# Difference between revisions of "Thermodynamics"

From wiki.olisystems.com

(→OLI Papers and Presentations on Thermodynamics) |
(→General Thermodynamics and Fundamentals) |
||

Line 17: | Line 17: | ||

* [[Self-diffusivity]] | * [[Self-diffusivity]] | ||

* [[Total Dissolved Solids (TDS)]] | * [[Total Dissolved Solids (TDS)]] | ||

+ | * [[Comparing activity coefficients between different thermodynamic frameworks]] | ||

== OLI Modeling == | == OLI Modeling == |

## Latest revision as of 21:01, 28 September 2020

OLI Thermodynamics and Concepts section will help provide users with an insight about basic concepts OLI software and the engine is built on.

## Contents |

## General Thermodynamics and Fundamentals

- Calculation of pH in multiple solvents
- Conversion of Assays and Pseudo-components to OLI Species
- Electrical Conductivity and Ionic Radii
- H3OION in MSE databank
- Development of the Hydronium Ion for MSE
- Heat Capacity
- How is pH calculated when there is no H ion?
- MSE Density Parameter Update
- What is a "BINTER"?
- x-based and m-based activity coefficients in the solver
- Converting mole fraction based equilibrium constants to molality based values
- Electrolytes and Activity Coefficients
- Self-diffusivity
- Total Dissolved Solids (TDS)
- Comparing activity coefficients between different thermodynamic frameworks

## OLI Modeling

- How to calculate fugacities when no vapor phase is present
- How to "Set" the partial pressure of a gas?
- Reaction Kinetics Overview in OLI Software (PDF, 2.5 MB, TIPS #80)
- Scaling Tendencies
- Sparingly Soluble Organics
- Volumes vs. Standard Volumes vs. Standard Liquid Volumes
- TRANGE
- True Species vs Apparent species
- Relative Humidity
- Fixed, point and parent stream conditions - Definitions

## Data Regression

- ASAP variable list
- Mixed Solvent Electrolyte ( MSE) model Regression Parameters
- Traditional Regression Parameters
- What is the SOLU parameter?
- Using Stability Constants (Equilibrium Constants) with the OLI Databook (PDF)

## OLI Papers and Presentations on Thermodynamics

- Anderko, Andrej, Lencka, Malgorzata. "Computation of Electrical Conductivity of Multi component Aqueous Systems in Wide Concentration and Temperature Ranges. Ind. Eng.Chem.Res. 1997, 36, 1932-1943 (PDF)
- Anderko, A., Wang, P., & Rafal, M. (2002). Electrolyte solutions: from thermodynamic and transport property models to the simulation of industrial processes. Fluid Phase Equilibria, 194-197, 123-142. (PDF)
- Kosinski, J. J., Wang, P., Springer, R. D., & Anderko, A. (2007). Modeling acid–base equilibria and phase behavior in mixed-solvent electrolyte systems. Fluid Phase Equilibria, 256, 34-41.(PDF)
- Lencka, Malgorzata M., Jerzy J. Kosinski, Peiming Wang, Andrzej Anderko. Thermodynamic modeling of aqueous systems containing amines and amine hydrochlorides: Application to methylamine, morpholine, and morpholine derivatives. Fluid Phase Equilibria 418 (2016) 160-174
- Lencka, Malgorzata M., Richard E. Riman, "Thermodynamic Modeling of Hydrothermal Synthesis of Ceramic Powders." Chem. Mater. 1993, 5, 61-70. (PDF)
- Lencka, Malgorzata M., Richard E. Riman, "Thermodynamic Modeling of Hydrotehrmal Synthsis of Calcium Titanate with Reference to Other Alkaline-Earth Titanates." Chem. Mater. 1995, 7, 18-25. (PDF)
- Lencka, Malgorzata M., Magdalena Oledzka, Richard E. Riman, "Hydrothermal Synthesis of Sodium and Potassium Bismuth Titanates." Chem. Mater. 2000, 12, 1323-1330 (PDF)
- Nimkar, R., Simulating refining overhead chemistry in Pro/II. Presented at the SimSci User Conference Pasadena, California September 2016
- Springer, R. D., Wang, Z., Anderko, A., Wang, P., & Felmy, A. R. (2012). A thermodynamic model for predicting mineral reactivity in supercritical carbon dioxide: I. Phase behavior of carbon dioxide–water–chloride salt systems across the H2O-rich to the CO2-rich regions. Chemical Geology, 322-323, 151-171.(PDF)
- Rafal, M., Berthold, J. W., Scrivner, N. C., & Grise, S. L. (1994). Models for Electrolyte Solutions. In S. I. Sandler, Models for Thermodynamic and Phase Equilibrium Calculations (p. 686). New York: Marcel Dekker, Inc.(PDF, 9.35 mB)
- Wang, P., & Anderko, A. (2008). Modeling Thermal Conductivity of Concentrated and Mixed-Solvent Electrolyte Systems. Ind. Eng. chem. Res, 47, 5698-5709. (PDF)
- Wang, P., Anderko, A., & Young, R. D. (2002). A speciation-based model for mixed-solvent electrolyte systems. Fluid Phase Equilibria, 203, 141-176. (PDF)
- Wang, P., Anderko, A., Springer, R. D., Kosinski, J. J., & Lencka, M. M. (2010). Modeling chemical and phase equilibria in geochemical systems using a speciation-based model. Journal of Geochemical Exploration, 106, 219-225.(PDF)
- Wang, P., Anderko, A., & Young, R. D. (2004). Modeling viscosity of concentrated and mixed-solvent electrolyte systems. Fluid Phase Equilibria, 226, 71-82. (PDF)
- Wang, P., Kosinski, J. J., Anderko, A., Springer, R. D., Lencka, M. M., & Liu, J. (2013). Ethylene Glycol and Its Mixtures with Water and Electrolytes: Thermodynamic and Transport Properties. I & EC Research, 52, 15968-15987. (PDF)
- Wang, P., Kosinski, J. J., Lencka, M. M., Anderko, A., & Springer, R. D. (2013). Thermodynamic modeling of boric acid and selected metal borate systems. Pure Appl. Chem., 85(11), 2117-2144.(PDF)
- Wang, Peiming, and Andrzej Anderko. “Computation of Dielectric Constants of Solvent Mixtures and Electrolyte Solutions.” Fluid Phase Equilibria, vol. 186, no. 1, Jan. 2001, pp. 103–122.(PDF)
- Peiming Wang, Andrzej Ankderko, Jerzy J. Kosinski, Ronald D. Springer & Malgorzata M. Lencka. "Modeling Speciation and Solubility in Aqueous Systems Containing U(IV,VI), Np (IV, V, VI), Pu(III, IV, V,VI), Am(III), and Cm(III)" J.Solution Chem (2017) 46:521-588