Thermodynamics
OLI Thermodynamics and Concepts section will help provide users with an insight about basic concepts OLI software and the engine is built on.
Contents
General Thermodynamics and Fundamentals
- Calculation of pH in multiple solvents
- Conversion of Assays and Pseudo-components to OLI Species
- Electrical Conductivity and Ionic Radii
- H3OION in MSE databank
- Development of the Hydronium Ion for MSE
- Why is the Gibbs Free Energy of Formation for the Hydrogen Ion not zero?
- Heat Capacity
- How is pH calculated when there is no H ion?
- MSE Density Parameter Update
- What is a "BINTER"?
- x-based and m-based activity coefficients in the solver
- Converting mole fraction based equilibrium constants to molality based values
- Electrolytes and Activity Coefficients
- Self-diffusivity
- Total Dissolved Solids (TDS)
- Comparing activity coefficients between different thermodynamic frameworks
- Scale Inhibition
- MSE-SRK
OLI Modeling
- How to calculate fugacities when no vapor phase is present
- How to "Set" the partial pressure of a gas?
- Reaction Kinetics Overview in OLI Software (PDF, 2.5 MB, TIPS #80)
- Scaling Tendencies
- Sparingly Soluble Organics
- Volumes vs. Standard Volumes vs. Standard Liquid Volumes
- TRANGE
- True Species vs Apparent species
- Relative Humidity
- Fixed, point and parent stream conditions - Definitions
Data Regression
- ASAP variable list
- Mixed Solvent Electrolyte ( MSE) model Regression Parameters
- Traditional Regression Parameters
- What is the SOLU parameter?
- Using Stability Constants (Equilibrium Constants) with the OLI Databook (PDF)
OLI Papers and Presentations on Thermodynamics
- Anderko, Andrej, Lencka, Malgorzata. "Computation of Electrical Conductivity of Multi component Aqueous Systems in Wide Concentration and Temperature Ranges. Ind. Eng.Chem.Res. 1997, 36, 1932-1943
- Anderko, A., Wang, P., & Rafal, M. (2002). Electrolyte solutions: from thermodynamic and transport property models to the simulation of industrial processes. Fluid Phase Equilibria, 194-197, 123-142.
- Kosinski, J. J., Wang, P., Springer, R. D., & Anderko, A. (2007). Modeling acid–base equilibria and phase behavior in mixed-solvent electrolyte systems. Fluid Phase Equilibria, 256, 34-41
- Lencka, Malgorzata M., Jerzy J. Kosinski, Peiming Wang, Andrzej Anderko. Thermodynamic modeling of aqueous systems containing amines and amine hydrochlorides: Application to methylamine, morpholine, and morpholine derivatives. Fluid Phase Equilibria 418 (2016) 160-174
- Lencka, Malgorzata M., Richard E. Riman, "Thermodynamic Modeling of Hydrothermal Synthesis of Ceramic Powders." Chem. Mater. 1993, 5, 61-70.
- Lencka, Malgorzata M., Richard E. Riman, "Thermodynamic Modeling of Hydrotehrmal Synthsis of Calcium Titanate with Reference to Other Alkaline-Earth Titanates." Chem. Mater. 1995, 7, 18-25.
- Lencka, Malgorzata M., Magdalena Oledzka, Richard E. Riman, "Hydrothermal Synthesis of Sodium and Potassium Bismuth Titanates." Chem. Mater. 2000, 12, 1323-1330
- Nimkar, R., Simulating refining overhead chemistry in Pro/II. Presented at the SimSci User Conference Pasadena, California September 2016
- Springer, R. D., Wang, Z., Anderko, A., Wang, P., & Felmy, A. R. (2012). A thermodynamic model for predicting mineral reactivity in supercritical carbon dioxide: I. Phase behavior of carbon dioxide–water–chloride salt systems across the H2O-rich to the CO2-rich regions. Chemical Geology, 322-323, 151-171.
- Rafal, M., Berthold, J. W., Scrivner, N. C., & Grise, S. L. (1994). Models for Electrolyte Solutions. In S. I. Sandler, Models for Thermodynamic and Phase Equilibrium Calculations (p. 686). New York: Marcel Dekker, Inc.
- Wang, P., & Anderko, A. (2008). Modeling Thermal Conductivity of Concentrated and Mixed-Solvent Electrolyte Systems. Ind. Eng. chem. Res, 47, 5698-5709.
- Wang, P., Anderko, A., & Young, R. D. (2002). A speciation-based model for mixed-solvent electrolyte systems. Fluid Phase Equilibria, 203, 141-176.
- Wang, P., Anderko, A., Springer, R. D., Kosinski, J. J., & Lencka, M. M. (2010). Modeling chemical and phase equilibria in geochemical systems using a speciation-based model. Journal of Geochemical Exploration, 106, 219-225.
- Wang, P., Anderko, A., & Young, R. D. (2004). Modeling viscosity of concentrated and mixed-solvent electrolyte systems. Fluid Phase Equilibria, 226, 71-82.
- Wang, P., Kosinski, J. J., Anderko, A., Springer, R. D., Lencka, M. M., & Liu, J. (2013). Ethylene Glycol and Its Mixtures with Water and Electrolytes: Thermodynamic and Transport Properties. I & EC Research, 52, 15968-15987.
- Wang, P., Kosinski, J. J., Lencka, M. M., Anderko, A., & Springer, R. D. (2013). Thermodynamic modeling of boric acid and selected metal borate systems. Pure Appl. Chem., 85(11), 2117-2144.
- Wang, Peiming, and Andrzej Anderko. “Computation of Dielectric Constants of Solvent Mixtures and Electrolyte Solutions.” Fluid Phase Equilibria, vol. 186, no. 1, Jan. 2001, pp. 103–122.
- Peiming Wang, Andrzej Ankderko, Jerzy J. Kosinski, Ronald D. Springer & Malgorzata M. Lencka. "Modeling Speciation and Solubility in Aqueous Systems Containing U(IV,VI), Np (IV, V, VI), Pu(III, IV, V,VI), Am(III), and Cm(III)" J.Solution Chem (2017) 46:521-588
OLI Papers and Presentations on Corrosion
- Corrosion rate calculation FAQ's
- Calculating Pitting Corrosion
- G. Englehardt, M. Urquidi-MacDonald, and D.D. MacDonald. "A simplified Method for Estimating Corrison Cavity Growth Rates." Corrosion Science, Vol. 38, No. 9, pp 1613-1635 (1996)