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A comprehensive model for calculating the electrical conductivity of multicomponent aqueous
systems has been developed. In the infinite-dilution limit, the temperature dependence of ionic
conductivities is calculated on the basis of the concept of structure-breaking and structure-
making ions. At finite concentrations, the concentration dependence of conductivity is calculated
from the dielectric continuum-based mean-spherical-approximation (MSA) theory for the
unrestricted primitive model. The MSA theory has been extended to concentrated solutions by
using effective ionic radii. A mixing rule has been developed to predict the conductivity of
multicomponent systems from those of constituent binary cation-anion subsystems. The effects
of complexation are taken into account through a comprehensive speciation model coupled with
a technique for predicting the limiting conductivities of complex species from those of simple
ions. The model reproduces the conductivity of aqueous systems ranging from dilute to
concentrated solutions (up to 30 mol/kg) at temperatures up to 573 K with an accuracy that is
sufficient for modeling industrially important systems. In particular, the conductivity of
multicomponent systems can be accurately predicted using data for single-solute systems.

Introduction

Electrical conductivity is one of the principal trans-
port properties of aqueous electrolyte systems. In
engineering applications, the knowledge of electrical
conductivity is important for the design and optimiza-
tion of electrolysis processes and electrochemical power
sources. In the area of corrosion protection, electrical
conductivity provides useful information for assessing
the corrosivity of aqueous media and for the design of
cathodic protection systems. Also, conductivity is used
to gain insight into the properties of electrolyte solutions
and to evaluate characteristic quantities such as dis-
sociation constants.
A comprehensive model for electrical conductivity has

to include methods for computing limiting conductivities
of ions and the composition dependence of conductivity
at finite concentrations. Limiting ionic conductivities
characterize the mobility of ions in the infinite-dilution
limit. They provide a starting point for the computation
of electrical conductivity at finite concentrations and are
necessary as input for most theories of the concentration
dependence of conductivity. The available theories of
limiting conductivity are based on the continuum-
mechanics dielectric friction approach (Hubbard, 1978;
Hubbard and Kayser, 1982). The dielectric friction
theory makes it possible to gain insight into the mobility
of charged spheres in a dielectric continuum. However,
it is not suitable as an engineering-oriented, predictive
model because it does not include structural effects of
ion-water interactions (cf. a review by Evans et al.,
1979; Ibuki and Nakahara, 1987). Using a more
empirical approach, Marshall (1987) has developed a
reduced-state relationship that emphasizes density ef-
fects at high temperatures. This relationship has been
developed for a limited number of ions for which
extensive data are available. Several studies have
shown that limiting conductivity is primarily deter-
mined by structural effects caused by interactions of

ions with the hydrogen-bonded network of water mol-
ecules (Kay and Evans, 1966; Kay et al., 1968). Ac-
cordingly, the temperature dependence of limiting con-
ductivities depends on the structure-breaking and
structure-making properties of ions. However, no fully
quantitative technique is available that would make it
possible to correlate and extrapolate limiting conductiv-
ity data with respect to temperature for all ions that
are of industrial interest.
The concentration dependence of electrical conductiv-

ity has been extensively investigated for dilute aqueous
solutions. A limiting law for conductivity was developed
by Onsager (1926) by using the Debye-Hückel (1924)
equilibrium distribution functions. This law was later
extended by several authors as a power series in c1/2,
with additional nonanalytic terms in c ln c. Various
classical theories of electrical conductivity in dilute
solutions have been reviewed by Justice (1983). The
classical theories, based on combining Onsager’s contin-
uity expressions with the Debye-Hückel distribution
functions, are generally valid for concentrations up to
10-2 mol/dm3. Recently, Bernard et al. (1992) and Turq
et al. (1995) combined the Onsager continuity equations
with equilibrium distribution functions calculated for
the unrestricted primitive model using the mean spheri-
cal approximation (MSA). The MSA theory accurately
represents the properties of electrolyte solutions in the
limit of the primitive model, i.e., up to approximately 1
mol/dm3. Thus, it provides a major improvement over
the Debye-Hückel theory. However, the analytical
MSA theory has been developed for systems containing
only a single cation-anion pair. Therefore, there is a
need for a comprehensive model that would be capable
of reproducing the conductivity of multicomponent
systems in a full concentration range that is of interest
for industrial applications.
A comprehensive, engineering-oriented model should

satisfy a number of requirements:
(1) The model should predict the limiting conductivi-

ties of individual ions in wide temperature ranges even
when experimental data are available only at ambient
temperatures.
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(2) It should reproduce the conductivity of systems
ranging from infinitely dilute to very concentrated.
(3) The conductivity of multicomponent systems should

be reasonably predicted on the basis of information
obtained from single-solute systems.
(4) The effects of complexation or hydrolysis on

conductivity should be taken into account in accordance
with reasonable speciation models.
In this work, we develop a model that satisfies these

requirements and verify its performance for selected
aqueous systems with single and multiple solutes.

Temperature Dependence of Limiting
Conductivities

The limiting ionic conductivities are usually known
at one temperature (such as 298.15 K) or over narrow
temperature ranges. There are only 20 ions (i.e., H+,
Li+, Na+, K+, Rb+, Cs+, Ag+, NH4

+, Mg2+, Ca2+, Ba2+,
Cl-, Br-, NO3

-, CNS-, ClO4
-, I-, OH-, HSO4

-, and
SO4

2-) for which the available experimental data extend
at least up to 473 K (Horvath, 1985; Quist andMarshall,
1965; Marshall, 1987). To express the temperature
dependence of limiting conductivities, it is convenient
to use the equation of Smolyakov (1969), i.e.

where λ0 is the limiting conductivity, η is the viscosity
of pure water, and A and B are adjustable constants.
Equation 1 does not include any density effects, which
have been shown to become important at high pressures
and temperatures. Thus, eq 1 is limited to the dense
liquid phase region at temperatures extending up to ca.
573 K. In this work, eq 1 is used as a starting point for
developing a generalized correlation for predicting limit-
ing conductivities as functions of temperature.
Application of this equation to the correlation of

limiting conductivities for the 20 ions for which the data
are available up to 473 K gives an average deviation of
0.96%. For some of these ions, the correlation was
extended to 573 K if high-temperature data were
available (Quist and Marshall, 1965; Marshall, 1987).
The coefficients A and B and the relative deviations for
these ions are collected in Table 1. The viscosity of water
was calculated from the equation of Watson et al. (1980).
In all cases, the deviations are very satisfactory and are
reasonably close to experimental uncertainty. It is also
important that eq 1 provides a reliable extrapolation
beyond the temperature range of available experimental
data. Therefore, eq 1 can be further used to generalize
the temperature dependence of λ0.
A generalized expression for the temperature de-

pendence of λ0 has to recognize the structural effects
that are caused by interactions of ions with the H2O
hydrogen-bonded network. These effects are the pri-
mary factor that determines the temperature de-
pendence of λ0 (Kay and Evans, 1966; Kay et al., 1968).
A convenient quantitative measure of the structural
effects has been defined by Marcus (1985). This meas-
ure, called the structural entropy ∆Sstr

0 , is defined as
the structural component of the entropy of hydration
∆Shydr

0 and is calculated as

where ∆Shyd
0 (Born) is the electrostatic contribution to

the hydration entropy and ∆Shyd
0 (nonstructural, non-

electrostatic) is a contribution due to the immobilization
of water molecules around the ions and a change of
standard state between the ideal gas and aqueous
phase. The ∆Shyd

0 (Born) contribution is calculated
from the Born (1920) equation for the hydration of
charged spheres in dielectric continuum and
∆Shyd

0 (nonstructural, nonelectrostatic) is assigned an
average value of -80 J K-1 mol-1. An ion is predomi-
nantly structure-breaking if ∆Sstr

0 > 0. Similarly, an
ion is mostly structure-making if ∆Sstr

0 < 0. The
values of ∆Sstr

0 have been computed by Marcus (1985)
for most ions.
In this work, we develop a generalized, predictive

formula for the coefficient B of eq 1 by seeking a
correlation between B and the structural entropy
∆Sstr

0 . The experimental data base for this correlation
consists of ions for which the temperature range of the
available limiting conductivity data extends over more
than 35 K (Quist and Marshall, 1965; Smolyakov, 1969;
Falkenhagen and Ebeling, 1971; Harned and Owen,
1958; Robinson and Stokes, 1959; Kay and Evans, 1966;
Pebler, 1981; Marshall, 1987). This minimum range is
necessary to obtain a statistically significant value of
B. Overall, there are 30 ions for which the limiting
conductivity data extend over more than 35 K (i.e., the
ions from Table 1 and an additional 10 ions for which
the temperature range is between 35 and 100 K). It
should be noted that the limiting conductivity of the H+

and OH- ions in water is a manifestation of the
prototropic mechanism of ionic mobility (Erdey-Gruz,
1974), which is different from the general mechanism
of mobility of other ions. Thus, the H+ and OH- ions
cannot be expected to follow the same relationship
between B and ∆Sstr

0 as other ions. The correlation
between B and ∆Sstr

0 can be established only for the
ions that share a common mechanism of ionic mobility
based on the interplay between hydrodynamic motion
and dielectric relaxation in a molecular solvent.

Table 1. Representation of Limiting Ionic Conductivities
Using Equation 1 for the Ions for Which Experimental
Data Extend from 273 to at Least 473 Ka

ion A B AAD

H+ -3.9726 837.79 0.51
Li+ -3.2762 -26.894 0.53
Na+ -3.3594 75.492 0.52
K+ -3.5730 254.36 0.97
Rb+ -3.6517 294.79 1.22
Cs+ -3.6512 291.42 1.58
Ag+ -3.4036 152.70 0.96
NH4

+ -3.3368 187.06 1.06
Mg2+ -3.0347 -3.505 0.98
Ca2+ -3.0470 33.503 0.30
Ba2+ -3.0994 69.134 0.53
Cl- -3.4051 216.03 0.73
Br- -3.4910 249.33 0.85
I- -3.5660 265.28 0.45
NO3

- -3.6743 277.43 1.20
CNS- -3.5544 221.74 1.15
ClO4

- -3.6181 243.13 0.93
OH- -3.3346 468.13 2.64
HSO4

- -3.5038 119.58 2.02
SO4

2- -2.9457 90.983 0.26

average 0.74
a The average deviation for each ion is calculated as AAD )

(100/N)Σ|λcal0 - λexp
0 |/λexp0 where N is the number of experimental

data points. The data were taken from Horvath (1985), Quist and
Marshall (1965), and Marshall (1987).ln λ0(T) η(T) ) A + B/T (1)

∆Sstr
0 ) ∆Shyd

0 - ∆Shyd
0 (Born) -

∆Shyd
0 (nonstructural, nonelectrostatic) (2)
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We have found that a reasonably significant correla-
tion exists between the B/|z| ratio (where z is the charge
of the ion) and ∆Sstr

0 . This correlation is shown in
Figure 1. A common curve is obtained for the structure
breakers (i.e., for ∆Sstr

0 > 0) and weak structure mak-
ers (i.e., for -100 < ∆Sstr

0 < 0 J mol-1K-1). This line
splits in two for ∆Sstr

0 values below -100 J mol-1 K-1.
For strongly electrostrictive structure makers, a hori-
zontal line at B/|z| ) 0 is obtained. At present, the
location of this line is not very precisely known because
the temperature dependence of limiting conductivities
of many transition-metal cations (which are electro-
strictive structure makers) has not been measured. For
hydrophobic structure makers, a separate line is estab-
lished that drops to negative B/|z| values. The algebraic
representation of the correlation shown in Figure 1 is

The above correlation can be used in conjunction with
a single experimental data point to predict the complete
temperature dependence of limiting ionic conductivities
according to eq 1. Such predictions are illustrated in
Figures 2-4 for selected ions. The dashed lines show
the conductivities predicted by calculating the param-
eters of eq 1 as (1) parameter B from eqs 3-5 and (2)
parameter A from one experimental λ0 point at 298.15
K and the value of B.
In Figures 2 and 3, the predictions are shown for

selected groups of ions for which experimental data are
available in a wide temperature range (up to 473 K).
In Figure 4, the results are shown for ions for which
experimental data are more limited. As shown in
Figures 2-4, the predictions are very satisfactory. This
procedure provides an accurate method for calculating
the limiting conductivities when experimental data are
available only at one temperature or in a narrow range.

This is the case for a large number of ions (cf. Horvath,
1985; Erdey-Gruz, 1974). For comparison, the solid
lines in Figures 2-4 show the results of correlating the
available λ0 data in the whole temperature range by
fitting individual values of A and B. The deviations
between the dashed and solid lines are reasonably small
for most of the ions, which indicates that the predicted
values can be used with confidence outside of the range
of experimental data.
In general, the proposed technique for calculating the

limiting conductivities is accurate for temperatures up
to 523 K and, in favorable cases, up to 573 K at
saturated vapor pressures. Beyond 573 K, the behavior
of limiting conductivities becomes dominated by density
effects (Marshall, 1987) and cannot be approximated by
eq 1.

Limiting Conductivities of Complex Ions

Complex ions of the Me(Xm-)n type (X ) OH-, Cl-,
Br-, CN-, SCN-, etc.) play a very important role in most
aqueous systems of industrial interest. At the same
time, limiting conductivities for such ions are difficult
to measure because the complex ions always occur

Figure 1. Relationship between the parameter B (eq 1) and the
structural entropy ∆Sstr

0 for ions. The circles represent the values
of B, divided by ionic charge, that have been obtained by fitting
eq 1 to limiting conductivity data for individual ions. The lines
are obtained from eqs 3-5.

B/|z| ) 0.006946(∆Sstr
0 )2 + 2.485∆Sstr

0 + 179.1

for ∆Sstr
0 > -100 J mol-1 K-1 (3)

B/|z| ) 0 for ∆Sstr
0 < -100, electrostrictive

structure makers (4)

B/|z| ) 126.0 + 1.260∆Sstr
0 for ∆Sstr

0 < -100,
hydrophobic structure makers (5)

Figure 2. Limiting ionic conductivities of Li+, Na+, K+, Cs+, Ag+,
and Cl-. The solid lines have been calculated by fitting the
parameters A and B (eq 1) to individual data. The dashed lines
have been obtained by computing the parameter B from the
generalized correlation (eqs 3-5) and utilizing a single experi-
mental point at 298.15 K to calculate A.

Figure 3. Limiting ionic conductivities of NO3
-, Br-, Ba2+, and

SO4
2-. The solid lines have been calculated by fitting the param-

eters A and B (eq 1) to individual data. The dashed lines have
been obtained by computing the parameter B from the generalized
correlation (eqs 3-5) and utilizing a single experimental point at
298.15 K to calculate A.
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together with simple ions (i.e., Mez+ and Xm-). There-
fore, it is difficult to separate the contributions of simple
and complex ions to the electrical conductivity of dilute
solutions. The dearth of experimental limiting conduc-
tivity data for complex ions makes it necessary to
develop a procedure for estimating them from the
limiting conductivities of simple ions. For this purpose,
we utilize the relationship between the limiting con-
ductivity of an ion λi0 and the Stokes radius ri,S (Marcus,
1985), i.e.

where F,NA, and η are the Faraday constant, Avogadro’s
number, and the viscosity of the solvent, respectively.
The Stokes radius is a measure of the size of a hydrated
ion and is greater than the crystallographic radius. In
fact, the Stokes radii are used to estimate the hydration
numbers of ions (Marcus, 1985).
In this work, we postulate that the volume of a

hydrated complex ion is, to a first approximation, equal
to the sum of the hydrated volumes of the constituent
simple ions. If a complex is made up of n simple ions,
the Stokes radius of the complex (rcomplex,S) is then
related to the Stokes radii of the constituent simple ions
(ri,S) by

According to the definition of the Stokes radius, eq 7
gives us a link between the limiting conductivity of the
complex and those of the constituent simple ions. After
algebraic rearrangement, a simple formula for the
limiting conductivity of the complex is obtained:

This relationship has been applied to predict the limit-
ing conductivities of the few complexes for which

experimental data are available. The results are shown
in Table 2. In contrast to simple ions, the experimental
values for complexes are subject to considerable uncer-
tainty and depend on the source of data (e.g., conductiv-
ity and transference number measurements). The
predicted values are well within the range of experi-
mental values that are reported for each complex. Thus,
eq 8 is adequate, despite its simplicity, for the prediction
of limiting conductivities of complexes.

Concentration Dependence for Binary
Cation-Anion Pairs

To calculate the concentration dependence of conduc-
tivity, we utilize the MSA theory of Bernard et al. (1992)
and develop its semiempirical extension to higher
concentrations. According to Bernard et al. (1992), the
conductivity of an ion in a finite-concentration solution
(λi) is related to the limiting conductivity of this ion
(λi

0) by

where δX/X is the relaxation effect and δνi
el/νi

0 is the
electrophoretic correction. Detailed expressions for the
relaxation and electrophoretic terms are given in the
appendix. It should be noted that closed-form expres-
sions for δX/X and δνi

el/νi
0 have been obtained only for

systems containing a single cation and a single anion.
In the unrestricted primitive model, an electrolyte

solution is approximated by a system containing charged
spheres with different sizes in a dielectric continuum.
Therefore, eq 9 can be applied to calculate the concen-
tration dependence of λi if the following parameters are
known: (1) limiting conductivities λi

0 and λj
0, (2) ionic

diameters σi and σj, (3) ionic charges zi and zj and (4)
dielectric constant and viscosity of the solvent as func-
tions of temperature and, to a lesser extent, pressure.
These properties can be accurately computed from the
equations of Uematsu and Franck (1980) and Watson
et al. (1980), respectively.
Although the ionic diameters are difficult to measure

in solution, they can be reasonably approximated by
crystallographic radii (Marcus, 1985). As shown by
Bernard et al. (1992), the predictions for several simple
salts are in good agreement with experimental data for
concentrations up to ca. 1 mol/dm3 when crystal-
lographic radii are used. In this concentration range,
the solvation properties and solvent structure do not
change appreciably and the primitive model with ion
diameters fixed at their crystallographic values is
adequate. Thus, the MSA solution can be then used
without any parameters derived from conductivity data
(other than the limiting ionic conductivities).
In this work, we extend the applicability of the MSA

conductivity model to higher concentrations, i.e., well
beyond 1 mol/dm3. For this purpose, we note that a
change in viscosity at higher concentrations entails a
changing ionic mobility, which is a manifestation of
altered solvation structure around ions and short-range
interactions between ions. These effects can be taken
into account by assuming an effective ion size, which is
a function of a changed ionic environment in a concen-
trated solution. Therefore, we introduce a semiempiri-
cal modification of the MSA conductivity model, in
which the effective ion radius is a function of the ionic
strength in a concentrated solution. The algebraic form

Figure 4. Limiting ionic conductivities of Bu4N+, Pr4N+, Et4N+,
Me4N+, NH4

+, Sm3+, La3+, CrO4
2-, and Co(NH3)63+. The solid lines

have been calculated by fitting the parameters A and B (eq 1) to
individual data. The dashed lines have been obtained by computing
the parameter B from the generalized correlation (eqs 3-5) and
utilizing a single experimental point at 298.15 K to calculate A.

ri,S ) F2

6πNAη
|zi|
λi
0

(6)

rcomplex,S
3 ) ∑

i)1

n

ri,S
3 (7)

λcomplex
0 )

|zcomplex|

[∑i)1n (ziλi
0)3]1/3

(8)

λi ) λi
0(1 +

δνi
el

νi
0 )(1 + δX

X ) (9)

Ind. Eng. Chem. Res., Vol. 36, No. 5, 1997 1935



of the ionic-strength dependence of the effective radius
has been found by analyzing a large number of conduc-
tivity data sets and is given by

In eq 10, the parameters ci (i ) 1, 2, 3) are determined
by regressing experimental conductivity data for binary
cation-anion pairs in concentrated solutions.
The effective radius of a given ion depends, in contrast

to the crystallographic radius, on the chemical identity
of the counterion. At the same time, effective radii of a
cation and an anion cannot be separately evaluated
when only overall conductivity data are used. This is
due to the fact that the contributions of individual ions
to the overall conductance of a solution can be ascer-
tained only when transference data are available in the
same concentration and temperature range as the
conductivity data. This is usually not the case. There-
fore, it is reasonable to utilize an average effective ionic
radius, which is a characteristic quantity for any
cation-anion pair. In this study, we regress average
effective radii for cation-anion pairs using data for
single-solute systems. This makes it possible to cover
a full range of concentrations that are important for
practical applications.
The parameters c1, c2, and c3 are weakly temperature-

dependent. For the representation of conductivity data
over wide temperature ranges, a linear temperature
dependence is used, i.e.

The temperature dependence of the average effective
ion radii is relatively weak because the effect of tem-
perature on conductivity is primarily accounted for by
the limiting conductivities (eq 1) and, to a lesser extent,
by the temperature dependence of the relaxation and
electrophoretic terms (cf. Appendix). Therefore, the
conductivities can be reasonably predicted in substantial
temperature ranges even when the parameters ci (i )
1, 2, 3) are determined only from ambient-temperature
data.

Concentration Dependence for Multicomponent
Systems

The analytical MSA theory of the concentration
dependence of conductivity has been developed for
systems containing only a single cation and a single
anion. Therefore, it is not directly applicable to systems
containing two or more solutes (e.g., NaCl + KCl + H2O)
or even systems with a single solute that dissociates into
more than two ions (e.g., ZnCl2 + H2O, which forms the
Zn2+, ZnCl+, ZnCl3-, ZnCl42-, and Cl- ions). An ana-
lytical theory for multicomponent systems can be ob-

tained only for very dilute solutions (Onsager and Kim,
1957; Justice, 1983). Therefore, it is necessary to
develop a technique for predicting the conductivity of
multicomponent solutions in the full concentration
range.
Urban et al. (1983) and Miller (1996) studied the

prediction of electrical conductivity in two-solute sys-
tems on the basis of experimental data for single-solute
systems. In particular, Miller (1996) reviewed several
linear approximations to the specific conductance, which
can be written in terms of various solute fractions
(molar, equivalent, or ionic strength) and the specific
conductance of constituent binary subsystems, i.e.,

where a1 and a2 are the fractions of binary subsystems
1 and 2, respectively. The specific conductances of the
binary subsystems (i.e., κ1 and κ2) are evaluated at some
type of constant concentration (K) which characterizes
the mixture (constant total molarity, constant equiva-
lent concentration, or constant ionic strength). Al-
though the use of constant ionic strength is supported
by the theories of dilute solutions, the selection of the
type of constant concentration is essentially guided only
by its empirical effectiveness (Miller, 1996).
No theoretical methods are available for the predic-

tion of conductivity of concentrated solutions that
contain any number of ions. Therefore, it is necessary
to develop a method that utilizes the available informa-
tion for binary cation-anion pairs. In the case of
complex multicomponent mixtures, it would be ambigu-
ous to determine a priori the binary subsystems that
make up the multicomponent mixture. Instead, it is
more convenient to express the specific conductivity of
the mixture in terms of the composition-dependent
conductivities of the constituent ions. In this work, we
derive a mixing rule for the conductivity of multi-
component systems by starting from the definition of
the specific conductivity, i.e.

where NT is the total number of ions and λk is the
conductivity of the kth ion in a multicomponent solution.
From the MSA theory, we can calculate the conductivity
of individual ions that belong to binary cation-ion pairs.
In other words, we can obtain the conductivity of a
cation i in the presence of an anion j and the conductiv-
ity of an anion j in the presence of a cation i. These
quantities will be denoted by λi(j) and λj(i), respectively.
It can be postulated that λk in eq 13 can be ap-
proximated by an average value λhk, i.e.

Table 2. Comparison of Predicted Limiting Conductivities of Complex Ions (MeCl+) with Experimental Data (All Values
Are in Ω-1 cm2 mol-1)

λMeCl+
0

complex λMe2+
0 λCl-

0 predicted exptl ref

BaCl+ 63.8 76.35 31.2 30 Bianchi et al. (1987), recommended value
22-38 Bianchi et al. (1987), range of values

MgCl+ 53.3 76.35 26.3 30 Bianchi et al. (1988)
CdCl+ 53.95 76.35 26.6 25.5 Indaratna et al. (1986a), from transport numbers

26.0
28.2
33 Indaratna et al. (1986b), from conductivity

σjeff ) I1/2

(c1 + c2I
1/2)10

+ c3 (10)

ci ) ci,0 + ci,1(T - 298.15) i ) 1, 2, 3 (11)

κ(K) ) a1κ1(K) + a2κ2(K) (12)

κ ) ∑
k

NT

ck|zk|λk (13)

λk = λhk (14)
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where λhk is obtained by a suitable combination of λi(j)
and λj(i). The average conductivity of the ith cation (λhi)
is obtained by averaging over all anions that exist in
the mixture, i.e.

where NA is the total number of anions, fj is a fraction
of the jth anion, and λi(j) (i.e., the conductivity of cation
i in the presence of anion j) is calculated at the ionic
strength of the multicomponent mixture (I). Similarly,
the average conductivity of the jth anion is obtained by
averaging over all cations, i.e.

where NC is the number of cations, fi is a fraction of the
ith cation, and λj(i) (i.e., the conductivity of anion j in
the presence of cation i) is calculated at the same ionic
strength I. To calculate the quantities λi(j) and λj(i) at
the ionic strength of the mixture, eq 9 is applied at the
following concentrations of the ions in a binary pair i-j:

Equations 17 have been derived to satisfy the condition
of a constant ionic strength.
The definition of the fraction of the ith ion (fi) in eqs

15 and 16 is guided by the empirical effectiveness of the
final mixing rule. Tests made using all the ternary and
quaternary systems listed in Table 3 revealed that the

best agreement is obtained when fi is the equivalent
fraction given by

where the equivalent concentration ceq is defined as

Equations 14-19 make it possible to predict the
conductivity of a multicomponent mixture from conduc-
tivities of ions computed for binary subsystems contain-
ing a single cation and a single anion. It is noteworthy
that eqs 14-19 reduce, for a two-solute system, to eq
12 with K ) I and ai defined as equivalent fractions of
solutes.

Results and Discussion

The performance of the proposed model has been
tested for a large number of binary and ternary aqueous
systems. In particular, we focused on the prediction of
electrical conductivity for model multicomponent solu-
tions because aqueous systems of industrial importance
usually contain more than one solute. First, the avail-
able data for the constituent binary subsystems were
correlated by regressing the parameters that determine
the dependence of the effective average diameter on
ionic strength and temperature (eqs 10 and 11). Then,
these parameters were used to predict the conductivity
of ternary and quaternary systems.
First, calculations have been performed for systems

with simple speciation, i.e., electrolytes that show

Table 3. Representation of Electrical Conductivity in Binary, Ternary, and Quaternary Systemsa

system temp range AAD ref

Binary Systems
NaCl + H2O 298-573 0.71 Chambers (1956), Stearn (1922), Isono (1980), Noyes and

Coolidge (1904), Quist and Marshall (1968a)
KCl + H2O 298-523 0.83 Stearn (1922), Campbell and Ross (1956), Miller (1966), Isono (1980),

Noyes and Coolidge (1904), Gorbachev and Kondratev (1961)
NaBr + H2O 298-573 0.94 Stearn (1922), Isono (1985), Quist and Marshall (1968b)
KBr + H2O 298-523 0.81 Stearn (1922), Jones and Bickford (1934), Isono (1985),

Kondratev and Gorbachov (1965)
NaI + H2O 298-573 1.50 Stearn (1922), Molenat (1969), Dunn and Marshall (1969)
KI + H2O 298-523 0.92 Stearn (1922), Chambers (1958), Kondratev and Gorbachov (1965)
MgCl2 + H2O 298-523 1.99 Miller et al. (1984), Isono (1985), Kondratev and Nikich (1963)
HCl + H2O 273-338 1.30 Owen and Sweeton (1941), Haase et al. (1965)
HNO3 + H2O 273-323 1.05 Haase et al. (1965)
NH4NO3 + H2O 298-453 1.33 Sharma and Gaur (1977), Campbell and Kartzmark (1952),

Campbell et al. (1954)
AgNO3 + H2O 298-495 1.24 Campbell and Kartzmark (1952), Campbell et al. (1954),

Campbell and Singh (1959)
HCOOK + H2O 288-328 1.47 Isono (1985)
CdCl2 + H2O 298 0.33 McQuillan (1974), Indaratna et al. (1986b)

Ternary Systems
KCl + NaCl + H2O 298 0.24 Stearn (1922)
KBr + NaBr + H2O 298 0.72 Stearn (1922)
KI + NaI + H2O 298 0.59 Stearn (1922)
NaCl + MgCl2 + H2O 298 0.73 Bianchi et al. (1989)
MgCl2 + HCl + H2O 298 2.88 Berecz and Báder (1973)
CdCl2 + HCl + H2O 298 0.92 Török and Berecz (1989)

Quaternary System
NaCl + KCl + HCl + H2O 298 1.29 Ruby and Kawai (1926)
a The deviations from experimental data are defined as

AAD ) 100
N ∑|(κcalc - κexp)/κexp|

λhi ) ∑
j

NA

fjλi(j)(I) (15)

λhj ) ∑
i

NC

fiλj(i)(I) (16)

ci ) 2I
|zi|(|zi| + |zj|)

; cj ) 2I
|zj|(|zi| + |zj|)

(17)

fi )
|zi|ci
ceq

(18)

ceq ) ∑
i

NC

ci|zi| ) ∑
j

NA

cj|zj| (19)
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complete dissociation and do not form complexes (e.g.,
alkali-metal halides). For such systems, a solution with
a single solute contains only one cation and one anion.
Thus, the selection of the cation-anion pair for regress-
ing the effective diameter is straightforward. For
example, the conductivity of the NaCl + H2O system
can be exactly reproduced once the average effective
radius for the Na+-Cl- pair is determined. Calcula-
tions have been performed for binary systems containing
H2O and NaCl, KCl, NaBr, KBr, NaI, KI, MgCl2,
HCOOK, AgNO3, NH4NO3, HNO3, or HCl as solutes.
The obtained deviations from experimental data are
given in Table 3, and the regressed parameters are
collected in Table 4. The binary systems shown in Table
3 have been selected in order to include data at high
concentrations and/or temperature. Usually, experi-
mental conductivity data are available at either high
temperatures or high concentrations. However, data for
two of the systems listed in Table 3 (i.e., AgNO3 + H2O
and NH4NO3 + H2O) extend to both high molalities (ca.
29 mol/kg) and high temperatures. For all systems, the
representation of experimental data is very satisfactory.
Figure 5 shows specific conductivities as functions of

concentration for the systems for which experimental
data extend over very wide concentration ranges (up to
30 mol/kg of H2O). The specific conductivities exhibit
maxima followed by a slow, nonasymptotic decrease of
κ versusm. The location of the maximum and the shape

of the κ versusm curve is characteristic for each solution
and cannot be easily generalized. It is noteworthy that
specific conductivity decreases to very small values at
high concentrations for some electrolytes (such as
CdCl2), whereas it remains quite high for other electro-
lytes even at m ) 30 mol/kg of H2O. Thus, the high-
concentration data provide a stringent test for the
concentration dependence of the effective ionic radii (eq
10). As shown in Figure 5, eq 10 makes it possible to
reproduce the various shapes of the κ versus m curves
with very good accuracy.
The parameters regressed from binary data have then

been used to predict the conductivity for the ternary
systems KCl + NaCl + H2O, KBr + NaBr + H2O, KI +
NaI + H2O, NaCl + MgCl2 + H2O, and MgCl2 + HCl +
H2O as well as for the quaternary system NaCl + KCl
+ HCl + H2O. As shown in Table 3, the quality of
predicting the conductivity for multicomponent systems
is similar to the quality of reproducing the data for the
binary subsystems. This indicates that the mixing rule
for multicomponent systems (eqs 14-19) does not
introduce any significant error into the calculation of
conductivities and yields consistent results for a variety
of systems. Additionally, the quality of reproducing
experimental data is shown in Figures 6 and 7 for the
systems KCl + NaCl + H2O and NaCl + MgCl2 + H2O,
respectively. As illustrated in Figures 6 and 7, the
accuracy of representing the experimental data is close
to the experimental uncertainty. Figures 6 and 7 also

Table 4. Coefficients That Determine the Ionic Strength Dependence of the Average Effective Radius (Eqs 10 and 11)a

cation-anion pair c1,0 c2,0 c3,0 c1,1 c2,1 c3,1

Na+-Cl- 0.892 69 0.146 90 0.605 11 0.457 16 × 10-3 -0.394 0 × 10-3 0.662 56 × 10-3

K+-Cl- 0.937 16 0.898 54 × 10-1 0.681 78 -0.395 5 × 10-3 0.331 80 × 10-3 -0.188 7 × 10-2

Na+-Br- 0.851 07 0.123 04 0.250 09 0.596 03 × 10-3 -0.114 9 × 10-3 0.414 67 × 10-2

K+-Br- 0.921 44 0.899 18 × 10-1 0.739 09 0.761 18 × 10-3 0.602 29 × 10-3 0.202 20 × 10-2

Na+-I- 0.803 78 0.127 23 -0.126 30 0.858 87 × 10-4 -0.618 6 × 10-4 0.432 52 × 10-2

K+-I- 0.941 55 0.829 06 × 10-1 1.165 3 0.150 73 × 10-1 -0.137 2 × 10-1 0.401 36 × 10-2

Mg2+-Cl- 0.946 96 0.119 38 0.991 48 0.125 62 × 10-2 -0.813 2 × 10-3 0.611 66 × 10-3

H+-Cl- 0.995 67 0.830 35 × 10-2 0.382 99 0.164 03 × 10-5 -0.101 4 × 10-4 0.896 58 × 10-3

Cd2+-Cl- 0.779 22 0.572 47 0.216 37
CdCl+-CdCl4- 0.980 53 0.010 64 -0.198 69
H+-CdCl4- 0.914 65 0.0407 16 -1.641 8
NH4

+-NO3
- 0.930 81 0.102 38 0.430 47 0.648 64 × 10-3 0.796 89 × 10-5 0.239 13 × 10-2

Ag+-NO3
- 0.996 27 0.313 06 × 10-1 0.825 99 -0.106 6 × 10-2 0.217 71 × 10-3 -0.607 3 × 10-2

K+-HCOO- 0.667 80 0.151 98 2.559 20 -0.149 1 × 10-3 0.374 05 × 10-3 0.148 13 × 10-1

a The coefficients c1,1, c2,1, and c3,1 are omitted when they are not necessary for reproducing the experimental data (as listed in Table
3).

Figure 5. Specific conductivity for electrolytes for which experi-
mental data extend to very high concentrations (up to 30 mol/kg
of H2O). The lines have been calculated using the parameters from
Table 4, and the symbols represent experimental data. The data
for NH4NO3 and AgNO3 are from Campbell and Kartzmark (1952),
and the data for HNO3, HCOOK, and CdCl2 are from Haase et al.
(1965), Isono (1985), and McQuillan (1974), respectively.

Figure 6. Equivalent conductivity of the ternary system KCl +
NaCl + H2O at 298.15 K for various molar ratios of KCl to NaCl.
The solid lines have been calculated using the parameters from
Table 4. The dotted lines have been obtained using crystallographic
ion radii.
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show the prediction of conductivity without any empiri-
cal parameters, i.e., with the ionic radii equal to the
crystalline radii (dotted lines). Such a prediction is in
reasonable agreement with experiment for 1:1 electro-
lytes for concentrations up to ca. 1 mol/dm3. For
electrolytes with higher charges (e.g., 2:1), the predic-
tions from crystalline radii are reliable only up to ca.
0.1-0.2 mol/dm3. Beyond these concentration limits, it
is necessary to rely on the effective, ionic-strength-
dependent radii (solid lines).
For practical applications, it is particularly important

to calculate the conductivity of systems containing
transition metals, which show appreciable complexation.
For example, the binary system CdCl2 + H2O contains
as many as six distinct species, i.e., Cd2+, CdCl+,
CdCl2(aq), CdCl3-, CdCl42-, and Cl-. The amounts of
various species in an aqueous system are computed in
this work by using a thermodynamic model developed
by OLI Systems (Zemaitis et al., 1986; Rafal et al.,
1995). Figure 8 shows the distribution of various
species in the CdCl2 + H2O system obtained from the
OLI thermodynamic model. It is evident that this
system should be treated as a multicomponent system
with two cations (Cd2+ and CdCl+), three anions (CdCl3-,
CdCl42-, and Cl-) and one neutral complex which does
not contribute to electrical conductivity (CdCl2(aq)). In
such systems, it is necessary to select the most impor-

tant cation-anion pairs for which the average effective
ion radii have to be adjusted. In the case of the CdCl2
+ H2O system, the most important pairs are Cd2+-Cl-
in relatively dilute solutions and CdCl+-CdCl42- in
more concentrated solutions. The parameters for these
pairs are given in Table 4. For the remaining cation-
anion pairs, the ion radii were estimated by assuming
the additivity of crystalline ion volumes. Figure 9 shows
the reproduction of the data for the CdCl2 + H2O
system. It can be noted that complexation leads to a
more rapid decline of the equivalent conductivity with
concentration than that observed for noncomplexing
systems (cf. Figures 6 and 7). As shown in Figure 9,
the model represents the data within experimental
uncertainty (solid lines). Additionally, Figure 10 shows
the conductivity in the ternary system CdCl2 + HCl +
H2O when the total formal ionic strength (i.e., the ionic
strength calculated without regard to complexation) is
equal to 10 mol/kg. The maximum of conductivity in
Figure 10 is related to the combined effects of complex-
ation and the addition of H+ ions, which are much more
mobile. The conductivity in this system is also ac-
curately represented by the model.
As shown in Table 4, temperature-dependent param-

eters ci (i ) 1, 2, 3) are regressed when experimental
data are available in wide temperature ranges. How-

Figure 7. Equivalent conductivity of the ternary system NaCl +
MgCl2 + H2O at 298.15 K for various molar ratios of NaCl to
MgCl2. The solid lines have been calculated using the parameters
from Table 4. The dotted lines have been obtained using crystal-
lographic ion radii.

Figure 8. Equilibrium speciation in the CdCl2 + H2O system as
a function of the total molality of CdCl2.

Figure 9. Equivalent conductivity of the CdCl2 + H2O system.
The solid line has been calculated using the parameters from Table
4. The dotted line has been obtained using crystallographic ion
radii.

Figure 10. Equivalent conductivity of the CdCl2 + HCl + H2O
system for the total ionic strength equal to 10 (i.e., 3mCdCl2 + mHCl
) 10 mol/kg). The solid line has been obtained using the param-
eters from Table 4.
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ever, it is worthwhile to note that satisfactory results
are also obtained when no temperature dependence of
the effective diameter is introduced (i.e., when the
coefficients ci,1 in eq 11 are set equal to zero). For
example, average deviations from experimental data
obtained for KCl, KBr, and KI with temperature-
dependent parameters ci are 0.83%, 0.81%, and 0.92%,
respectively (cf. Table 3). For all three salts, the
experimental data are available in the range from
298.15 to 523.15 K. If a temperature-independent
effective diameter was assumed (i.e., ci,1 ) 0, i ) 1, 2,
3) and established based on the data at the lowest
temperature (298.15 K), the average deviations would
increase only to 1.98%, 2.71%, and 2.49% for these three
salts. This indicates that the model developed in this
work can be used to predict electrical conductivities in
wide temperature ranges when limited experimental
data are available at only one temperature (typically,
298.15 K).

Conclusions

The proposed model for electrical conductivity incor-
porates four important features, i.e., (1) a technique for
predicting the temperature dependence of limiting
conductivities on the basis of the concept of structure-
breaking and structure-making ions; (2) a method for
estimating unknown limiting conductivities of complex
species from those of simple ions; (3) an extension of
the MSA theory of the concentration dependence of
conductivity to high concentrations through the intro-
duction of effective radii; (4) a mixing rule for calculating
the conductivity of multicomponent systems. Because
of these features, the model is capable of accurately
reproducing the conductivity of complex aqueous sys-
tems that are encountered in industrial practice. For
practical applications, it is particularly important that
the conductivity of multicomponent systems can be
accurately predicted using parameters obtained from
data for single-solute systems. The model is applicable
for molalities up to 30 mol/kg of H2O and temperatures
up to 573 K. The predictions are expected to be
somewhat less accurate in the 473-573 K temperature
range than at temperatures below 473 K because the
model parameters were obtained using mostly data for
low- and moderate-temperature systems. However,
extrapolations with respect to both temperature and
concentration are made possible by the use of param-
eters with a straightforward physical meaning.
Although the model has been applied only to aqueous

solutions, it is also applicable to nonaqueous and mixed-
solvent systems. However, new parametrization pro-
cedures would be necessary for each solvent.

Appendix

According to Bernard et al. (1992), the relaxation term
in eq 9 is given by

where δX1
rel/X, δX2

rel/X, and δX1
hyd/X are the first-order,

second-order, and hydrodynamic relaxation terms. The
first-order term is

where

In these expressions, Fi is the number density of the ith
ion, σij is given by eq 11, ε is defined as

and Di is the infinite-dilution diffusion coefficient of the
ith ion, which is related to the limiting conductivity by

where F is the Faraday constant. The integral I1 in eq
A-2 is given by

with

Γ is the screening parameter from the MSA theory:

where

The second-order relaxation term is

κq
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where

The integral E1 is evaluated numerically. The hydro-
dynamic relaxation term is given by

where η is the viscosity of the solvent.

The electrophoretic term is the sum of a first-order
and a second-order term:

where

In eq A-22, E is the electric field, which cancels when
the terms in eq A-21 are computed. The first-order
electrophoretic term is given by

The second-order term consists of two parts, I and J,
i.e.
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