—H,O system is highly desirable due to the great practical importance of this system. Studies
of the dissociation of aqueous,80, have been reported in the literatB¥—93] For the dissociation
of the bisulfate ion, the results from various authors are in fair agreement, at least at concentrations
below 25m[94]. The results for the first dissociation of sulfuric acib80,° = HT + HSO; ™), although
gquantitatively less consistent, all indicate a decrease in the dissociation with an increase in the sulfuric acid
concentration. The interpretation of the Raman spectroscopic data ¢8Ramy Young and Blat288]
indicates that a large fraction of the sulfuric acid is in the form of the associgi®@ neutral species
at high sulfuric acid concentrations (e-g75% of sulfuric acid is associated ta80;° at xu,so, ~ 0.4,
and~99% is associated in pure sulfuric acid at2j. A later study by Young et al89] showed that the
first dissociation of sulfuric acid in water is essentially complete, i.e. the bisulfate ions are the primary
species at concentrations upi@,so, ~ 0.4 at 25°C. The dissociation decreases as the sulfuric acid
concentration increases. The degree of association according to the reattiotiB0,~ = H,SO,°
becomes substantial as the sulfuric acid concentration further increases, and the association is nearly
complete in pure sulfuric acifB9]. Raman spectroscopic data of Malinowski et[@0] also show an
increased relative concentration 0§$0,° as the sulfuric acid concentration increases from dilute to
concentrated aqueous solutions. Similar results were obtained from the NMR measurements of Hood and
Reilly [92].
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Vapor-liquid equilibria for the HSO,—H,O system and the dissociation ob$0,(g) in the vapor
phase have been extensively studi#sl-102] The enthalpy of dilution and the heat capacities of aqueous
sulfuric acid solutions are also reported over an extended concentration[i&3g€.10] The reported
total pressures over sulfuric acid solutions from different authors are in fair agreement. The total vapor
pressure and partial pressures efH SG;, and HSO, have been calculated by Gmitro and Vermeulen
[111] based on experimental VLE data over the concentration range of 10—-100 wt.% of sulfuric acid and
the experimentally determined equilibrium constd@&] for the dissociation of HSOy(g) in the vapor
phase. It has been pointed out that vapor pressure results in solutions with compositions approaching
pure acid are less accurate due to the very low vapor pressure, coupled with the dissociateOu0gH
into H,O(g) and SQ(g) [97]. The vapor pressure of pure sulfuric acid as measured by different authors
may differ by several hundred percent.

Due to the limited concentration range considered in most of the computational studies of aqueous
sulfuric acid in the literature, the first dissociation of sulfuric acid was considered to be complete and
only the dissociation of bisulfate ion was taken into acc§@bt94,112] In the present work, both the first
and the second dissociation of sulfuric acid have been taken into account in the liquid phase, together with
the vapor phase dissociation 03$00,(g). The results of VLE calculations show a very good agreement
between the experimental and predicted total vapor pressure over the entire concentration range at variou
temperatures, as shownhing. 20 The calculated partial pressure behavior in th8&,—H,0 system is
shown inFig. 21at 100°C in the vicinity of the sulfuric acid azeotrope. The results are consistent with
those obtained by Gmitro and Vermeuldni1].

4.4, Modeling density in mixed-solvent electrolyte solutions

Densities have been calculated for a number of systems that include aqueous electrolyte solutions
nonelectrolyte mixtures, and mixed-solvent electrolyte solutions. The results are shieigna@for the

0.01
0.001
0.0001

Vapor pressure, atm

0.00001
0.000001

0.0000001 : : : : : ‘
-2.0 1.0 0.0 1.0 -log(H,0 wt%)

0.0 90.0 99.0 99.9 H,SO,wt%

Fig. 20. VLE results for the kEBO,—H,0 system at various temperatures. The symbols are taken from the smoothed values of
Gmitro and VermeulefiL11]. The lines are predicted using the model.
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H,S0, wt%

Fig. 21. The calculated partial pressures in th&&,—H,O system at 100C in the vicinity of the sulfuric acid azeotrope. The
symbols (total pressure) are taken from the smoothed values of Gmitro and Verrfidulgn

NaOH-water system at various temperatures for solutions ranging from dilute to high concentrations. In
Fig. 23 densities are shown for methanol-water mixtures at various temperatures. FigalB4shows

the results for the NaCl-methanol-water system a&t®5As shown in these figures, good agreement
between the calculated and experimental densities has been obtained.

4.5. Modeling the Gibbs energy of transfer
The experimental standard Gibbs energies of transfer have been included in the data regression to

constrain the model so that the chemical potentials of species in a mixed-solvent can be correctly predicted
in speciation calculation3able 3shows the calculated standard Gibbs energies of transfer for NaCl and

1.8

16

14

1.2

density, g/cm?®

1.0

0.8

0.6 T T T

0 20 40 60 80 100
NaOH wt%

Fig. 22. Densities of the NaOH—water system at various temperatures and saturation pressures. The experimental data were takel
from S6hnel and Novoin[56], Dibrov et al.[122], Krumgal'z and Mashovetd 23], and Krey[124].
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density, g/cm’

0.75 T {
00 02 04 06 08 1.0

x-methanol

Fig. 23. Densities of the methanol-water system at various temperatures and at 1 atm. The experimental data were taken fron
Takenaka et al. (25 and 48) [125a]and Easteal and Woolf (£) [125b].
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Fig. 24. Densities of the NaCl-methanol-water solutions at2&nd at various methanol concentrations. Experimental data
were taken from Sohnel and Novgtfb6] for the data atyeon = O and from Takenaka et gl125a] for other methanol
concentrations.

Table 3

Calculated and experimental Gibbs energy of transfer for selected systems

Electrolyte Solvents AyGy, (calculated, kJ mott) Ay Gy (experimental, kJ mof) A(AxGy)
(kJmot?)

LiCl Water — ethanol 314 31 0.4

LiCl Water — methanol 17.0 17 0.0

NaCl Water— ethanol 35.7 34 1.7

NacCl Water— methanol 20.3 21 -0.7

The experimental data were taken from Marptg].
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Fig. 25. Heats of mixing for methanol-water mixtures at various temperatures as a function of the methanol mole fraction. The
experimental data were taken from Simonson gtl&6] ((I), Wormald et al[127] (A), Friese et al[128] (O), and Christensen

et al.[54] ().

LiCl from water to an organic solvent. The experimental data are also given for comparison. The model
is capable of accurately reproducing the standard Gibbs energy of transfer data.

4.6. Modeling enthalpy and heat capacity

A thermodynamically consistent model should reproduce not only the properties that directly result
from the excess Gibbs energy (i.e. VLE and SLE), but also the first and second derivatives of the Gibbs

100000 -
_§_ 10000 -
i3 1
S
£
ﬁ'
= 1000 -
ko] b
I
100 . ; ‘
0.001 0.01 0.1 1 10

(m;-my) mol.kg H,O™

Fig. 26. Calculated and experimental heat of dilution data of aqueous NacCl at various temperatures at saturation pressures. The
experimental data were taken from Mayrath and Wd&9].
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Fig. 27. Heats of dilution of aqueous citric acid at various initial concentrations an@.ZFhe experimental data were taken
from Dobrogowska et a[130].

energy with respect to temperature. Thus, heat of mixing and heat capacity data have been used, togeth
with VLE and solubility data, to fit the model parameters so that consistent results can be obtained.
Several types of enthalpy data have been considered, i.e.

1. heat of dilution (e.g. mixing aqueous single- or multi-salt solutions with water);

2. heat of mixing of two pure components (e.g. methanol with water);

3. heat of mixing of a solution of a salt in one solvent with another, less polar, pure solvent (e.g. mixing
an aqueous NaCl solution with methanol).

100000
1 x=0.8322 x=1.0
&
= 10000 |
° 1
E 1
) |
:'-:? 1000E x,=0.1092 Q\LQ%%
100
0.001 0.01 0.1 1

Xt (H2S04)

Fig. 28. Calculated and experimental heats of dilution of aquee8©iHas a function ok ;1,sg,) at various initial HSO, mole
fractions at 40C. The experimental data were taken from Kim and Ra81] (A, O, ©) and Rutten et a[132] (O).
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Fig. 29. Calculated and experimental heats of mixing of methanol with an aqueous solution of NaCl (10 wt.%, upper curve) and
with pure water (lower curve) at 3&. The experimental data were taken from Friese €tlaB] for the salt effects¢) and
from Friese et al[128] (A) and Christensen et db4] () for other points.

Fig. 25shows the heat of mixing for methanol-water mixtures at various temperatures. The heats of
dilution of aqueous NaCl and citric acid solutions are showRigs. 26 and 2/respectively. Heats of
dilution for various initial concentrations of sulfuric acid including anhydrouS®, (x; = 1) are shown
in Fig. 28 It is of particular interest to examine how the model predicts the effects of a salt on the heat
of mixing of two solventsFig. 29shows the results when an aqueous NaCl solution is mixed with pure
methanol. The heats of mixing of salt-free water with methanol are also shown in the figure. Heat capacities
are shown irFigs. 30 and 31or sulfuric acid solutions in the entire concentration range and for agueous
NacCl solutions at different temperatures. These results indicate that the model can accurately represent
heats of dilution and mixing and heat capacities in mixed-solvent electrolyte solutions of various types.

4.5

4.0

3.5 1
3.0
2.5

Cp, J.g".deg™

2.0

15

1.0 T T T T
00 02 04 06 08 1.0

X, H2304

Fig. 30. Heat capacities of sulfuric acid solutions in the entire concentration rangéGit Ble symbols are the literature data
taken from Zaytsev and Asey¢l03] and the lines were calculated from the model.
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45

3.0

0.0 2.0 4.0 6.0
NaCl mol.kg H,0™'!

Fig. 31. Heat capacities of aqueous NaCl solutions as a function of NaCl molality at 50 at@. T5& symbols denote literature
data taken from Zaytsev and Ase)[@@3] and the lines were calculated from the model.

5. Conclusions

A new, comprehensive thermodynamic model for mixed-solvent electrolyte systems has been devel-
oped for the simultaneous calculation of speciation, phase equilibria, enthalpies, heat capacities, anc
densities. The model contains three contributions to the excess Gibbs energy: a long-range electro:
static interaction term represented by the Pitzer—Debye—Hiickel expression, a short-range interactior
term expressed by the UNIQUAC model for binary interactions between all species, and a middle-range
term of a second virial coefficient-type for the remaining ionic interactions. The solution chemistry is
modeled by incorporating explicit speciation calculations so that all chemical equilibria of ionic disso-
ciation, ion pair formation, hydrolysis of metal ions, formation of metal-ligand complexes, acid—base
reactions, etc. are taken into account. The model has been designed to encompass systems contai
ing electrolytes and nonelectrolytes with any composition. The speciation calculations rely on the use
of the Helgeson—Kirkham—Flowers equation of state, coupled with extensive databases of standard-
state properties of aqueous species. Special attention has been paid to ensuring thermodynami
consistency when the standard-state properties are combined with activity coefficients. In addition,
the model has been constrained to represent the Gibbs energy of transfer between solvents so that tf
chemical potentials of species are correctly reproduced. Furthermore, a methodology has been devel
oped to constrain the model to reproduce heat capacities and densities of both pure components an
mixtures. The model has been extensively validated using experimental data for VLE, solubility, ac-
tivity coefficients, acid dissociation constants in mixed-solvents, speciation, Gibbs energy of transfer,
density, heats of mixing and dilution, and heat capacity. The model is valid for a wide class of elec-
trolyte systems including aqueous electrolyte solutions ranging from infinite dilution to fused salts,
fully miscible acids, electrolytes in organic and mixed-solvents, and nonelectrolyte mixtures. For all
types of systems and data, the model has been shown to reproduce experimental results with goo
accuracy.
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List of symbols
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o @ @
ij o dij o dij
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dij > dij > dij
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&, fij
/ / !/ /
bij » Cijs dij » €jjs
! / /
fij» 8ij» hj
ij
0
C,.i
GeX
AtrG?
h
heX
heX,*

=)

S 452 7T

@

X,

<
o

N X .S

UNIQUAC interaction parameter betweeandi
UNIQUAC parameters in activity coefficient calculations

UNIQUAC parameters in density calculations
Debye—Hiickel parameter, defineddq. (8)

middle-range parameters in activity coefficient calculations

middle-range parameters in density calculations
middle-range interaction parameter betwéeand]

molar heat capacity of pure liquid

excess Gibbs free energy

Gibbs energy of transfer of

molar enthalpy

excess molar enthalpy of a mixture

excess molar enthalpy of a mixture in the unsymmetrical convention
molar enthalpy of pure liquid

standard-state partial molar enthalpyi of

mole fraction-based ionic strength, definedeiq. (7)
ionization constant

molality of i

molecular weight of

number of moles off

pressure (MPa)

UNIQUAC surface area parameter

UNIQUAC size parameter

temperature (K)

excess molar volume of a mixture in the unsymmetrical convention
molar volume of pure liquid

standard-state partial molar volumei of

mole fraction ofi

compressibility factor

Greek symbols

activity coefficient ofi

activity coefficient of speciessin unsymmetrical convention

standard-state chemical potential of species

standard-state chemical potential of speci@sunsymmetrical reference state and mole
fraction convention

standard-state chemical potential of speciesunsymmetrical reference state and
molality convention

density
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